Differential Privacy in Linear Distributed Control Systems: Entropy Minimizing Mechanisms and Performance Tradeoffs

In distributed control systems with shared resources, participating agents can improve the overall performance of the system by sharing data about their personal preferences. In this paper, we formulate and study a natural tradeoff arising in these problems between the privacy of the agent's da...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on control of network systems Vol. 4; no. 1; pp. 118 - 130
Main Authors: Yu Wang, Zhenqi Huang, Mitra, Sayan, Dullerud, Geir E.
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.03.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2325-5870, 2372-2533
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In distributed control systems with shared resources, participating agents can improve the overall performance of the system by sharing data about their personal preferences. In this paper, we formulate and study a natural tradeoff arising in these problems between the privacy of the agent's data and the performance of the control system. We formalize privacy in terms of differential privacy of agents' preference vectors. The overall control system consists of N agents with linear discrete-time coupled dynamics, each controlled to track its preference vector. Performance of the system is measured by the mean squared tracking error. We present a mechanism that achieves differential privacy by adding Laplace noise to the shared information in a way that depends on the sensitivity of the control system to the private data. We show that for stable systems the performance cost of using this type of privacy preserving mechanism grows as O(T 3 /Nε 2 ), where T is the time horizon and ε is the privacy parameter. For unstable systems, the cost grows exponentially with time. From an estimation point of view, we establish a lower-bound for the entropy of any unbiased estimator of the private data from any noise-adding mechanism that gives ε-differential privacy. We show that the mechanism achieving this lower-bound is a randomized mechanism that also uses Laplace noise.
AbstractList In distributed control systems with shared resources, participating agents can improve the overall performance of the system by sharing data about their personal preferences. In this paper, we formulate and study a natural tradeoff arising in these problems between the privacy of the agent's data and the performance of the control system. We formalize privacy in terms of differential privacy of agents’ preference vectors. The overall control system consists of [Formula Omitted] agents with linear discrete-time coupled dynamics, each controlled to track its preference vector. Performance of the system is measured by the mean squared tracking error. We present a mechanism that achieves differential privacy by adding Laplace noise to the shared information in a way that depends on the sensitivity of the control system to the private data. We show that for stable systems the performance cost of using this type of privacy preserving mechanism grows as [Formula Omitted], where [Formula Omitted] is the time horizon and [Formula Omitted] is the privacy parameter. For unstable systems, the cost grows exponentially with time. From an estimation point of view, we establish a lower-bound for the entropy of any unbiased estimator of the private data from any noise-adding mechanism that gives [Formula Omitted]-differential privacy. We show that the mechanism achieving this lower-bound is a randomized mechanism that also uses Laplace noise.
In distributed control systems with shared resources, participating agents can improve the overall performance of the system by sharing data about their personal preferences. In this paper, we formulate and study a natural tradeoff arising in these problems between the privacy of the agent's data and the performance of the control system. We formalize privacy in terms of differential privacy of agents' preference vectors. The overall control system consists of N agents with linear discrete-time coupled dynamics, each controlled to track its preference vector. Performance of the system is measured by the mean squared tracking error. We present a mechanism that achieves differential privacy by adding Laplace noise to the shared information in a way that depends on the sensitivity of the control system to the private data. We show that for stable systems the performance cost of using this type of privacy preserving mechanism grows as O(T 3 /Nε 2 ), where T is the time horizon and ε is the privacy parameter. For unstable systems, the cost grows exponentially with time. From an estimation point of view, we establish a lower-bound for the entropy of any unbiased estimator of the private data from any noise-adding mechanism that gives ε-differential privacy. We show that the mechanism achieving this lower-bound is a randomized mechanism that also uses Laplace noise.
Author Yu Wang
Zhenqi Huang
Mitra, Sayan
Dullerud, Geir E.
Author_xml – sequence: 1
  surname: Yu Wang
  fullname: Yu Wang
  email: yuwang8@illinois.edu
  organization: Coordinate Sci. Lab., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
– sequence: 2
  surname: Zhenqi Huang
  fullname: Zhenqi Huang
  email: zhuang25@illinois.edu
  organization: Coordinate Sci. Lab., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
– sequence: 3
  givenname: Sayan
  surname: Mitra
  fullname: Mitra, Sayan
  email: mitras@illinois.edu
  organization: Coordinate Sci. Lab., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
– sequence: 4
  givenname: Geir E.
  surname: Dullerud
  fullname: Dullerud, Geir E.
  email: dullerud@uiuc.edu
  organization: Coordinate Sci. Lab., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
BookMark eNp9UE1Lw0AQXURBrf0B4mXBc-p-ZLOJN6n1A6oWrOewSWZ1pNnU3a1Qf70JFQ8eZA4zD96bmfeOyb7rHBByytmEc1ZcLKePzxPBuJ6ITOW8YHvkSEgtEqGk3B9moRKVa3ZIxiG8M8a4UD2WRyRco7XgwUU0K7rw-GnqLUVH5-jAeHqNIXqsNhEaOu1c9N2KPm9DhDZc0tmA11v6gA5b_EL3Sh-gfjMOQxuocQ1dgLedb42rgS69aaCzNpyQA2tWAcY_fURebmbL6V0yf7q9n17Nk1oUMiZgK130DlRllNb9l7ltFBcyt1khVZZZWSuRs4aljc10Br3_3pWqKplDVplUjsj5bu_adx8bCLF87zbe9SdLnutCpzLra0T0jlX7LgQPtqwxmoiDWYOrkrNyCLkcQi6HkMufkHsl_6Nce2yN3_6rOdtpEAB--TqXkqWp_AZfvIrv
CODEN ITCNAY
CitedBy_id crossref_primary_10_1109_TCYB_2023_3267145
crossref_primary_10_1109_TAC_2024_3367803
crossref_primary_10_1016_j_arcontrol_2023_100913
crossref_primary_10_1109_TAC_2022_3232050
crossref_primary_10_1109_TAC_2023_3272968
crossref_primary_10_1109_TCYB_2025_3549063
crossref_primary_10_1109_TIE_2023_3325582
crossref_primary_10_1007_s11424_022_2012_9
crossref_primary_10_1109_JSYST_2023_3305358
crossref_primary_10_1007_s00500_018_3223_9
crossref_primary_10_1109_COMST_2019_2944748
crossref_primary_10_1109_TCYB_2021_3135933
crossref_primary_10_3390_e24020266
crossref_primary_10_1109_TNSE_2024_3357804
crossref_primary_10_1016_j_neucom_2024_127986
crossref_primary_10_1016_j_automatica_2021_109518
crossref_primary_10_1109_TCNS_2024_3401270
crossref_primary_10_1016_j_arcontrol_2019_04_006
crossref_primary_10_1080_00207721_2022_2070794
crossref_primary_10_1109_TSMC_2024_3393865
crossref_primary_10_1016_j_jfranklin_2022_01_024
crossref_primary_10_1109_LCSYS_2025_3580783
crossref_primary_10_1109_TAC_2022_3230735
crossref_primary_10_1109_TAC_2022_3212006
crossref_primary_10_1109_TDSC_2022_3186672
crossref_primary_10_1016_j_automatica_2020_109283
crossref_primary_10_1109_LCSYS_2020_3041611
crossref_primary_10_1016_j_inffus_2024_102259
crossref_primary_10_1109_TAC_2022_3145664
crossref_primary_10_1109_TIFS_2021_3050621
crossref_primary_10_1109_TIT_2022_3177258
crossref_primary_10_1109_TAC_2021_3077868
crossref_primary_10_1016_j_arcontrol_2019_04_010
crossref_primary_10_1016_j_automatica_2023_110908
crossref_primary_10_1109_TNSE_2022_3140274
crossref_primary_10_1109_TAC_2025_3527737
crossref_primary_10_1109_ACCESS_2021_3124309
crossref_primary_10_1109_TIFS_2021_3052356
crossref_primary_10_1109_TSIPN_2025_3563774
crossref_primary_10_1109_TAC_2024_3385546
crossref_primary_10_1109_LCSYS_2022_3232304
crossref_primary_10_1016_j_ifacol_2017_08_1612
crossref_primary_10_1109_TASE_2024_3440042
crossref_primary_10_1002_rnc_7252
crossref_primary_10_1109_TSMC_2024_3355409
crossref_primary_10_1109_TCYB_2022_3151234
crossref_primary_10_1109_TIFS_2021_3130439
crossref_primary_10_1109_TASE_2025_3526141
crossref_primary_10_1002_rnc_8029
crossref_primary_10_1080_00207721_2024_2343734
crossref_primary_10_1109_LCSYS_2022_3231223
crossref_primary_10_1109_JIOT_2021_3057419
crossref_primary_10_1109_JAS_2024_124677
crossref_primary_10_1109_TCNS_2024_3408008
Cites_doi 10.1145/2508859.2516735
10.1145/1863543.1863568
10.1007/11761679_29
10.1016/j.automatica.2013.12.001
10.1109/CDC.2014.7039718
10.1109/ACC.2015.7170902
10.1145/2566468.2566474
10.1016/j.ifacol.2015.10.331
10.1049/iet-gtd.2010.0574
10.1145/2381966.2381978
10.1109/JSTSP.2015.2425831
10.1109/CDC.2014.7039713
10.1007/11681878_14
10.1007/978-3-642-39077-7_5
10.1145/1807085.1807104
10.1145/1806689.1806786
10.1109/SP.2011.18
10.1109/FOCS.2007.66
10.1109/ACC.2016.7525222
10.1145/2684464.2684480
10.1007/978-3-540-79228-4_1
10.1109/CDC.2013.6760417
10.1016/0041-1647(78)90027-8
10.1109/CDC.2014.7039717
10.1109/Allerton.2012.6483414
10.1109/CDC.2014.7039715
10.1145/1806689.1806787
10.1109/CDC.2014.7040430
10.1109/TAC.2013.2283096
10.1109/TNET.2012.2208983
10.1109/MPE.2009.934876
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCNS.2017.2658190
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2372-2533
EndPage 130
ExternalDocumentID 10_1109_TCNS_2017_2658190
7833044
Genre orig-research
GrantInformation_xml – fundername: Maryland Procurement Office
  grantid: H98230-14-C-0141
– fundername: AFOSR
  grantid: FA9550-15-1-0059
  funderid: 10.13039/100000181
– fundername: Science of Security Lablet at the University of Illinois
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-efb792535ba577ffe8fd51238f693566f3c5280d04df676e0172555bb38e6ba43
IEDL.DBID RIE
ISICitedReferencesCount 81
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000396393400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2325-5870
IngestDate Mon Jun 30 12:33:12 EDT 2025
Sat Nov 29 06:13:46 EST 2025
Tue Nov 18 22:43:32 EST 2025
Wed Aug 27 03:08:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-efb792535ba577ffe8fd51238f693566f3c5280d04df676e0172555bb38e6ba43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1879743636
PQPubID 2040410
PageCount 13
ParticipantIDs proquest_journals_1879743636
crossref_primary_10_1109_TCNS_2017_2658190
crossref_citationtrail_10_1109_TCNS_2017_2658190
ieee_primary_7833044
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on control of network systems
PublicationTitleAbbrev TCNS
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
chatzikokolakis (ref19) 2013
ref37
ref36
ref14
ref31
ref30
ref33
ref32
ref10
ref2
ref1
ref17
dwork (ref24) 2006; 4004
ref18
shi (ref3) 2011; 2
wang (ref4) 2016
ref23
ref26
ref25
ref20
(ref15) 2016
ref22
ref21
nozari (ref28) 2015; 48
ref27
ref29
ref8
ref7
ref9
ref6
ref5
dwork (ref16) 2006
dwork (ref11) 2006
References_xml – ident: ref5
  doi: 10.1145/2508859.2516735
– ident: ref21
  doi: 10.1145/1863543.1863568
– volume: 4004
  start-page: 486
  year: 2006
  ident: ref24
  article-title: Our data, ourselves: Privacy via distributed noise generation
  publication-title: Proc Adv Cryptol -EUROCRYPT 2006 (Series Lecture Notes in Computer Science)
  doi: 10.1007/11761679_29
– ident: ref2
  doi: 10.1016/j.automatica.2013.12.001
– ident: ref1
  doi: 10.1145/2508859.2516735
– ident: ref31
  doi: 10.1109/CDC.2014.7039718
– ident: ref30
  doi: 10.1109/ACC.2015.7170902
– ident: ref35
  doi: 10.1145/2566468.2566474
– volume: 48
  start-page: 203
  year: 2015
  ident: ref28
  article-title: Differentially private average consensus with optimal noise selection
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2015.10.331
– ident: ref10
  doi: 10.1049/iet-gtd.2010.0574
– ident: ref17
  doi: 10.1145/2381966.2381978
– ident: ref34
  doi: 10.1109/JSTSP.2015.2425831
– ident: ref36
  doi: 10.1109/CDC.2014.7039713
– start-page: 265
  year: 2006
  ident: ref16
  article-title: Calibrating noise to sensitivity in private data analysis
  publication-title: Proc Conf Theory of Cryptography
  doi: 10.1007/11681878_14
– start-page: 82
  year: 2013
  ident: ref19
  article-title: Broadening the scope of differential privacy using metrics
  publication-title: Privacy Enhancing Technologies
  doi: 10.1007/978-3-642-39077-7_5
– start-page: 179
  year: 2016
  ident: ref4
  article-title: Defending against sybil devices in crowdsourced mapping services
  publication-title: Proc Annu Int Conf Mobile Syst Appl Serv
– ident: ref23
  doi: 10.1145/1807085.1807104
– ident: ref14
  doi: 10.1145/1806689.1806786
– ident: ref7
  doi: 10.1109/SP.2011.18
– ident: ref22
  doi: 10.1109/FOCS.2007.66
– ident: ref27
  doi: 10.1109/ACC.2016.7525222
– start-page: 1
  year: 2006
  ident: ref11
  article-title: Differential privacy
  publication-title: Automata Languages and Programming
– ident: ref32
  doi: 10.1145/2684464.2684480
– year: 2016
  ident: ref15
  article-title: What's new in iOS 10.0
– ident: ref12
  doi: 10.1007/978-3-540-79228-4_1
– ident: ref18
  doi: 10.1109/CDC.2013.6760417
– ident: ref37
  doi: 10.1016/0041-1647(78)90027-8
– ident: ref26
  doi: 10.1109/CDC.2014.7039717
– ident: ref25
  doi: 10.1109/Allerton.2012.6483414
– ident: ref9
  doi: 10.1109/CDC.2014.7039715
– ident: ref13
  doi: 10.1145/1806689.1806787
– volume: 2
  year: 2011
  ident: ref3
  article-title: Privacy-preserving aggregation of time-series data
  publication-title: Proc 19th Annu Netw Distrib Syst Security Symp
– ident: ref20
  doi: 10.1145/1806689.1806786
– ident: ref29
  doi: 10.1109/CDC.2014.7040430
– ident: ref33
  doi: 10.1109/TAC.2013.2283096
– ident: ref6
  doi: 10.1109/TNET.2012.2208983
– ident: ref8
  doi: 10.1109/MPE.2009.934876
SSID ssj0001255873
Score 2.3938468
Snippet In distributed control systems with shared resources, participating agents can improve the overall performance of the system by sharing data about their...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118
SubjectTerms Communication networks
Control systems
Data privacy
Decentralized control
decision/estimation theory
differential privacy
Discrete time systems
distributed algorithms/control
Distributed control systems
Distributed databases
Entropy
Error analysis
Estimation
Lower bounds
Noise control
Noise sensitivity
Parameter sensitivity
Performance enhancement
Preferences
Privacy
Time measurement
Tracking errors
Tradeoffs
Title Differential Privacy in Linear Distributed Control Systems: Entropy Minimizing Mechanisms and Performance Tradeoffs
URI https://ieeexplore.ieee.org/document/7833044
https://www.proquest.com/docview/1879743636
Volume 4
WOSCitedRecordID wos000396393400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 2372-2533
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001255873
  issn: 2325-5870
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BTtwwEB0B6qE9tLS06raAfOipaiAbx564N7SAOJTVSqUVt8iJx1IkyKLNgkS_vp7ELCsVVeKWSLFl5dl-M_bMPIAvloyupVGJVJVM8nGVJcZLTFKvlVeaHPaFtH__wOm0uLw0sw34tsqFIaI--IwO-LG_y3fz-paPyg6xYO8734RNRBxytdbOU5QqUMaLy3FqDi8m058cu4UHWaDZMe-6a9TTa6n8swH3rHL65nnj2YbX0XoURwPcb2GD2nfwaq2m4A50x1HyJCzdKzFbNHe2vhdNK4LXGWa1OOZKuSxyRU5Mhjh1EcuWfxcn_H5zL86btrlu_oQOxTlxbnDTXXfCtk7MHhMNROA5R3Pvu_fw6_TkYnKWRGWFpA70vkzIV2gyFfCxCjGMqvAuML8svDYyGHhe1iorUpfmzmvUxI6iUqqqZEG6srn8AFvtvKWPIDCT1lrtalkVOQVTHXOLhFqTYe3P8QjSh59e1rHsOKtfXJW9-5GaknEqGacy4jSCr6smN0PNjf99vMPArD6MmIxg9wHZMq7KrmRl9WAxaak_Pd3qM7zkvocYs13YWi5uaQ9e1HfLplvs9xPuL5ks1U4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED66brDtofvRjaXtNj3sacytbVmS1beStnQsCYFlo29Gtk5gaJ0Sp4Xur6_OVrNAR2FvNki28Sfp7qS77wP4YlDLimsRcVHyKEvKNNKOqyh2Ujgh0aqOSPv3SE0m-fm5nm7At1UtDCJ2yWe4T5fdWb6dV9e0VXagcoq-syfwVGRZmvTVWms7KkLkioejyyTWB7Ph5Cdlb6n91BvahNbdNePTqak8WII7u3L66v--6DVsBf-RHfWAv4ENbN7CyzVWwW1oj4PoiZ-8F2y6qG9Mdcvqhvm4049rdkxcuSRzhZYN-0x1FojLD9kJ3V_dsnHd1Jf1H_9ANkaqDq7by5aZxrLp31ID5i2dxblz7Tv4dXoyG55FQVshqryBX0boSqVT4REyQin_Vbmz3vbz3EnNvYvneCXSPLZxZp1UEilUFEKUJc9Rlibj72GzmTf4AZhKuTFG2oqXeYbeWVeZUaikRE3qn8kA4vufXlSBeJz0Ly6KLgCJdUE4FYRTEXAawNdVl6uedeOxxtsEzKphwGQAe_fIFmFetgVpq3ufSXK58-9en-H52Ww8KkbfJz924QW9p88424PN5eIaP8Kz6mZZt4tP3eC7A9Ye2JU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+Privacy+in+Linear+Distributed+Control+Systems%3A+Entropy+Minimizing+Mechanisms+and+Performance+Tradeoffs&rft.jtitle=IEEE+transactions+on+control+of+network+systems&rft.au=Yu+Wang&rft.au=Zhenqi+Huang&rft.au=Mitra%2C+Sayan&rft.au=Dullerud%2C+Geir+E.&rft.date=2017-03-01&rft.pub=IEEE&rft.eissn=2372-2533&rft.volume=4&rft.issue=1&rft.spage=118&rft.epage=130&rft_id=info:doi/10.1109%2FTCNS.2017.2658190&rft.externalDocID=7833044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2325-5870&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2325-5870&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2325-5870&client=summon