A Robust Framework for Automated Screening of Diabetic Patient Using ECG Signals
Diabetes Mellitus (DM) or diabetes is an incurable, chronic, and genetic link health problem that occurs due to the higher glucose level in the blood. Continuous monitoring and automatic screening of diabetic patients will significantly improve the quality of the medical management system. DM induce...
Saved in:
| Published in: | IEEE sensors journal Vol. 22; no. 24; p. 1 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
15.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1530-437X, 1558-1748 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Diabetes Mellitus (DM) or diabetes is an incurable, chronic, and genetic link health problem that occurs due to the higher glucose level in the blood. Continuous monitoring and automatic screening of diabetic patients will significantly improve the quality of the medical management system. DM induces cardiovascular autonomic neuropathy, which alters the morphology of electrocardiogram (ECG) signals. Hence, in this experiment, a new single-lead ECG signal database of 86 subjects (35 diabetic and 51 normal) is recorded. For the automatic screening of DM, an intrinsic time-scale decomposition (ITD) and machine learning-based framework is developed. In the first stage, de-noised recorded signals are segmented into fragments of 5-seconds and decomposed into rotational components using the ITD algorithm. In the second stage, four features namely, Hjorth complexity, Shannon entropy, log energy entropy, and log energy are extracted from the ITD components. In the third stage, the Kruskal-Wallis test is applied to select the most distinguishable features and fed to a decision tree classifier with three different kernel functions for the automatic detection of diabetic patients. The fine tree kernel function provides the highest classification accuracy of 86.9%. The proposed framework is developed using a 10-fold validation strategy. The developed framework is patient-centered suitable for screening in resource-limited environments and ready to be tested with more databases. |
|---|---|
| AbstractList | Diabetes mellitus (DM) or diabetes is an incurable, chronic, and genetic link health problem that occurs due to the higher glucose level in the blood. Continuous monitoring and automatic screening of diabetic patients will significantly improve the quality of the medical management system. DM induces cardiovascular autonomic neuropathy, which alters the morphology of electrocardiogram (ECG) signals. Hence, in this experiment, a new single-lead ECG signal database of 86 subjects (35 diabetic and 51 normal) is recorded. For the automatic screening of DM, an intrinsic time-scale decomposition (ITD) and machine learning-based framework is developed. In the first stage, denoised recorded signals are segmented into fragments of 5-s and decomposed into rotational components using the ITD algorithm. In the second stage, four features, namely, Hjorth complexity, Shannon entropy, log energy entropy, and log energy, are extracted from the ITD components. In the third stage, the Kruskal–Wallis (K–W) test is applied to select the most distinguishable features and fed to a decision tree classifier (DTC) with three different kernel functions for the automatic detection of diabetic patients. The fine tree (FT) kernel function provides the highest classification accuracy (ACC) of 86.9%. The proposed framework is developed using a 10-fold validation strategy. The developed framework is patient-centered suitable for screening in resource-limited environments and ready to be tested with more databases. Diabetes Mellitus (DM) or diabetes is an incurable, chronic, and genetic link health problem that occurs due to the higher glucose level in the blood. Continuous monitoring and automatic screening of diabetic patients will significantly improve the quality of the medical management system. DM induces cardiovascular autonomic neuropathy, which alters the morphology of electrocardiogram (ECG) signals. Hence, in this experiment, a new single-lead ECG signal database of 86 subjects (35 diabetic and 51 normal) is recorded. For the automatic screening of DM, an intrinsic time-scale decomposition (ITD) and machine learning-based framework is developed. In the first stage, de-noised recorded signals are segmented into fragments of 5-seconds and decomposed into rotational components using the ITD algorithm. In the second stage, four features namely, Hjorth complexity, Shannon entropy, log energy entropy, and log energy are extracted from the ITD components. In the third stage, the Kruskal-Wallis test is applied to select the most distinguishable features and fed to a decision tree classifier with three different kernel functions for the automatic detection of diabetic patients. The fine tree kernel function provides the highest classification accuracy of 86.9%. The proposed framework is developed using a 10-fold validation strategy. The developed framework is patient-centered suitable for screening in resource-limited environments and ready to be tested with more databases. |
| Author | Gupta, Kapil Bajaj, Varun |
| Author_xml | – sequence: 1 givenname: Kapil orcidid: 0000-0002-8296-8984 surname: Gupta fullname: Gupta, Kapil organization: Discipline of Electronics and Communication Engineering, PDPM-IIITDM Jabalpur, M.P., India – sequence: 2 givenname: Varun orcidid: 0000-0002-8721-1219 surname: Bajaj fullname: Bajaj, Varun organization: Discipline of Electronics and Communication Engineering, PDPM-IIITDM Jabalpur, M.P., India |
| BookMark | eNp9kF9PwjAUxRuDiYB-AONLE5-Hbbeu2yNBQA1RIpL41nTdLSnCil0X47d3C8QHH3w6N7nnd_-cAepVrgKErikZUUryu6fV9HnECGOjmNGc8-QM9SnnWURFkvW6OiZREov3CzSo6y0hNBdc9NFyjF9d0dQBz7zaw5fzH9g4j8dNcHsVoMQr7QEqW22wM_jeqgKC1XipgoUq4HXddaaTOV7ZTaV29SU6N63A1UmHaD2bvk0eosXL_HEyXkSa5XGIDC1YoYnRotQKdJppbQQ1WUkgJUWsWVEWBIzJs9ykpSiAatAZV61DGWKSeIhuj3MP3n02UAe5dY3vLpBM8IRyxglpXfTo0t7VtQcjD97ulf-WlMguONkFJ7vg5Cm4lhF_GG1D-66rgld29y95cyQtAPxuyvMkSRmLfwA_an6B |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1109_JSEN_2025_3572080 crossref_primary_10_3390_fi16080280 crossref_primary_10_3390_bioengineering12010004 crossref_primary_10_1007_s13534_024_00384_1 crossref_primary_10_1080_10255842_2024_2342512 crossref_primary_10_1109_JSEN_2024_3367776 crossref_primary_10_1016_j_asoc_2024_112020 crossref_primary_10_1016_j_cjca_2024_07_028 crossref_primary_10_1371_journal_pone_0307461 crossref_primary_10_1007_s44174_024_00230_z crossref_primary_10_4103_ijoy_ijoy_161_23 |
| Cites_doi | 10.1007/978-3-030-33966-1_14 10.5144/0256-4947.2002.400 10.1016/j.knosys.2015.02.005 10.1007/978-3-030-66633-0_11 10.1016/j.procs.2018.05.041 10.1016/j.dsx.2020.04.004 10.1016/j.compbiomed.2013.05.024 10.3233/IDA-130580 10.1016/j.bspc.2022.104268 10.2337/diacare.27.5.1047 10.1109/TIM.2021.3132072 10.1016/j.procs.2017.08.193 10.1016/j.eswa.2022.119058 10.1142/S0129065713500238 10.1109/JSEN.2021.3070706 10.1109/JSEN.2022.3162022 10.1016/j.compbiomed.2019.103387 10.2337/dc20-S002 10.7860/JCDR/2017/24882.9740 10.1016/j.bspc.2011.06.002 10.5001/omj.2012.68 10.1166/jmihi.2013.1178 10.1098/rspa.2006.1761 10.2337/diacare.26.5.1553 10.1016/j.diabres.2021.109119 10.1088/0967-3334/29/7/010 10.4028/www.scientific.net/AMM.611.115 10.1001/jama.2014.3201 10.1109/TGE.1977.6498972 10.1080/10255842.2011.616945 10.3390/jpm11080725 10.1016/j.bbe.2022.06.001 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2022.3219554 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_JSEN_2022_3219554 9944622 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: CSIR grantid: Project ID: 22(0835)/20/EMR-II |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ ZY4 AAYXX CITATION 7SP 7U5 8FD AARMG ABAZT L7M |
| ID | FETCH-LOGICAL-c293t-f1b2bc0fc7dcaec68ccf71f8d0e60b3c2bdb0eff989f6d7be1cec85af8daf0f43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000928140300065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 10:12:30 EDT 2025 Sat Nov 29 06:39:24 EST 2025 Tue Nov 18 22:42:23 EST 2025 Tue Nov 25 14:44:25 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-f1b2bc0fc7dcaec68ccf71f8d0e60b3c2bdb0eff989f6d7be1cec85af8daf0f43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8721-1219 0000-0002-8296-8984 |
| PQID | 2754152500 |
| PQPubID | 75733 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_JSEN_2022_3219554 ieee_primary_9944622 crossref_citationtrail_10_1109_JSEN_2022_3219554 proquest_journals_2754152500 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-15 |
| PublicationDateYYYYMMDD | 2022-12-15 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref12 ref15 ref14 ref30 ref33 ref11 ref32 ref10 ref2 ref17 ref16 ref19 (ref1) 2006; 35 ref24 ref23 swapna (ref18) 2018; 132 ref26 ref25 ref20 ref22 ref21 bromiley (ref31) 2004; 9 ref28 ref27 ref29 ref8 ref7 ref4 ref3 ref6 ref5 (ref9) 2020; 43 |
| References_xml | – ident: ref13 doi: 10.1007/978-3-030-33966-1_14 – ident: ref27 doi: 10.5144/0256-4947.2002.400 – ident: ref20 doi: 10.1016/j.knosys.2015.02.005 – ident: ref16 doi: 10.1007/978-3-030-66633-0_11 – volume: 132 start-page: 1253 year: 2018 ident: ref18 article-title: Automated detection of diabetes using CNN and CNN-LSTM network and heart rate signals publication-title: Proc Journal of Computer Science doi: 10.1016/j.procs.2018.05.041 – volume: 9 start-page: 10 year: 2004 ident: ref31 article-title: Shannon entropy, Renyi entropy, and information publication-title: J Statist Inf – ident: ref7 doi: 10.1016/j.dsx.2020.04.004 – ident: ref21 doi: 10.1016/j.compbiomed.2013.05.024 – ident: ref24 doi: 10.3233/IDA-130580 – ident: ref6 doi: 10.1016/j.bspc.2022.104268 – ident: ref8 doi: 10.2337/diacare.27.5.1047 – ident: ref12 doi: 10.1109/TIM.2021.3132072 – ident: ref26 doi: 10.1016/j.procs.2017.08.193 – ident: ref33 doi: 10.1016/j.eswa.2022.119058 – ident: ref30 doi: 10.1142/S0129065713500238 – ident: ref3 doi: 10.1109/JSEN.2021.3070706 – ident: ref14 doi: 10.1109/JSEN.2022.3162022 – ident: ref19 doi: 10.1016/j.compbiomed.2019.103387 – volume: 43 start-page: 14s year: 2020 ident: ref9 article-title: 2. Classification and diagnosis of diabetes: \emph{Standards of medical care in diabetes-2020} publication-title: Diabetes Care doi: 10.2337/dc20-S002 – ident: ref10 doi: 10.7860/JCDR/2017/24882.9740 – ident: ref23 doi: 10.1016/j.bspc.2011.06.002 – ident: ref4 doi: 10.5001/omj.2012.68 – ident: ref28 doi: 10.1166/jmihi.2013.1178 – ident: ref29 doi: 10.1098/rspa.2006.1761 – ident: ref11 doi: 10.2337/diacare.26.5.1553 – ident: ref5 doi: 10.1016/j.diabres.2021.109119 – ident: ref25 doi: 10.1088/0967-3334/29/7/010 – ident: ref32 doi: 10.4028/www.scientific.net/AMM.611.115 – ident: ref2 doi: 10.1001/jama.2014.3201 – volume: 35 start-page: 64s year: 2006 ident: ref1 article-title: Diagnosis and classification of diabetes mellitus publication-title: Diabetes Care – ident: ref34 doi: 10.1109/TGE.1977.6498972 – ident: ref22 doi: 10.1080/10255842.2011.616945 – ident: ref17 doi: 10.3390/jpm11080725 – ident: ref15 doi: 10.1016/j.bbe.2022.06.001 |
| SSID | ssj0019757 |
| Score | 2.4162374 |
| Snippet | Diabetes Mellitus (DM) or diabetes is an incurable, chronic, and genetic link health problem that occurs due to the higher glucose level in the blood.... Diabetes mellitus (DM) or diabetes is an incurable, chronic, and genetic link health problem that occurs due to the higher glucose level in the blood.... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms classification Data base management systems Decision trees Decomposition Diabetes Diabetes mellitus Electrocardiography Entropy (Information theory) ITD Kernel functions Machine learning |
| Title | A Robust Framework for Automated Screening of Diabetic Patient Using ECG Signals |
| URI | https://ieeexplore.ieee.org/document/9944622 https://www.proquest.com/docview/2754152500 |
| Volume | 22 |
| WOSCitedRecordID | wos000928140300065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_aMmj70G5NR9OPoYc9jTmRP2RZjyEkLXsIYdkgb8aST21gxCVxCv3ve5Kd0LFR6Jsf7ozR6XS_n-90B_A1E1pgHJUBMZ40SApBPkfcNrApN1oSlSsL64dNyMkkm8_VdA--7-7CIKIvPsOee_S5_LIyG_errK8UkZeIDtx9KWVzV2uXMVDSd_UkB-ZBEst5m8EMuer_mI0mxASjqBeTfwqR_BWD_FCVf05iH17Gp-_7sI9w0sJINmjs_gn2cHkGx6-aC57BYTvf_OG5A9MB-1npzbpm420xFiO0ygabuiLIiiWbGVeAQ4qssqwpk1kYNm26rjJfWMBGw1s2W9y7jsvn8Hs8-jW8C9pZCoGhgF4HNtSRNtwaWZoCTZoZY2Vos5JjynVsIl1qjtaqTNm0lBpDgyYTBUkUltsk_gwHy2qJF8AyLNBNUxeKuAghCk0QKrSJxEgSf7O2C3y7urlpG427eRd_ck84uMqdQXJnkLw1SBe-7VQemy4bbwl3nAV2gu3id-F6a8K89cN1HknhEIrg_PL_Wldw5N7tClRCcQ0H9WqDN_DBPNWL9eqL32IvWGDOcQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED5KV-j60HbtxtJ2nR76NOZWli3Legwl6Y-1ISwd5M1Y8qkLjLg0zmD__U6yEzY2Bnvzwx02Op3u-3ynO4CzXBqJiagiYjxZlJaSfI64beQybo0iKleVLgybUKNRPp3q8QZ8XN-FQcRQfIbn_jHk8qvaLv2vsgutibwIOnBfyDQVcXtba50z0Cr09SQX5lGaqGmXw4y5vridDEbEBYU4T8hDpUx_i0JhrMofZ3EIMMO9__u0fdjtgCTrt5Z_BRs4P4CdX9oLHsB2N-H8649DGPfZ59osFw0brsqxGOFV1l82NYFWrNjE-hIcUmS1Y22hzMyycdt3lYXSAja4vGKT2aPvufwavgwHD5fXUTdNIbIU0pvIxUYYy51VlS3RZrm1TsUurzhm3CRWmMpwdE7n2mWVMhhbtLksSaJ03KXJG9ic13N8CyzHEv08damJjRCmMASiYpcqFIoYnHM94KvVLWzXatxPvPhWBMrBdeENUniDFJ1BevBhrfLU9tn4l_Cht8BasFv8HpysTFh0nrgohJIeo0jOj_6u9R62rx_u74q7m9GnY3jp3-PLVWJ5ApvN8xLfwZb93swWz6dhu_0EPoTRuA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+Framework+for+Automated+Screening+of+Diabetic+Patient+Using+ECG+Signals&rft.jtitle=IEEE+sensors+journal&rft.au=Gupta%2C+Kapil&rft.au=Bajaj%2C+Varun&rft.date=2022-12-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=24&rft.spage=24222&rft.epage=24229&rft_id=info:doi/10.1109%2FJSEN.2022.3219554&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2022_3219554 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |