Objective-Constraint Mutual-Guided Surrogate-Based Particle Swarm Optimization for Expensive Constrained Multimodal Problems
Expensive constraint multimodal optimization problems (ECMMOPs) have such characteristics as expensive objectives and constraints, and multiple optimal modalities simultaneously, which pose severe challenges to evolutionary optimization methods. This article studies an objective-constraint mutual-gu...
Uloženo v:
| Vydáno v: | IEEE transactions on evolutionary computation Ročník 27; číslo 4; s. 908 - 922 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Expensive constraint multimodal optimization problems (ECMMOPs) have such characteristics as expensive objectives and constraints, and multiple optimal modalities simultaneously, which pose severe challenges to evolutionary optimization methods. This article studies an objective-constraint mutual-guided surrogate-assisted particle swarm optimization algorithm for the kind of problem, aiming to discover multiple competing feasible optimal solutions at a lower calculation cost. The algorithm designs first a new two-layer cooperative surrogate model framework based on heterogeneous database to effectively adjust the prediction accuracies of objective surrogates and constraint surrogates on different search regions. An objective-constraint mutual-guided partial evaluation strategy (O-C-PES) is developed to generate high-quality infilling samples for objective and constraint surrogates, respectively, based on which the number of unnecessary real evaluations can be significantly reduced. Moreover, a position feature-guided hybrid update mechanism (PF-HUM) is proposed to find more optimal solutions by searching excellent infeasible and feasible areas at the same time, and a feasible ratio-driven local search (FR-LS) strategy is proposed to improve the algorithm's exploitation. Compared with four existing surrogate-assisted evolutionary algorithms (EAs) and one constraint multimodal EAs on 21 benchmark problems and three engineering instances, experiment results show that the proposed algorithm can simultaneously obtain multiple highly-competitive feasible optimal solutions with less computational cost. |
|---|---|
| AbstractList | Expensive constraint multimodal optimization problems (ECMMOPs) have such characteristics as expensive objectives and constraints, and multiple optimal modalities simultaneously, which pose severe challenges to evolutionary optimization methods. This article studies an objective-constraint mutual-guided surrogate-assisted particle swarm optimization algorithm for the kind of problem, aiming to discover multiple competing feasible optimal solutions at a lower calculation cost. The algorithm designs first a new two-layer cooperative surrogate model framework based on heterogeneous database to effectively adjust the prediction accuracies of objective surrogates and constraint surrogates on different search regions. An objective-constraint mutual-guided partial evaluation strategy (O-C-PES) is developed to generate high-quality infilling samples for objective and constraint surrogates, respectively, based on which the number of unnecessary real evaluations can be significantly reduced. Moreover, a position feature-guided hybrid update mechanism (PF-HUM) is proposed to find more optimal solutions by searching excellent infeasible and feasible areas at the same time, and a feasible ratio-driven local search (FR-LS) strategy is proposed to improve the algorithm’s exploitation. Compared with four existing surrogate-assisted evolutionary algorithms (EAs) and one constraint multimodal EAs on 21 benchmark problems and three engineering instances, experiment results show that the proposed algorithm can simultaneously obtain multiple highly-competitive feasible optimal solutions with less computational cost. |
| Author | Sun, Xiao-Yan Gong, Dun-Wei Ji, Xin-Fang Gao, Xiao-Zhi Zhang, Yong |
| Author_xml | – sequence: 1 givenname: Yong orcidid: 0000-0003-0026-8181 surname: Zhang fullname: Zhang, Yong email: yongzh401@126.com organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China – sequence: 2 givenname: Xin-Fang orcidid: 0000-0002-3514-6777 surname: Ji fullname: Ji, Xin-Fang email: mimosa_615615@126.com organization: School of Computing, University of Eastern Finland, Kuopio, Finland – sequence: 3 givenname: Xiao-Zhi orcidid: 0000-0002-0078-5675 surname: Gao fullname: Gao, Xiao-Zhi email: xiao.z.gao@gmail.com organization: School of Computing, University of Eastern Finland, Kuopio, Finland – sequence: 4 givenname: Dun-Wei orcidid: 0000-0003-2838-4301 surname: Gong fullname: Gong, Dun-Wei email: dwgong@vip.163.com organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China – sequence: 5 givenname: Xiao-Yan orcidid: 0000-0002-1386-6853 surname: Sun fullname: Sun, Xiao-Yan email: xysun78@126.com organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China |
| BookMark | eNp9kEtPwzAQhC0EEs8fgLhE4pyyjvOwj1CVgkRVpBbELbKTDXKVxMF2eIkfT0pRDxw47a4036xmDslua1ok5JTCiFIQF8vJ43gUQRSNGOURp7BDDqiIaQgQpbvDDlyEWcaf9smhcysAGidUHJCvuVph4fUrhmPTOm-lbn0w630v63Da6xLLYNFba56lx_BKuuG-l9brosZg8SZtE8w7rxv9Kb02bVAZG0zeO2zdYBlsLQdq1teDzpSyDu6tUTU27pjsVbJ2ePI7j8jD9WQ5vgnv5tPb8eVdWESC-bCiGFcl55IzxRQwpTIhKsyYBCpVigCVSJRAmpacphjLmKksikWmUCaYJuyInG98O2teenQ-X5netsPLPOJxzAVlAIMq26gKa5yzWOWF9j-p1hHqnEK-rjpfV52vq85_qx5I-ofsrG6k_fiXOdswGhG3epGJhAtg3zfMjrs |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1007_s40747_025_01947_0 crossref_primary_10_1016_j_energy_2024_134247 crossref_primary_10_1016_j_swevo_2025_102068 crossref_primary_10_1016_j_swevo_2025_102087 crossref_primary_10_1109_TETCI_2023_3240221 crossref_primary_10_1016_j_ins_2025_121909 crossref_primary_10_1016_j_swevo_2025_102151 crossref_primary_10_1109_JAS_2024_124320 crossref_primary_10_1016_j_swevo_2025_102093 crossref_primary_10_1109_TSMC_2022_3219080 crossref_primary_10_1016_j_knosys_2025_114238 crossref_primary_10_1109_TETCI_2024_3358377 crossref_primary_10_1017_S026357472500027X crossref_primary_10_1016_j_automatica_2025_112168 crossref_primary_10_1109_JAS_2024_124947 crossref_primary_10_1007_s12065_021_00659_x crossref_primary_10_1007_s10489_024_05612_w crossref_primary_10_1016_j_swevo_2025_102138 crossref_primary_10_1016_j_swevo_2025_102014 crossref_primary_10_1109_TSMC_2025_3573195 |
| Cites_doi | 10.1109/TCYB.2015.2493239 10.1109/TEVC.2019.2910721 10.1080/0305215X.2020.1722118 10.1016/j.swevo.2018.08.017 10.1080/0305215X.2011.637556 10.1109/TEVC.2021.3066606 10.1109/TEVC.2006.872344 10.1109/ICEC.1998.699146 10.1016/S0045-7825(99)00389-8 10.1109/TNN.2002.1000134 10.1016/j.engappai.2017.07.026 10.1002/int.22707 10.1109/TCYB.2018.2809430 10.1007/978-981-10-0448-3_67 10.1109/TCYB.2020.3008280 10.1109/TEVC.2021.3064835 10.1007/978-81-322-2184-5_3 10.1109/TCYB.2017.2710978 10.1109/TEVC.2021.3078486 10.1016/j.asoc.2020.106154 10.1016/S0045-7825(01)00323-1 10.1109/CEC.2011.5949693 10.1098/rspa.2006.1679 10.1016/j.asoc.2021.107276 10.1109/TEVC.2005.857610 10.1109/4235.985692 10.1007/978-3-319-91641-5_21 10.3934/jimo.2014.10.777 10.1109/TEVC.2009.2039141 10.1016/j.ijhydene.2019.04.094 10.1016/j.swevo.2011.10.001 10.1016/j.ins.2018.11.041 10.1109/TEVC.2009.2027359 10.1109/TEVC.2017.2754271 10.2307/2290782 10.1016/j.amc.2015.11.001 10.1109/TEVC.2019.2944180 10.1016/j.asoc.2021.107233 10.1109/CEC.2019.8790113 10.1145/1830483.1830568 10.2514/3.13035 10.1016/j.ins.2021.05.015 10.1109/MHS.1995.494215 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2022.3182810 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 922 |
| ExternalDocumentID | 10_1109_TEVC_2022_3182810 9795890 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62133015; 61876185; 51875113 funderid: 10.13039/501100001809 – fundername: Key research and Development Program in Xuzhou grantid: KC20184 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-f1e4fd88a83b3b03bb799fe73a01ab6e00f95b9e16d816e4a43b72497bea5e653 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001042026800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Mon Jun 30 04:02:43 EDT 2025 Tue Nov 18 22:35:25 EST 2025 Sat Nov 29 03:13:49 EST 2025 Wed Aug 27 02:25:58 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-f1e4fd88a83b3b03bb799fe73a01ab6e00f95b9e16d816e4a43b72497bea5e653 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1386-6853 0000-0002-0078-5675 0000-0002-3514-6777 0000-0003-0026-8181 0000-0003-2838-4301 |
| PQID | 2844891300 |
| PQPubID | 85418 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1109_TEVC_2022_3182810 proquest_journals_2844891300 ieee_primary_9795890 crossref_primary_10_1109_TEVC_2022_3182810 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | friedman (ref47) 2012; 32 ref12 ref15 ref14 ref52 ref11 ref10 ref17 ref16 ref19 ref18 ref50 ma (ref6) 2021 ref48 ref41 ref44 schonlau (ref28) 1998 ref49 ref8 ref7 (ref22) 2019 ref9 ref4 ref3 ref5 liang (ref45) 2006; 41 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 leong (ref43) 2008 ref24 ref23 ref26 ref25 ref20 er (ref42) 2002; 13 ref21 ref27 ref29 gao (ref13) 2021 li (ref46) 2013 singh (ref51) 2011 |
| References_xml | – ident: ref19 doi: 10.1109/TCYB.2015.2493239 – ident: ref7 doi: 10.1109/TEVC.2019.2910721 – ident: ref31 doi: 10.1080/0305215X.2020.1722118 – ident: ref14 doi: 10.1016/j.swevo.2018.08.017 – ident: ref29 doi: 10.1080/0305215X.2011.637556 – ident: ref39 doi: 10.1109/TEVC.2021.3066606 – volume: 41 start-page: 8 year: 2006 ident: ref45 article-title: Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization publication-title: J Appl Mech – year: 2019 ident: ref22 article-title: The 3rd Evolutionary Computation Competition publication-title: Journal of Japanese Society for Evolutionary Computing – ident: ref21 doi: 10.1109/TEVC.2006.872344 – year: 2021 ident: ref6 article-title: An adaptive localized decision variable analysis approach to large-scale multiobjective and many-objective optimization publication-title: IEEE Trans Cybern – ident: ref25 doi: 10.1109/ICEC.1998.699146 – ident: ref18 doi: 10.1016/S0045-7825(99)00389-8 – volume: 13 start-page: 697 year: 2002 ident: ref42 article-title: Face recognition with radial basis function (RBF) neural networks publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2002.1000134 – ident: ref3 doi: 10.1016/j.engappai.2017.07.026 – ident: ref5 doi: 10.1002/int.22707 – ident: ref2 doi: 10.1109/TCYB.2018.2809430 – ident: ref35 doi: 10.1007/978-981-10-0448-3_67 – ident: ref12 doi: 10.1109/TCYB.2020.3008280 – ident: ref4 doi: 10.1109/TEVC.2021.3064835 – ident: ref37 doi: 10.1007/978-81-322-2184-5_3 – ident: ref11 doi: 10.1109/TCYB.2017.2710978 – ident: ref23 doi: 10.1109/TEVC.2021.3078486 – ident: ref52 doi: 10.1016/j.asoc.2020.106154 – year: 2021 ident: ref13 article-title: Solving expensive multimodal optimization problem by a decomposition differential evolution algorithm publication-title: IEEE Trans Cybern – ident: ref15 doi: 10.1016/S0045-7825(01)00323-1 – ident: ref34 doi: 10.1109/CEC.2011.5949693 – ident: ref1 doi: 10.1098/rspa.2006.1679 – year: 2013 ident: ref46 publication-title: Benchmark functions for CEC'2013 special session and competition on niching methods for multimodal function optimization – ident: ref32 doi: 10.1016/j.asoc.2021.107276 – ident: ref27 doi: 10.1109/TEVC.2005.857610 – ident: ref26 doi: 10.1109/4235.985692 – ident: ref40 doi: 10.1007/978-3-319-91641-5_21 – ident: ref50 doi: 10.3934/jimo.2014.10.777 – ident: ref36 doi: 10.1109/TEVC.2009.2039141 – ident: ref30 doi: 10.1016/j.ijhydene.2019.04.094 – ident: ref20 doi: 10.1016/j.swevo.2011.10.001 – ident: ref17 doi: 10.1016/j.ins.2018.11.041 – ident: ref44 doi: 10.1109/TEVC.2009.2027359 – ident: ref8 doi: 10.1109/TEVC.2017.2754271 – volume: 32 start-page: 674 year: 2012 ident: ref47 article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: Amer Stat Assoc – ident: ref48 doi: 10.2307/2290782 – start-page: 11 year: 1998 ident: ref28 publication-title: Global versus local search in constrained optimization of computer models – ident: ref16 doi: 10.1016/j.amc.2015.11.001 – year: 2008 ident: ref43 publication-title: Multi-objective Particle Swarm Optimization Integration of Dynamic Population and Multiple-swarm Concepts and Constraint Handing – ident: ref9 doi: 10.1109/TEVC.2019.2944180 – ident: ref38 doi: 10.1016/j.asoc.2021.107233 – year: 2011 ident: ref51 article-title: Development of optimization methods to deal with current challenges in engineering design optimization – ident: ref41 doi: 10.1109/CEC.2019.8790113 – ident: ref10 doi: 10.1145/1830483.1830568 – ident: ref49 doi: 10.2514/3.13035 – ident: ref33 doi: 10.1016/j.ins.2021.05.015 – ident: ref24 doi: 10.1109/MHS.1995.494215 |
| SSID | ssj0014519 |
| Score | 2.522284 |
| Snippet | Expensive constraint multimodal optimization problems (ECMMOPs) have such characteristics as expensive objectives and constraints, and multiple optimal... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 908 |
| SubjectTerms | Algorithms Computational modeling Computing costs Constraints Costs Evolutionary algorithms Mathematical models multimodal optimization Optimization Particle swarm optimization particle swarm optimization (PSO) Predictive models Search problems Strategy surrogate model |
| Title | Objective-Constraint Mutual-Guided Surrogate-Based Particle Swarm Optimization for Expensive Constrained Multimodal Problems |
| URI | https://ieeexplore.ieee.org/document/9795890 https://www.proquest.com/docview/2844891300 |
| Volume | 27 |
| WOSCitedRecordID | wos001042026800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB5BxIEeSHlUpKWVDz1VGLzrffnYIqAHHpEIUW6r9XpWCiIJ2mTppT--Y6-zQipC4rYH22vpG3tmPI8P4HtaSqOSUnPy2hSPwirgukDFSZRt75hYhi56Pr5Kb26yyUQNN-C4q4VBRJd8hif208XyzaJs7FPZqUpVnCly0DdpnbZWq4sY2DYpbTI9_SjNJj6CGQh1Ojofn5EnGIbkoJKDYYtlX-ggR6ry303s1MtF_30b-wg73oxkP1vcd2ED53vQX1M0MH9i9-DDi36D-_D3Vj-0Fxy3RJ2OHmLFrhtbQ8Ivm6lBw-6aul7YtzX-ixScYUMvW-zuT1HP2C1dMTNfu8nI4GW2V7LLgWfdkjTL1fXOFob2OGwpa5YHcH9xPjr7zT39Ai_JBljxKsCoMllWZFJLLaTWqVIVprIQQaETFKJSsVYYJCYLEoyKSOqUvLlUYxFjEstP0Jsv5ngIrFJGhiYwZWULWbEsyOxTuspIPjA2YTgAsQYkL31vcrvhx9z5KELlFsPcYph7DAfwo5vy1DbmeGvwvgWtG-jxGsDRGvXcH91lTvo6srFbIT6_PusLbFvO-TYL8Ah6q7rBr7BVPq-my_qbk8p_V1biLQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4hWqn0AC0PNTQtPvRUYfCu9-VjG0GpCCESAeW2Wq9nJaomQZssvfTHd-x1VkhFlXrbg-219I09M57HB_ApLaVRSak5eW2KR2EVcF2g4iTKtndMLEMXPb8bpqNRNp2q8QYcd7UwiOiSz_DEfrpYvlmUjX0qO1WpijNFDvqLOIpC0VZrdTED2yilTaenX6XZ1McwA6FOJ2d3A_IFw5BcVHIxbLnsEy3kaFX-uoudgjnf-b-tvYFtb0iyLy3yb2ED57uwsyZpYP7M7sLrJx0H9-D3tf7RXnHcUnU6gogVu2psFQn_1twbNOymqeuFfV3jX0nFGTb20sVufhX1jF3TJTPz1ZuMTF5muyW7LHjWLUmzXGXvbGFoj-OWtGa5D7fnZ5PBBfcEDLwkK2DFqwCjymRZkUkttZBap0pVmMpCBIVOUIhKxVphkJgsSDAqIqlT8udSjUWMSSwPYHO-mOM7YJUyMjSBKStbyoplQYaf0lVGEoKxCcMeiDUgeem7k9sN_8ydlyJUbjHMLYa5x7AHn7spD21rjn8N3rOgdQM9Xj3or1HP_eFd5qSxIxu9FeLw-VlH8OpicjXMh99Hl-9hyzLQtzmBfdhc1Q1-gJfl4-p-WX90EvoHPFLldA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Objective-Constraint+Mutual-Guided+Surrogate-Based+Particle+Swarm+Optimization+for+Expensive+Constrained+Multimodal+Problems&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Zhang%2C+Yong&rft.au=Ji%2C+Xin-Fang&rft.au=Gao%2C+Xiao-Zhi&rft.au=Gong%2C+Dun-Wei&rft.date=2023-08-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=27&rft.issue=4&rft.spage=908&rft.epage=922&rft_id=info:doi/10.1109%2FTEVC.2022.3182810&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2022_3182810 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |