Enhanced Deep Learning Approach Based on the Deep Convolutional Encoder-Decoder Architecture for Electromagnetic Inverse Scattering Problems

This letter proposes a novel deep learning (DL) approach to resolve the electromagnetic inverse scattering (EMIS) problems. The conventional approaches of resolving EMIS problems encounter assorted difficulties, such as high contrast, high computational cost, inevitable intrinsic nonlinearity, and s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE antennas and wireless propagation letters Ročník 19; číslo 7; s. 1211 - 1215
Hlavní autori: Yao, He Ming, Jiang, Lijun, Sha, Wei E. I.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1536-1225, 1548-5757
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This letter proposes a novel deep learning (DL) approach to resolve the electromagnetic inverse scattering (EMIS) problems. The conventional approaches of resolving EMIS problems encounter assorted difficulties, such as high contrast, high computational cost, inevitable intrinsic nonlinearity, and strong ill-posedness. To surmount these difficulties, a novel DL approach is proposed based on a novel complex-valued deep fully convolutional neural network structure. The proposed complex-valued deep learning model for solving EMIS problems composes of an encoder network and its corresponding decoder network, followed by a final pixel-wise regression layer. The complex-valued encoder network extracts feature fragments from received scattered field data, while the role of the complex-valued decoder network is mapping the feature fragments to retrieve the final contrasts (permittivities) of dielectric scatterers. Hence, the proposed deep learning model functions as an "heterogeneous" transformation process, where measured scattering field data is converted into the corresponding contrasts of scatterers. As a consequence, the EMIS problem could be resolved accurately even for extremely high-contrast targets. Numerical benchmarks have illustrated the feasibility and accuracy of our proposed approach. The proposed approach opens a novel path for the deep learning-based real-time quantitative microwave imaging for high-contrast scatterers.
AbstractList This letter proposes a novel deep learning (DL) approach to resolve the electromagnetic inverse scattering (EMIS) problems. The conventional approaches of resolving EMIS problems encounter assorted difficulties, such as high contrast, high computational cost, inevitable intrinsic nonlinearity, and strong ill-posedness. To surmount these difficulties, a novel DL approach is proposed based on a novel complex-valued deep fully convolutional neural network structure. The proposed complex-valued deep learning model for solving EMIS problems composes of an encoder network and its corresponding decoder network, followed by a final pixel-wise regression layer. The complex-valued encoder network extracts feature fragments from received scattered field data, while the role of the complex-valued decoder network is mapping the feature fragments to retrieve the final contrasts (permittivities) of dielectric scatterers. Hence, the proposed deep learning model functions as an "heterogeneous" transformation process, where measured scattering field data is converted into the corresponding contrasts of scatterers. As a consequence, the EMIS problem could be resolved accurately even for extremely high-contrast targets. Numerical benchmarks have illustrated the feasibility and accuracy of our proposed approach. The proposed approach opens a novel path for the deep learning-based real-time quantitative microwave imaging for high-contrast scatterers.
Author Sha, Wei E. I.
Yao, He Ming
Jiang, Lijun
Author_xml – sequence: 1
  givenname: He Ming
  orcidid: 0000-0003-2814-9539
  surname: Yao
  fullname: Yao, He Ming
  email: yaohmhk@connect.hku.hk
  organization: Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
– sequence: 2
  givenname: Lijun
  orcidid: 0000-0002-7391-6322
  surname: Jiang
  fullname: Jiang, Lijun
  email: jianglj@hku.hk
  organization: Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
– sequence: 3
  givenname: Wei E. I.
  orcidid: 0000-0002-7431-8121
  surname: Sha
  fullname: Sha, Wei E. I.
  email: weisha@zju.edu.cn
  organization: Key Laboratory of Micro-Nano Electronic Devices and Smart Systems of Zhejiang Province, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
BookMark eNp9kM9KAzEQxoNUsFUfQLwEPG_Nn83u5ljbqoWChQoelzQ7abdsk5qkgu_gQ7triwcPnmaG-b4Zvt8A9ayzgNANJUNKibyfj94WQ0YYGTIpRSrEGepTkRaJyEXe63qeJZQxcYEGIWwJoXkmeB99Te1GWQ0VngDs8RyUt7Vd49F-753SG_ygQrt0FscNHDVjZz9cc4i1s6rBU6tdBT6ZwE_FI683dQQdDx6wcR5Pm3bwbqfWFmKt8cx-gA-Al1rFCL57tvBu1cAuXKFzo5oA16d6iZaP09fxczJ_eZqNR_NEM8ljYojhphImU0xXXArOMi2AmRWlkoEuODErJbkkfMUzklepFlzIQhMtclD8Et0dr7YJ3w8QYrl1B99mCSVLGSMipQVvVflRpb0LwYMpdR1VFzp6VTclJWUHvuzAlx348gS-ddI_zr2vd8p__uu5PXpqAPjVS9KGSwv-DaF9ksA
CODEN IAWPA7
CitedBy_id crossref_primary_10_1109_TMTT_2024_3368452
crossref_primary_10_1109_TGRS_2023_3275306
crossref_primary_10_1109_TMTT_2024_3479872
crossref_primary_10_1109_TAP_2024_3369683
crossref_primary_10_1109_TAP_2024_3372772
crossref_primary_10_1109_TGRS_2025_3585617
crossref_primary_10_1109_TGRS_2024_3349681
crossref_primary_10_1109_TCI_2021_3093793
crossref_primary_10_1109_TMTT_2024_3369420
crossref_primary_10_1049_mia2_12273
crossref_primary_10_1021_acsphotonics_5c00552
crossref_primary_10_1515_nanoph_2022_0770
crossref_primary_10_1109_TAP_2022_3196496
crossref_primary_10_3390_s24072322
crossref_primary_10_1109_TAP_2024_3388205
crossref_primary_10_1109_TMTT_2023_3319027
crossref_primary_10_1109_TAP_2022_3225532
crossref_primary_10_1109_TGRS_2022_3222502
crossref_primary_10_1002_mmce_23023
crossref_primary_10_1109_ACCESS_2021_3086624
crossref_primary_10_1016_j_cam_2023_115503
crossref_primary_10_1109_TAP_2022_3140497
crossref_primary_10_1109_LAWP_2024_3424940
crossref_primary_10_1109_TGRS_2021_3101119
crossref_primary_10_1109_TMTT_2024_3436023
crossref_primary_10_1109_TMTT_2024_3432906
crossref_primary_10_3390_electronics14081633
crossref_primary_10_1109_TMTT_2024_3412113
crossref_primary_10_1109_TAP_2024_3387689
crossref_primary_10_1109_TAP_2021_3098585
crossref_primary_10_1109_TAP_2022_3216920
crossref_primary_10_3390_math13071187
crossref_primary_10_3390_app14135624
crossref_primary_10_1109_TAP_2023_3239185
crossref_primary_10_1109_TAP_2025_3569099
crossref_primary_10_1109_TMTT_2022_3205891
crossref_primary_10_1088_1361_6420_ad2b99
crossref_primary_10_1080_09205071_2022_2113444
crossref_primary_10_1109_LMWT_2025_3575160
crossref_primary_10_1109_TGRS_2024_3521278
crossref_primary_10_1109_LAWP_2021_3100135
crossref_primary_10_1109_TAP_2022_3177556
crossref_primary_10_1002_adpr_202200099
crossref_primary_10_1109_TAP_2024_3349778
crossref_primary_10_1145_3643509
crossref_primary_10_1109_TAP_2022_3216999
crossref_primary_10_1109_LAWP_2024_3372437
crossref_primary_10_1109_TMTT_2023_3312978
crossref_primary_10_1109_LGRS_2025_3540113
crossref_primary_10_1109_ACCESS_2025_3598475
crossref_primary_10_1109_JMMCT_2024_3464373
crossref_primary_10_1109_LAWP_2024_3457785
crossref_primary_10_1109_LAWP_2022_3224983
crossref_primary_10_1080_09205071_2025_2450523
crossref_primary_10_3390_diagnostics12112786
crossref_primary_10_1109_TGRS_2023_3337410
crossref_primary_10_1109_TAP_2021_3069519
crossref_primary_10_1016_j_dsp_2022_103605
crossref_primary_10_1002_mop_34013
crossref_primary_10_1109_TAP_2020_2999741
crossref_primary_10_1007_s11042_022_14208_w
crossref_primary_10_1109_TGRS_2020_3032743
crossref_primary_10_3390_app131810521
crossref_primary_10_1016_j_asr_2021_01_042
crossref_primary_10_1109_LMWT_2022_3223959
crossref_primary_10_1109_TMTT_2023_3245665
Cites_doi 10.1109/TIP.2017.2713099
10.1088/0266-5611/21/6/S04
10.1088/0266-5611/29/2/025015
10.1109/8.214608
10.1109/TEMC.2016.2642955
10.1109/TAP.2018.2885437
10.1088/0266-5611/18/2/313
10.1109/TGRS.2016.2551720
10.1201/b17623
10.1109/36.752198
10.1109/TGRS.2018.2869221
10.1364/JOSAA.22.001889
10.1109/TAP.2016.2560901
10.1109/MAP.2017.2731203
10.1007/978-3-319-11179-7_36
10.1109/TMI.2018.2828303
10.1029/2000RS002545
10.1109/LAWP.2018.2885570
10.1038/nature14539
10.1088/0266-5611/27/5/055011
10.1002/9780470602492
10.1109/LGRS.2017.2698213
10.1088/1361-6420/aa9581
10.1007/s11063-015-9420-y
10.1007/978-1-4842-2845-6
10.1109/TPAMI.2016.2644615
10.1109/TAP.2019.2902667
10.1109/LAWP.2019.2925578
10.1103/PhysRevLett.105.255501
10.1109/ACCESS.2019.2915263
10.1109/LAWP.2019.2927543
10.1109/TAP.2012.2189712
10.1038/srep11131
10.2528/PIERM18082907
10.1190/geo2013-0398.1
10.1109/APUSNCURSINRSM.2018.8608745
10.1002/(SICI)1098-1098(199621)7:1<16::AID-IMA2>3.0.CO;2-X
10.1109/APUSNCURSINRSM.2017.8072529
10.1109/22.883861
10.1109/TIP.2006.877507
10.1109/EDAPS.2017.8277017
10.1109/ACCESS.2020.2969569
10.1145/3065386
10.1007/978-3-319-24574-4_28
10.1364/OE.26.014678
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/LAWP.2020.2995455
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1548-5757
EndPage 1215
ExternalDocumentID 10_1109_LAWP_2020_2995455
9095348
Genre orig-research
GrantInformation_xml – fundername: Hong Kong University Grants Committee
  grantid: AoE/P04/08
– fundername: Research Grants Council of Hong Kong
  grantid: GRF 17207114; GRF 17210815
– fundername: National Natural Science Foundation of China
  grantid: 61271158
  funderid: 10.13039/501100001809
– fundername: Asian Office of Aerospace Research and Development
  grantid: FA2386-17-1-0010
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c293t-f0f3fd5f6a2cd395326c5e2fb1192ec830fba93903b3607d4c53598c0c57ea3
IEDL.DBID RIE
ISICitedReferencesCount 75
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000546898200034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-1225
IngestDate Sun Oct 05 00:15:41 EDT 2025
Tue Nov 18 21:07:01 EST 2025
Sat Nov 29 02:08:11 EST 2025
Wed Aug 27 02:36:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-f0f3fd5f6a2cd395326c5e2fb1192ec830fba93903b3607d4c53598c0c57ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2814-9539
0000-0002-7431-8121
0000-0002-7391-6322
PQID 2422054183
PQPubID 75732
PageCount 5
ParticipantIDs crossref_citationtrail_10_1109_LAWP_2020_2995455
ieee_primary_9095348
crossref_primary_10_1109_LAWP_2020_2995455
proquest_journals_2422054183
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE antennas and wireless propagation letters
PublicationTitleAbbrev LAWP
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
ref17
ref16
ref18
keskar (ref47) 0
ref45
ref48
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
catedra (ref49) 1995
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
zhao (ref19) 2017; 14
bishop (ref15) 2006
kingma (ref46) 2015
References_xml – ident: ref44
  doi: 10.1109/TIP.2017.2713099
– ident: ref10
  doi: 10.1088/0266-5611/21/6/S04
– ident: ref9
  doi: 10.1088/0266-5611/29/2/025015
– ident: ref7
  doi: 10.1109/8.214608
– ident: ref22
  doi: 10.1109/TEMC.2016.2642955
– ident: ref26
  doi: 10.1109/TAP.2018.2885437
– ident: ref8
  doi: 10.1088/0266-5611/18/2/313
– year: 1995
  ident: ref49
  publication-title: The CG-FFT Method Application of Signal Processing Techniques to Electromagnetics
– ident: ref20
  doi: 10.1109/TGRS.2016.2551720
– ident: ref38
  doi: 10.1201/b17623
– year: 2006
  ident: ref15
  publication-title: Pattern Recognition and Machine Learning
– ident: ref23
  doi: 10.1109/36.752198
– ident: ref27
  doi: 10.1109/TGRS.2018.2869221
– ident: ref37
  doi: 10.1364/JOSAA.22.001889
– ident: ref21
  doi: 10.1109/TAP.2016.2560901
– ident: ref3
  doi: 10.1109/MAP.2017.2731203
– ident: ref48
  doi: 10.1007/978-3-319-11179-7_36
– ident: ref34
  doi: 10.1109/TMI.2018.2828303
– ident: ref24
  doi: 10.1029/2000RS002545
– ident: ref18
  doi: 10.1109/LAWP.2018.2885570
– ident: ref14
  doi: 10.1038/nature14539
– ident: ref11
  doi: 10.1088/0266-5611/27/5/055011
– ident: ref1
  doi: 10.1002/9780470602492
– volume: 14
  start-page: 1091
  year: 2017
  ident: ref19
  article-title: Deep convolutional highway unit network for SAR target classification with limited labeled training data
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2017.2698213
– ident: ref33
  doi: 10.1088/1361-6420/aa9581
– ident: ref42
  doi: 10.1007/s11063-015-9420-y
– ident: ref45
  doi: 10.1007/978-1-4842-2845-6
– ident: ref40
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref30
  doi: 10.1109/TAP.2019.2902667
– ident: ref29
  doi: 10.1109/LAWP.2019.2925578
– ident: ref12
  doi: 10.1103/PhysRevLett.105.255501
– ident: ref28
  doi: 10.1109/ACCESS.2019.2915263
– ident: ref25
  doi: 10.1109/LAWP.2019.2927543
– ident: ref5
  doi: 10.1109/TAP.2012.2189712
– ident: ref13
  doi: 10.1038/srep11131
– ident: ref32
  doi: 10.2528/PIERM18082907
– ident: ref6
  doi: 10.1190/geo2013-0398.1
– ident: ref35
  doi: 10.1109/APUSNCURSINRSM.2018.8608745
– ident: ref4
  doi: 10.1002/(SICI)1098-1098(199621)7:1<16::AID-IMA2>3.0.CO;2-X
– ident: ref16
  doi: 10.1109/APUSNCURSINRSM.2017.8072529
– ident: ref2
  doi: 10.1109/22.883861
– ident: ref39
  doi: 10.1109/TIP.2006.877507
– ident: ref17
  doi: 10.1109/EDAPS.2017.8277017
– year: 0
  ident: ref47
  article-title: On large-batch training for deep learning: Generalization gap and sharp minima
– ident: ref36
  doi: 10.1109/ACCESS.2020.2969569
– ident: ref41
  doi: 10.1145/3065386
– ident: ref43
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref31
  doi: 10.1364/OE.26.014678
– start-page: 1
  year: 2015
  ident: ref46
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent
SSID ssj0017653
Score 2.5317967
Snippet This letter proposes a novel deep learning (DL) approach to resolve the electromagnetic inverse scattering (EMIS) problems. The conventional approaches of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1211
SubjectTerms Artificial neural networks
Coders
Convolutional neural network
Decoding
Deep learning
deep learning (DL)
Electromagnetic interference
electromagnetic inverse scattering (EMIS)
Encoding
Feature extraction
Fragments
high-contrast scatterer
Inverse scattering
Machine learning
Mapping
Mathematical model
Receivers
Scattering
Title Enhanced Deep Learning Approach Based on the Deep Convolutional Encoder-Decoder Architecture for Electromagnetic Inverse Scattering Problems
URI https://ieeexplore.ieee.org/document/9095348
https://www.proquest.com/docview/2422054183
Volume 19
WOSCitedRecordID wos000546898200034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1548-5757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017653
  issn: 1536-1225
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BxQAD34jyJQ9MiIAbJ3E8FihiQKgSSLBFjnMGJEirtvAr-NH4HLeqBEJiSoazk-jZ5-ec7x3AsRHWOr-YR5iXKkowMc4P6jISqhRYaSE6ZeKLTci7u_zpSfUX4HSWC4OI_vAZntGtj-VXA_NBv8rOFYmjJfkiLEopm1ytWcRAZl5x0k1gqisTpyGC2eHq_Lb72Hc7wZifxaR-Rll9c2uQL6rywxP75eV67X8vtg6rgUayboP7BixgvQkrc-KCW_DVq198eJ9dIQ5ZEFJ9Zt2gIs4u3AJWsUHNHAdsbC4H9WcYiq7zXk357qPoCv2VdediDsxxXdZrSui86-eaUiEZaXaMxsjujRftpIf1m3o14224v-49XN5EofZCZBwBmESWW2Gr1GY6NpVwXxdnJsXYlh1HCdHkgttSK6G4KEXGZZWYlLQADTepRC12oFUPatwFpko6l6ISjlmW2CzVUgqNzt7xIGVRt4FPsShMkCWn6hhvhd-ecFUQfAXBVwT42nAyazJsNDn-Mt4ivGaGAao2HEwBL8KsHReOrsSOwjovt_d7q31Ypr6b47oH0JqMPvAQlszn5HU8OvID8htugOCn
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BthLl0AdQsS1tfeCECOuNnYePW1gEYlmtBBLcIscZAxJk0T74FfxoPI5ZrdQKiVNyGMeJPnv8OeP5BmDXCGudX8wjzEsVSZTG-UFdRkKVAistRLeUvthENhzm19dqtAL7i1wYRPSHz_CAbn0svxqbOf0q6ygSR5P5KnxIpIy7TbbWImaQpV5z0k1hqiwTJyGG2eWqM-hdjdxeMOYHMemfUV7f0irky6r844v9AnP85X2v9hU-ByLJeg3y32AF6w1YX5IX3ITnfn3rA_zsCPGRBSnVG9YLOuLsr1vCKjaumWOBjc3huH4Kg9E9vF9TxvskOkJ_Zb2lqANzbJf1myI6D_qmpmRIRqodkymyC-NlO6mzUVOxZroFF8f9y8OTKFRfiIyjALPIcitsldhUx6YS7uvi1CQY27LrSCGaXHBbaiUUF6VIeVZJk5AaoOEmyVCL79CqxzVuA1MlnUxRkmOaSpsmOsuERmfvmJCyqNvAX7EoTBAmp_oY94XfoHBVEHwFwVcE-Nqwt2jy2KhyvGW8SXgtDANUbdh5BbwI83ZaOMISOxLr_NyP_7f6A2snl-eDYnA6PPsJn6if5vDuDrRmkzn-go_maXY3nfz2g_MFQMvj7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Deep+Learning+Approach+Based+on+the+Deep+Convolutional+Encoder%E2%80%93Decoder+Architecture+for+Electromagnetic+Inverse+Scattering+Problems&rft.jtitle=IEEE+antennas+and+wireless+propagation+letters&rft.au=Yao%2C+He+Ming&rft.au=Jiang%2C+Lijun&rft.au=Sha%2C+Wei+E+I&rft.date=2020-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1225&rft.eissn=1548-5757&rft.volume=19&rft.issue=7&rft.spage=1211&rft_id=info:doi/10.1109%2FLAWP.2020.2995455&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1225&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1225&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1225&client=summon