A Robust Framework for Automated Screening of Diabetic Patient Using ECG Signals

Diabetes Mellitus (DM) or diabetes is an incurable, chronic, and genetic link health problem that occurs due to the higher glucose level in the blood. Continuous monitoring and automatic screening of diabetic patients will significantly improve the quality of the medical management system. DM induce...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal Vol. 22; no. 24; p. 1
Main Authors: Gupta, Kapil, Bajaj, Varun
Format: Journal Article
Language:English
Published: New York IEEE 15.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1530-437X, 1558-1748
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Diabetes Mellitus (DM) or diabetes is an incurable, chronic, and genetic link health problem that occurs due to the higher glucose level in the blood. Continuous monitoring and automatic screening of diabetic patients will significantly improve the quality of the medical management system. DM induces cardiovascular autonomic neuropathy, which alters the morphology of electrocardiogram (ECG) signals. Hence, in this experiment, a new single-lead ECG signal database of 86 subjects (35 diabetic and 51 normal) is recorded. For the automatic screening of DM, an intrinsic time-scale decomposition (ITD) and machine learning-based framework is developed. In the first stage, de-noised recorded signals are segmented into fragments of 5-seconds and decomposed into rotational components using the ITD algorithm. In the second stage, four features namely, Hjorth complexity, Shannon entropy, log energy entropy, and log energy are extracted from the ITD components. In the third stage, the Kruskal-Wallis test is applied to select the most distinguishable features and fed to a decision tree classifier with three different kernel functions for the automatic detection of diabetic patients. The fine tree kernel function provides the highest classification accuracy of 86.9%. The proposed framework is developed using a 10-fold validation strategy. The developed framework is patient-centered suitable for screening in resource-limited environments and ready to be tested with more databases.
AbstractList Diabetes mellitus (DM) or diabetes is an incurable, chronic, and genetic link health problem that occurs due to the higher glucose level in the blood. Continuous monitoring and automatic screening of diabetic patients will significantly improve the quality of the medical management system. DM induces cardiovascular autonomic neuropathy, which alters the morphology of electrocardiogram (ECG) signals. Hence, in this experiment, a new single-lead ECG signal database of 86 subjects (35 diabetic and 51 normal) is recorded. For the automatic screening of DM, an intrinsic time-scale decomposition (ITD) and machine learning-based framework is developed. In the first stage, denoised recorded signals are segmented into fragments of 5-s and decomposed into rotational components using the ITD algorithm. In the second stage, four features, namely, Hjorth complexity, Shannon entropy, log energy entropy, and log energy, are extracted from the ITD components. In the third stage, the Kruskal–Wallis (K–W) test is applied to select the most distinguishable features and fed to a decision tree classifier (DTC) with three different kernel functions for the automatic detection of diabetic patients. The fine tree (FT) kernel function provides the highest classification accuracy (ACC) of 86.9%. The proposed framework is developed using a 10-fold validation strategy. The developed framework is patient-centered suitable for screening in resource-limited environments and ready to be tested with more databases.
Diabetes Mellitus (DM) or diabetes is an incurable, chronic, and genetic link health problem that occurs due to the higher glucose level in the blood. Continuous monitoring and automatic screening of diabetic patients will significantly improve the quality of the medical management system. DM induces cardiovascular autonomic neuropathy, which alters the morphology of electrocardiogram (ECG) signals. Hence, in this experiment, a new single-lead ECG signal database of 86 subjects (35 diabetic and 51 normal) is recorded. For the automatic screening of DM, an intrinsic time-scale decomposition (ITD) and machine learning-based framework is developed. In the first stage, de-noised recorded signals are segmented into fragments of 5-seconds and decomposed into rotational components using the ITD algorithm. In the second stage, four features namely, Hjorth complexity, Shannon entropy, log energy entropy, and log energy are extracted from the ITD components. In the third stage, the Kruskal-Wallis test is applied to select the most distinguishable features and fed to a decision tree classifier with three different kernel functions for the automatic detection of diabetic patients. The fine tree kernel function provides the highest classification accuracy of 86.9%. The proposed framework is developed using a 10-fold validation strategy. The developed framework is patient-centered suitable for screening in resource-limited environments and ready to be tested with more databases.
Author Gupta, Kapil
Bajaj, Varun
Author_xml – sequence: 1
  givenname: Kapil
  orcidid: 0000-0002-8296-8984
  surname: Gupta
  fullname: Gupta, Kapil
  organization: Discipline of Electronics and Communication Engineering, PDPM-IIITDM Jabalpur, M.P., India
– sequence: 2
  givenname: Varun
  orcidid: 0000-0002-8721-1219
  surname: Bajaj
  fullname: Bajaj, Varun
  organization: Discipline of Electronics and Communication Engineering, PDPM-IIITDM Jabalpur, M.P., India
BookMark eNp9kF9PwjAUxRuDiYB-AONLE5-Hbbeu2yNBQA1RIpL41nTdLSnCil0X47d3C8QHH3w6N7nnd_-cAepVrgKErikZUUryu6fV9HnECGOjmNGc8-QM9SnnWURFkvW6OiZREov3CzSo6y0hNBdc9NFyjF9d0dQBz7zaw5fzH9g4j8dNcHsVoMQr7QEqW22wM_jeqgKC1XipgoUq4HXddaaTOV7ZTaV29SU6N63A1UmHaD2bvk0eosXL_HEyXkSa5XGIDC1YoYnRotQKdJppbQQ1WUkgJUWsWVEWBIzJs9ykpSiAatAZV61DGWKSeIhuj3MP3n02UAe5dY3vLpBM8IRyxglpXfTo0t7VtQcjD97ulf-WlMguONkFJ7vg5Cm4lhF_GG1D-66rgld29y95cyQtAPxuyvMkSRmLfwA_an6B
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_JSEN_2025_3572080
crossref_primary_10_3390_fi16080280
crossref_primary_10_3390_bioengineering12010004
crossref_primary_10_1007_s13534_024_00384_1
crossref_primary_10_1080_10255842_2024_2342512
crossref_primary_10_1109_JSEN_2024_3367776
crossref_primary_10_1016_j_asoc_2024_112020
crossref_primary_10_1016_j_cjca_2024_07_028
crossref_primary_10_1371_journal_pone_0307461
crossref_primary_10_1007_s44174_024_00230_z
crossref_primary_10_4103_ijoy_ijoy_161_23
Cites_doi 10.1007/978-3-030-33966-1_14
10.5144/0256-4947.2002.400
10.1016/j.knosys.2015.02.005
10.1007/978-3-030-66633-0_11
10.1016/j.procs.2018.05.041
10.1016/j.dsx.2020.04.004
10.1016/j.compbiomed.2013.05.024
10.3233/IDA-130580
10.1016/j.bspc.2022.104268
10.2337/diacare.27.5.1047
10.1109/TIM.2021.3132072
10.1016/j.procs.2017.08.193
10.1016/j.eswa.2022.119058
10.1142/S0129065713500238
10.1109/JSEN.2021.3070706
10.1109/JSEN.2022.3162022
10.1016/j.compbiomed.2019.103387
10.2337/dc20-S002
10.7860/JCDR/2017/24882.9740
10.1016/j.bspc.2011.06.002
10.5001/omj.2012.68
10.1166/jmihi.2013.1178
10.1098/rspa.2006.1761
10.2337/diacare.26.5.1553
10.1016/j.diabres.2021.109119
10.1088/0967-3334/29/7/010
10.4028/www.scientific.net/AMM.611.115
10.1001/jama.2014.3201
10.1109/TGE.1977.6498972
10.1080/10255842.2011.616945
10.3390/jpm11080725
10.1016/j.bbe.2022.06.001
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2022.3219554
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1
ExternalDocumentID 10_1109_JSEN_2022_3219554
9944622
Genre orig-research
GrantInformation_xml – fundername: CSIR
  grantid: Project ID: 22(0835)/20/EMR-II
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
ZY4
AAYXX
CITATION
7SP
7U5
8FD
AARMG
ABAZT
L7M
ID FETCH-LOGICAL-c293t-f1b2bc0fc7dcaec68ccf71f8d0e60b3c2bdb0eff989f6d7be1cec85af8daf0f43
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000928140300065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 10:12:30 EDT 2025
Sat Nov 29 06:39:24 EST 2025
Tue Nov 18 22:42:23 EST 2025
Tue Nov 25 14:44:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-f1b2bc0fc7dcaec68ccf71f8d0e60b3c2bdb0eff989f6d7be1cec85af8daf0f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8721-1219
0000-0002-8296-8984
PQID 2754152500
PQPubID 75733
PageCount 1
ParticipantIDs crossref_primary_10_1109_JSEN_2022_3219554
ieee_primary_9944622
crossref_citationtrail_10_1109_JSEN_2022_3219554
proquest_journals_2754152500
PublicationCentury 2000
PublicationDate 2022-12-15
PublicationDateYYYYMMDD 2022-12-15
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
ref30
ref33
ref11
ref32
ref10
ref2
ref17
ref16
ref19
(ref1) 2006; 35
ref24
ref23
swapna (ref18) 2018; 132
ref26
ref25
ref20
ref22
ref21
bromiley (ref31) 2004; 9
ref28
ref27
ref29
ref8
ref7
ref4
ref3
ref6
ref5
(ref9) 2020; 43
References_xml – ident: ref13
  doi: 10.1007/978-3-030-33966-1_14
– ident: ref27
  doi: 10.5144/0256-4947.2002.400
– ident: ref20
  doi: 10.1016/j.knosys.2015.02.005
– ident: ref16
  doi: 10.1007/978-3-030-66633-0_11
– volume: 132
  start-page: 1253
  year: 2018
  ident: ref18
  article-title: Automated detection of diabetes using CNN and CNN-LSTM network and heart rate signals
  publication-title: Proc Journal of Computer Science
  doi: 10.1016/j.procs.2018.05.041
– volume: 9
  start-page: 10
  year: 2004
  ident: ref31
  article-title: Shannon entropy, Renyi entropy, and information
  publication-title: J Statist Inf
– ident: ref7
  doi: 10.1016/j.dsx.2020.04.004
– ident: ref21
  doi: 10.1016/j.compbiomed.2013.05.024
– ident: ref24
  doi: 10.3233/IDA-130580
– ident: ref6
  doi: 10.1016/j.bspc.2022.104268
– ident: ref8
  doi: 10.2337/diacare.27.5.1047
– ident: ref12
  doi: 10.1109/TIM.2021.3132072
– ident: ref26
  doi: 10.1016/j.procs.2017.08.193
– ident: ref33
  doi: 10.1016/j.eswa.2022.119058
– ident: ref30
  doi: 10.1142/S0129065713500238
– ident: ref3
  doi: 10.1109/JSEN.2021.3070706
– ident: ref14
  doi: 10.1109/JSEN.2022.3162022
– ident: ref19
  doi: 10.1016/j.compbiomed.2019.103387
– volume: 43
  start-page: 14s
  year: 2020
  ident: ref9
  article-title: 2. Classification and diagnosis of diabetes: \emph{Standards of medical care in diabetes-2020}
  publication-title: Diabetes Care
  doi: 10.2337/dc20-S002
– ident: ref10
  doi: 10.7860/JCDR/2017/24882.9740
– ident: ref23
  doi: 10.1016/j.bspc.2011.06.002
– ident: ref4
  doi: 10.5001/omj.2012.68
– ident: ref28
  doi: 10.1166/jmihi.2013.1178
– ident: ref29
  doi: 10.1098/rspa.2006.1761
– ident: ref11
  doi: 10.2337/diacare.26.5.1553
– ident: ref5
  doi: 10.1016/j.diabres.2021.109119
– ident: ref25
  doi: 10.1088/0967-3334/29/7/010
– ident: ref32
  doi: 10.4028/www.scientific.net/AMM.611.115
– ident: ref2
  doi: 10.1001/jama.2014.3201
– volume: 35
  start-page: 64s
  year: 2006
  ident: ref1
  article-title: Diagnosis and classification of diabetes mellitus
  publication-title: Diabetes Care
– ident: ref34
  doi: 10.1109/TGE.1977.6498972
– ident: ref22
  doi: 10.1080/10255842.2011.616945
– ident: ref17
  doi: 10.3390/jpm11080725
– ident: ref15
  doi: 10.1016/j.bbe.2022.06.001
SSID ssj0019757
Score 2.4162374
Snippet Diabetes Mellitus (DM) or diabetes is an incurable, chronic, and genetic link health problem that occurs due to the higher glucose level in the blood....
Diabetes mellitus (DM) or diabetes is an incurable, chronic, and genetic link health problem that occurs due to the higher glucose level in the blood....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
classification
Data base management systems
Decision trees
Decomposition
Diabetes
Diabetes mellitus
Electrocardiography
Entropy (Information theory)
ITD
Kernel functions
Machine learning
Title A Robust Framework for Automated Screening of Diabetic Patient Using ECG Signals
URI https://ieeexplore.ieee.org/document/9944622
https://www.proquest.com/docview/2754152500
Volume 22
WOSCitedRecordID wos000928140300065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_aMmj70G5NR9OPoYc9jTmRP2RZjyEkLXsIYdkgb8aST21gxCVxCv3ve5Kd0LFR6Jsf7ozR6XS_n-90B_A1E1pgHJUBMZ40SApBPkfcNrApN1oSlSsL64dNyMkkm8_VdA--7-7CIKIvPsOee_S5_LIyG_errK8UkZeIDtx9KWVzV2uXMVDSd_UkB-ZBEst5m8EMuer_mI0mxASjqBeTfwqR_BWD_FCVf05iH17Gp-_7sI9w0sJINmjs_gn2cHkGx6-aC57BYTvf_OG5A9MB-1npzbpm420xFiO0ygabuiLIiiWbGVeAQ4qssqwpk1kYNm26rjJfWMBGw1s2W9y7jsvn8Hs8-jW8C9pZCoGhgF4HNtSRNtwaWZoCTZoZY2Vos5JjynVsIl1qjtaqTNm0lBpDgyYTBUkUltsk_gwHy2qJF8AyLNBNUxeKuAghCk0QKrSJxEgSf7O2C3y7urlpG427eRd_ck84uMqdQXJnkLw1SBe-7VQemy4bbwl3nAV2gu3id-F6a8K89cN1HknhEIrg_PL_Wldw5N7tClRCcQ0H9WqDN_DBPNWL9eqL32IvWGDOcQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED5KV-j60HbtxtJ2nR76NOZWli3Legwl6Y-1ISwd5M1Y8qkLjLg0zmD__U6yEzY2Bnvzwx02Op3u-3ynO4CzXBqJiagiYjxZlJaSfI64beQybo0iKleVLgybUKNRPp3q8QZ8XN-FQcRQfIbn_jHk8qvaLv2vsgutibwIOnBfyDQVcXtba50z0Cr09SQX5lGaqGmXw4y5vridDEbEBYU4T8hDpUx_i0JhrMofZ3EIMMO9__u0fdjtgCTrt5Z_BRs4P4CdX9oLHsB2N-H8649DGPfZ59osFw0brsqxGOFV1l82NYFWrNjE-hIcUmS1Y22hzMyycdt3lYXSAja4vGKT2aPvufwavgwHD5fXUTdNIbIU0pvIxUYYy51VlS3RZrm1TsUurzhm3CRWmMpwdE7n2mWVMhhbtLksSaJ03KXJG9ic13N8CyzHEv08damJjRCmMASiYpcqFIoYnHM94KvVLWzXatxPvPhWBMrBdeENUniDFJ1BevBhrfLU9tn4l_Cht8BasFv8HpysTFh0nrgohJIeo0jOj_6u9R62rx_u74q7m9GnY3jp3-PLVWJ5ApvN8xLfwZb93swWz6dhu_0EPoTRuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+Framework+for+Automated+Screening+of+Diabetic+Patient+Using+ECG+Signals&rft.jtitle=IEEE+sensors+journal&rft.au=Gupta%2C+Kapil&rft.au=Bajaj%2C+Varun&rft.date=2022-12-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=24&rft.spage=24222&rft.epage=24229&rft_id=info:doi/10.1109%2FJSEN.2022.3219554&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2022_3219554
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon