Differential Privacy in Linear Distributed Control Systems: Entropy Minimizing Mechanisms and Performance Tradeoffs
In distributed control systems with shared resources, participating agents can improve the overall performance of the system by sharing data about their personal preferences. In this paper, we formulate and study a natural tradeoff arising in these problems between the privacy of the agent's da...
Uložené v:
| Vydané v: | IEEE transactions on control of network systems Ročník 4; číslo 1; s. 118 - 130 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.03.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2325-5870, 2372-2533 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In distributed control systems with shared resources, participating agents can improve the overall performance of the system by sharing data about their personal preferences. In this paper, we formulate and study a natural tradeoff arising in these problems between the privacy of the agent's data and the performance of the control system. We formalize privacy in terms of differential privacy of agents' preference vectors. The overall control system consists of N agents with linear discrete-time coupled dynamics, each controlled to track its preference vector. Performance of the system is measured by the mean squared tracking error. We present a mechanism that achieves differential privacy by adding Laplace noise to the shared information in a way that depends on the sensitivity of the control system to the private data. We show that for stable systems the performance cost of using this type of privacy preserving mechanism grows as O(T 3 /Nε 2 ), where T is the time horizon and ε is the privacy parameter. For unstable systems, the cost grows exponentially with time. From an estimation point of view, we establish a lower-bound for the entropy of any unbiased estimator of the private data from any noise-adding mechanism that gives ε-differential privacy. We show that the mechanism achieving this lower-bound is a randomized mechanism that also uses Laplace noise. |
|---|---|
| AbstractList | In distributed control systems with shared resources, participating agents can improve the overall performance of the system by sharing data about their personal preferences. In this paper, we formulate and study a natural tradeoff arising in these problems between the privacy of the agent's data and the performance of the control system. We formalize privacy in terms of differential privacy of agents’ preference vectors. The overall control system consists of [Formula Omitted] agents with linear discrete-time coupled dynamics, each controlled to track its preference vector. Performance of the system is measured by the mean squared tracking error. We present a mechanism that achieves differential privacy by adding Laplace noise to the shared information in a way that depends on the sensitivity of the control system to the private data. We show that for stable systems the performance cost of using this type of privacy preserving mechanism grows as [Formula Omitted], where [Formula Omitted] is the time horizon and [Formula Omitted] is the privacy parameter. For unstable systems, the cost grows exponentially with time. From an estimation point of view, we establish a lower-bound for the entropy of any unbiased estimator of the private data from any noise-adding mechanism that gives [Formula Omitted]-differential privacy. We show that the mechanism achieving this lower-bound is a randomized mechanism that also uses Laplace noise. In distributed control systems with shared resources, participating agents can improve the overall performance of the system by sharing data about their personal preferences. In this paper, we formulate and study a natural tradeoff arising in these problems between the privacy of the agent's data and the performance of the control system. We formalize privacy in terms of differential privacy of agents' preference vectors. The overall control system consists of N agents with linear discrete-time coupled dynamics, each controlled to track its preference vector. Performance of the system is measured by the mean squared tracking error. We present a mechanism that achieves differential privacy by adding Laplace noise to the shared information in a way that depends on the sensitivity of the control system to the private data. We show that for stable systems the performance cost of using this type of privacy preserving mechanism grows as O(T 3 /Nε 2 ), where T is the time horizon and ε is the privacy parameter. For unstable systems, the cost grows exponentially with time. From an estimation point of view, we establish a lower-bound for the entropy of any unbiased estimator of the private data from any noise-adding mechanism that gives ε-differential privacy. We show that the mechanism achieving this lower-bound is a randomized mechanism that also uses Laplace noise. |
| Author | Yu Wang Zhenqi Huang Mitra, Sayan Dullerud, Geir E. |
| Author_xml | – sequence: 1 surname: Yu Wang fullname: Yu Wang email: yuwang8@illinois.edu organization: Coordinate Sci. Lab., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA – sequence: 2 surname: Zhenqi Huang fullname: Zhenqi Huang email: zhuang25@illinois.edu organization: Coordinate Sci. Lab., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA – sequence: 3 givenname: Sayan surname: Mitra fullname: Mitra, Sayan email: mitras@illinois.edu organization: Coordinate Sci. Lab., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA – sequence: 4 givenname: Geir E. surname: Dullerud fullname: Dullerud, Geir E. email: dullerud@uiuc.edu organization: Coordinate Sci. Lab., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA |
| BookMark | eNp9UE1Lw0AQXURBrf0B4mXBc-p-ZLOJN6n1A6oWrOewSWZ1pNnU3a1Qf70JFQ8eZA4zD96bmfeOyb7rHBByytmEc1ZcLKePzxPBuJ6ITOW8YHvkSEgtEqGk3B9moRKVa3ZIxiG8M8a4UD2WRyRco7XgwUU0K7rw-GnqLUVH5-jAeHqNIXqsNhEaOu1c9N2KPm9DhDZc0tmA11v6gA5b_EL3Sh-gfjMOQxuocQ1dgLedb42rgS69aaCzNpyQA2tWAcY_fURebmbL6V0yf7q9n17Nk1oUMiZgK130DlRllNb9l7ltFBcyt1khVZZZWSuRs4aljc10Br3_3pWqKplDVplUjsj5bu_adx8bCLF87zbe9SdLnutCpzLra0T0jlX7LgQPtqwxmoiDWYOrkrNyCLkcQi6HkMufkHsl_6Nce2yN3_6rOdtpEAB--TqXkqWp_AZfvIrv |
| CODEN | ITCNAY |
| CitedBy_id | crossref_primary_10_1109_TCYB_2023_3267145 crossref_primary_10_1109_TAC_2024_3367803 crossref_primary_10_1016_j_arcontrol_2023_100913 crossref_primary_10_1109_TAC_2022_3232050 crossref_primary_10_1109_TAC_2023_3272968 crossref_primary_10_1109_TCYB_2025_3549063 crossref_primary_10_1109_TIE_2023_3325582 crossref_primary_10_1007_s11424_022_2012_9 crossref_primary_10_1109_JSYST_2023_3305358 crossref_primary_10_1007_s00500_018_3223_9 crossref_primary_10_1109_COMST_2019_2944748 crossref_primary_10_1109_TCYB_2021_3135933 crossref_primary_10_3390_e24020266 crossref_primary_10_1109_TNSE_2024_3357804 crossref_primary_10_1016_j_neucom_2024_127986 crossref_primary_10_1016_j_automatica_2021_109518 crossref_primary_10_1109_TCNS_2024_3401270 crossref_primary_10_1016_j_arcontrol_2019_04_006 crossref_primary_10_1080_00207721_2022_2070794 crossref_primary_10_1109_TSMC_2024_3393865 crossref_primary_10_1016_j_jfranklin_2022_01_024 crossref_primary_10_1109_LCSYS_2025_3580783 crossref_primary_10_1109_TAC_2022_3230735 crossref_primary_10_1109_TAC_2022_3212006 crossref_primary_10_1109_TDSC_2022_3186672 crossref_primary_10_1016_j_automatica_2020_109283 crossref_primary_10_1109_LCSYS_2020_3041611 crossref_primary_10_1016_j_inffus_2024_102259 crossref_primary_10_1109_TAC_2022_3145664 crossref_primary_10_1109_TIFS_2021_3050621 crossref_primary_10_1109_TIT_2022_3177258 crossref_primary_10_1109_TAC_2021_3077868 crossref_primary_10_1016_j_arcontrol_2019_04_010 crossref_primary_10_1016_j_automatica_2023_110908 crossref_primary_10_1109_TNSE_2022_3140274 crossref_primary_10_1109_TAC_2025_3527737 crossref_primary_10_1109_ACCESS_2021_3124309 crossref_primary_10_1109_TIFS_2021_3052356 crossref_primary_10_1109_TSIPN_2025_3563774 crossref_primary_10_1109_TAC_2024_3385546 crossref_primary_10_1109_LCSYS_2022_3232304 crossref_primary_10_1016_j_ifacol_2017_08_1612 crossref_primary_10_1109_TASE_2024_3440042 crossref_primary_10_1002_rnc_7252 crossref_primary_10_1109_TSMC_2024_3355409 crossref_primary_10_1109_TCYB_2022_3151234 crossref_primary_10_1109_TIFS_2021_3130439 crossref_primary_10_1109_TASE_2025_3526141 crossref_primary_10_1002_rnc_8029 crossref_primary_10_1080_00207721_2024_2343734 crossref_primary_10_1109_LCSYS_2022_3231223 crossref_primary_10_1109_JIOT_2021_3057419 crossref_primary_10_1109_JAS_2024_124677 crossref_primary_10_1109_TCNS_2024_3408008 |
| Cites_doi | 10.1145/2508859.2516735 10.1145/1863543.1863568 10.1007/11761679_29 10.1016/j.automatica.2013.12.001 10.1109/CDC.2014.7039718 10.1109/ACC.2015.7170902 10.1145/2566468.2566474 10.1016/j.ifacol.2015.10.331 10.1049/iet-gtd.2010.0574 10.1145/2381966.2381978 10.1109/JSTSP.2015.2425831 10.1109/CDC.2014.7039713 10.1007/11681878_14 10.1007/978-3-642-39077-7_5 10.1145/1807085.1807104 10.1145/1806689.1806786 10.1109/SP.2011.18 10.1109/FOCS.2007.66 10.1109/ACC.2016.7525222 10.1145/2684464.2684480 10.1007/978-3-540-79228-4_1 10.1109/CDC.2013.6760417 10.1016/0041-1647(78)90027-8 10.1109/CDC.2014.7039717 10.1109/Allerton.2012.6483414 10.1109/CDC.2014.7039715 10.1145/1806689.1806787 10.1109/CDC.2014.7040430 10.1109/TAC.2013.2283096 10.1109/TNET.2012.2208983 10.1109/MPE.2009.934876 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TCNS.2017.2658190 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2372-2533 |
| EndPage | 130 |
| ExternalDocumentID | 10_1109_TCNS_2017_2658190 7833044 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Maryland Procurement Office grantid: H98230-14-C-0141 – fundername: AFOSR grantid: FA9550-15-1-0059 funderid: 10.13039/100000181 – fundername: Science of Security Lablet at the University of Illinois |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-efb792535ba577ffe8fd51238f693566f3c5280d04df676e0172555bb38e6ba43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 81 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000396393400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2325-5870 |
| IngestDate | Mon Jun 30 12:33:12 EDT 2025 Sat Nov 29 06:13:46 EST 2025 Tue Nov 18 22:43:32 EST 2025 Wed Aug 27 03:08:05 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-efb792535ba577ffe8fd51238f693566f3c5280d04df676e0172555bb38e6ba43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1879743636 |
| PQPubID | 2040410 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_1879743636 crossref_primary_10_1109_TCNS_2017_2658190 crossref_citationtrail_10_1109_TCNS_2017_2658190 ieee_primary_7833044 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-03-01 |
| PublicationDateYYYYMMDD | 2017-03-01 |
| PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on control of network systems |
| PublicationTitleAbbrev | TCNS |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 chatzikokolakis (ref19) 2013 ref37 ref36 ref14 ref31 ref30 ref33 ref32 ref10 ref2 ref1 ref17 dwork (ref24) 2006; 4004 ref18 shi (ref3) 2011; 2 wang (ref4) 2016 ref23 ref26 ref25 ref20 (ref15) 2016 ref22 ref21 nozari (ref28) 2015; 48 ref27 ref29 ref8 ref7 ref9 ref6 ref5 dwork (ref16) 2006 dwork (ref11) 2006 |
| References_xml | – ident: ref5 doi: 10.1145/2508859.2516735 – ident: ref21 doi: 10.1145/1863543.1863568 – volume: 4004 start-page: 486 year: 2006 ident: ref24 article-title: Our data, ourselves: Privacy via distributed noise generation publication-title: Proc Adv Cryptol -EUROCRYPT 2006 (Series Lecture Notes in Computer Science) doi: 10.1007/11761679_29 – ident: ref2 doi: 10.1016/j.automatica.2013.12.001 – ident: ref1 doi: 10.1145/2508859.2516735 – ident: ref31 doi: 10.1109/CDC.2014.7039718 – ident: ref30 doi: 10.1109/ACC.2015.7170902 – ident: ref35 doi: 10.1145/2566468.2566474 – volume: 48 start-page: 203 year: 2015 ident: ref28 article-title: Differentially private average consensus with optimal noise selection publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2015.10.331 – ident: ref10 doi: 10.1049/iet-gtd.2010.0574 – ident: ref17 doi: 10.1145/2381966.2381978 – ident: ref34 doi: 10.1109/JSTSP.2015.2425831 – ident: ref36 doi: 10.1109/CDC.2014.7039713 – start-page: 265 year: 2006 ident: ref16 article-title: Calibrating noise to sensitivity in private data analysis publication-title: Proc Conf Theory of Cryptography doi: 10.1007/11681878_14 – start-page: 82 year: 2013 ident: ref19 article-title: Broadening the scope of differential privacy using metrics publication-title: Privacy Enhancing Technologies doi: 10.1007/978-3-642-39077-7_5 – start-page: 179 year: 2016 ident: ref4 article-title: Defending against sybil devices in crowdsourced mapping services publication-title: Proc Annu Int Conf Mobile Syst Appl Serv – ident: ref23 doi: 10.1145/1807085.1807104 – ident: ref14 doi: 10.1145/1806689.1806786 – ident: ref7 doi: 10.1109/SP.2011.18 – ident: ref22 doi: 10.1109/FOCS.2007.66 – ident: ref27 doi: 10.1109/ACC.2016.7525222 – start-page: 1 year: 2006 ident: ref11 article-title: Differential privacy publication-title: Automata Languages and Programming – ident: ref32 doi: 10.1145/2684464.2684480 – year: 2016 ident: ref15 article-title: What's new in iOS 10.0 – ident: ref12 doi: 10.1007/978-3-540-79228-4_1 – ident: ref18 doi: 10.1109/CDC.2013.6760417 – ident: ref37 doi: 10.1016/0041-1647(78)90027-8 – ident: ref26 doi: 10.1109/CDC.2014.7039717 – ident: ref25 doi: 10.1109/Allerton.2012.6483414 – ident: ref9 doi: 10.1109/CDC.2014.7039715 – ident: ref13 doi: 10.1145/1806689.1806787 – volume: 2 year: 2011 ident: ref3 article-title: Privacy-preserving aggregation of time-series data publication-title: Proc 19th Annu Netw Distrib Syst Security Symp – ident: ref20 doi: 10.1145/1806689.1806786 – ident: ref29 doi: 10.1109/CDC.2014.7040430 – ident: ref33 doi: 10.1109/TAC.2013.2283096 – ident: ref6 doi: 10.1109/TNET.2012.2208983 – ident: ref8 doi: 10.1109/MPE.2009.934876 |
| SSID | ssj0001255873 |
| Score | 2.3938468 |
| Snippet | In distributed control systems with shared resources, participating agents can improve the overall performance of the system by sharing data about their... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 118 |
| SubjectTerms | Communication networks Control systems Data privacy Decentralized control decision/estimation theory differential privacy Discrete time systems distributed algorithms/control Distributed control systems Distributed databases Entropy Error analysis Estimation Lower bounds Noise control Noise sensitivity Parameter sensitivity Performance enhancement Preferences Privacy Time measurement Tracking errors Tradeoffs |
| Title | Differential Privacy in Linear Distributed Control Systems: Entropy Minimizing Mechanisms and Performance Tradeoffs |
| URI | https://ieeexplore.ieee.org/document/7833044 https://www.proquest.com/docview/1879743636 |
| Volume | 4 |
| WOSCitedRecordID | wos000396393400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2372-2533 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001255873 issn: 2325-5870 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6seNCDryrWFzl4ErfdVzZZb9JWPGgpWKW3ZfNYWNCtdGuh_nonu7EWFMHbBpIQ9kvmm0nmAXCh_CyKhUTph7q9E1KPOzxWvqNT31U-E9Krrgae79lgwMfjeLgGV8tYGK115Xym2-azestXE_lurso6jBvrO2xAgzFWx2qt3KdQyllgHy49N-6MuoNH47vF2j7SrGek7gr1VLVUfgjgilVud_63nl3Yttojuanh3oM1XezD1kpOwSaUPVvyBI_uCxlO83kqFyQvCFqduKtJz2TKNUWutCLd2k-d2LTl16Rv2m8L8pAX-Wv-gROSB21ig_PytSRpocjwO9CAIM8pPcmy8gCebvuj7p1jKys4Eul95uhMsNinARUpZQxXxTOFzB9wBC5ABS8LJPW5q9xQZRGLtDEUKaVCBFxHIg2DQ1gvJoU-AhL6iCfjMRWoenmMCSa5pyWqOZRLEWYtcL9-eiJt2nFT_eIlqcwPN04MTonBKbE4teByOeStzrnxV-emAWbZ0WLSgtMvZBN7KsvEVFZHjSkKouPfR53Appm79jE7hfXZ9F2fwYacz_Jyel5tuE9YLNU1 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD503WDbQ3fJxtJ2mx72NObEliVL7ltJGzKWhMCy0TdjXQyGxAlxWuh-fY9sNQt0FPZmg2QLfZK-c47OBeCLoUWSKo2nH8r2AeORDGRqaGBzGhoqlI4a08DvsZhO5dVVOjuAb7tYGGtt43xme-6xucs3K33tTGV9IZ32zZ7AU84YjdporT2LCudSxP7qMgrT_nww_em8t0SPItFG7tzdI5-mmsqDI7jhleGr_xvRazjy8iM5bwF_Awe2egsv97IKdqC-8EVPcPMuyGxT3uT6lpQVQb0T1zW5cLlyXZkra8ig9VQnPnH5Gbl07-tbMimrcln-wQ-SiXXRwWW9rEleGTL7G2pAkOmMXRVF_Q5-DS_ng1HgaysEGgl-G9hCiZTymKucC4GjkoVB7o8lQhejiFfEmlMZmpCZIhGJdaoi51ypWNpE5Sx-D4fVqrIfgDCKiAqZcoXCVySEElpGVqOgw6VWrOhCeD_pmfaJx139i0XWKCBhmjmcModT5nHqwtddl3WbdeOxxh0HzK6hx6QLp_fIZn5f1pmrrY4yUxInx__u9Rmej-aTcTb-Pv1xAi_cf1qPs1M43G6u7Ud4pm-2Zb351Cy-O5PQ2Hw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+Privacy+in+Linear+Distributed+Control+Systems%3A+Entropy+Minimizing+Mechanisms+and+Performance+Tradeoffs&rft.jtitle=IEEE+transactions+on+control+of+network+systems&rft.au=Wang%2C+Yu&rft.au=Huang%2C+Zhenqi&rft.au=Mitra%2C+Sayan&rft.au=Dullerud%2C+Geir+E.&rft.date=2017-03-01&rft.issn=2325-5870&rft.eissn=2372-2533&rft.volume=4&rft.issue=1&rft.spage=118&rft.epage=130&rft_id=info:doi/10.1109%2FTCNS.2017.2658190&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCNS_2017_2658190 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2325-5870&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2325-5870&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2325-5870&client=summon |