MALOC: A Fully Pipelined FPGA Accelerator for Convolutional Neural Networks With All Layers Mapped on Chip

Recently, field-programmable gate arrays (FPGAs) have been widely used in the implementations of hardware accelerator for convolutional neural networks (CNNs). However, most of these existing accelerators are designed in the same idea as their ASIC counterparts, in which all operations from differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems Jg. 37; H. 11; S. 2601 - 2612
Hauptverfasser: Gong, Lei, Wang, Chao, Li, Xi, Chen, Huaping, Zhou, Xuehai
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0278-0070, 1937-4151
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recently, field-programmable gate arrays (FPGAs) have been widely used in the implementations of hardware accelerator for convolutional neural networks (CNNs). However, most of these existing accelerators are designed in the same idea as their ASIC counterparts, in which all operations from different layers are mapped to the same hardware units and working in a multiplexed way. This manner does not take full advantage of reconfigurability and customizability of FPGAs, resulting in a certain degree of computational efficiency degradation. In this paper, we propose a new architecture for FPGA-based CNN accelerator that maps all the layers to their own on-chip units and working concurrently as a pipeline. A comprehensive mapping and optimizing methodology based on establishing roofline model oriented optimization model is proposed, which can achieve maximum resource utilization as well as optimal computational efficiency. Besides, to ease the programming burden, we propose a design framework which can provide a one-stop function for developers to generate the accelerator with our optimizing methodology. We evaluate our proposal by implementing different modern CNN models on Xilinx Zynq-7020 and Virtex-7 690t FPGA platforms. Experimental results show that our implementations can achieve a peak performance of 910.2 GOPS on Virtex-7 690t, and 36.36 GOP/s/W energy efficiency on Zynq-7020, which are superior to the previous approaches.
AbstractList Recently, field-programmable gate arrays (FPGAs) have been widely used in the implementations of hardware accelerator for convolutional neural networks (CNNs). However, most of these existing accelerators are designed in the same idea as their ASIC counterparts, in which all operations from different layers are mapped to the same hardware units and working in a multiplexed way. This manner does not take full advantage of reconfigurability and customizability of FPGAs, resulting in a certain degree of computational efficiency degradation. In this paper, we propose a new architecture for FPGA-based CNN accelerator that maps all the layers to their own on-chip units and working concurrently as a pipeline. A comprehensive mapping and optimizing methodology based on establishing roofline model oriented optimization model is proposed, which can achieve maximum resource utilization as well as optimal computational efficiency. Besides, to ease the programming burden, we propose a design framework which can provide a one-stop function for developers to generate the accelerator with our optimizing methodology. We evaluate our proposal by implementing different modern CNN models on Xilinx Zynq-7020 and Virtex-7 690t FPGA platforms. Experimental results show that our implementations can achieve a peak performance of 910.2 GOPS on Virtex-7 690t, and 36.36 GOP/s/W energy efficiency on Zynq-7020, which are superior to the previous approaches.
Author Zhou, Xuehai
Gong, Lei
Wang, Chao
Li, Xi
Chen, Huaping
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0000-0002-8391-5526
  surname: Gong
  fullname: Gong, Lei
  email: leigong0203@mail.ustc.edu.cn
  organization: School of Computer Science and Technology, University of Science and Technology of China, Hefei, China
– sequence: 2
  givenname: Chao
  orcidid: 0000-0002-9403-5575
  surname: Wang
  fullname: Wang, Chao
  email: cswang@ustc.edu.cn
  organization: School of Computer Science and Technology, University of Science and Technology of China, Hefei, China
– sequence: 3
  givenname: Xi
  surname: Li
  fullname: Li, Xi
  email: llxx@ustc.edu.cn
  organization: School of Computer Science and Technology, University of Science and Technology of China, Hefei, China
– sequence: 4
  givenname: Huaping
  surname: Chen
  fullname: Chen, Huaping
  email: hpchen@ustc.edu.cn
  organization: School of Software Engineering, University of Science and Technology of China, Hefei, China
– sequence: 5
  givenname: Xuehai
  orcidid: 0000-0002-8360-3143
  surname: Zhou
  fullname: Zhou, Xuehai
  email: xhzhou@ustc.edu.cn
  organization: School of Computer Science and Technology, University of Science and Technology of China, Hefei, China
BookMark eNp9kD9PwzAUxC0EEqXwARCLJeYU_6nrmC0KtCAV2qGIMXLTZ9XFxMFOQP32pLRiYGB4uuV-p3d3ho4rXwFCl5QMKCXqZpFndwNGaDpgqZBEpkeoRxWXyZAKeox6hMk0IUSSU3QW44YQOhRM9dDmKZvO8luc4XHr3BbPbQ3OVrDC4_kkw1lZgoOgGx-w6S731ad3bWN9pR1-hjb8SPPlw1vEr7ZZ48w5PNVbCBE_6bruknyF87Wtz9GJ0S7CxUH76GV8v8gfkuls8phn06RkijcJGKpLMHoEI8rEspQKGNeELNVqlQ6p4SMOXAlVCi0FSCNNSsEsuQHBlRaC99H1PrcO_qOF2BQb34bu31gwymiHkiHrXHLvKoOPMYApStvoXbEmaOsKSordsMVu2GI3bHEYtiPpH7IO9l2H7b_M1Z6xAPDr7-owIRj_BpKShQY
CODEN ITCSDI
CitedBy_id crossref_primary_10_1016_j_micpro_2020_103136
crossref_primary_10_1109_JIOT_2020_2990215
crossref_primary_10_1109_TC_2020_2995761
crossref_primary_10_1109_TCAD_2024_3391688
crossref_primary_10_1145_3576196
crossref_primary_10_1109_TCSI_2024_3384271
crossref_primary_10_1007_s11554_024_01423_x
crossref_primary_10_1109_TCAD_2022_3197489
crossref_primary_10_1145_3519598
crossref_primary_10_1109_ACCESS_2020_3012900
crossref_primary_10_1016_j_compbiomed_2022_106390
crossref_primary_10_1109_LES_2022_3187382
crossref_primary_10_1109_TC_2022_3187338
crossref_primary_10_3390_electronics12173607
crossref_primary_10_1016_j_neucom_2021_02_106
crossref_primary_10_1007_s11554_021_01140_9
crossref_primary_10_1109_ACCESS_2020_3040366
crossref_primary_10_1016_j_matcom_2020_04_031
crossref_primary_10_1109_TCAD_2020_3012323
crossref_primary_10_1109_ACCESS_2022_3180829
crossref_primary_10_1145_3615870
crossref_primary_10_3390_electronics10202511
crossref_primary_10_1109_TC_2024_3517751
crossref_primary_10_1109_TPDS_2020_3046762
crossref_primary_10_1109_TBCAS_2023_3236976
crossref_primary_10_1109_TCAD_2024_3485571
crossref_primary_10_3390_app14125152
crossref_primary_10_1016_j_sysarc_2024_103113
crossref_primary_10_1111_coin_12481
crossref_primary_10_1109_TCAD_2024_3439488
crossref_primary_10_1016_j_jpdc_2025_105042
crossref_primary_10_1049_csy2_12006
crossref_primary_10_1007_s40009_025_01670_x
crossref_primary_10_1109_ACCESS_2023_3285279
crossref_primary_10_32604_cmc_2023_045948
crossref_primary_10_1016_j_future_2024_04_038
crossref_primary_10_1016_j_mejo_2022_105492
crossref_primary_10_1016_j_sysarc_2021_101991
crossref_primary_10_1109_TPDS_2020_2990924
crossref_primary_10_1109_JETCAS_2019_2952137
crossref_primary_10_1007_s12652_022_04351_5
crossref_primary_10_1145_3544975
crossref_primary_10_1109_ACCESS_2023_3285549
crossref_primary_10_3390_s23094241
crossref_primary_10_1109_TCSI_2025_3553837
crossref_primary_10_1109_TCAD_2020_3011650
crossref_primary_10_3390_electronics9050832
crossref_primary_10_1016_j_neucom_2020_04_018
crossref_primary_10_1007_s11227_020_03325_8
crossref_primary_10_1109_TII_2020_3015833
crossref_primary_10_1145_3640464
crossref_primary_10_3390_a13090213
crossref_primary_10_3390_electronics8111321
crossref_primary_10_1109_TCAD_2025_3547275
crossref_primary_10_1109_TCAD_2020_2973355
crossref_primary_10_1109_TCSII_2020_3004616
crossref_primary_10_1109_ACCESS_2020_3000444
crossref_primary_10_1109_TCAD_2023_3281714
crossref_primary_10_1109_JSEN_2020_3002340
crossref_primary_10_1007_s11265_020_01606_2
crossref_primary_10_1109_TCSI_2025_3554635
crossref_primary_10_1007_s11554_025_01642_w
crossref_primary_10_1109_TCSI_2021_3072622
crossref_primary_10_3389_fphys_2023_1079503
crossref_primary_10_3390_electronics13132676
crossref_primary_10_3390_electronics9111823
crossref_primary_10_1007_s10489_024_05898_w
Cites_doi 10.1109/TCAD.2017.2783363
10.1145/2847263.2847265
10.1109/MICRO.2016.7783725
10.1145/1498765.1498785
10.1145/3007787.3001179
10.7873/DATE.2015.0536
10.1007/s11227-012-0810-x
10.1145/2435264.2435271
10.1109/TPDS.2015.2487346
10.1145/3125502.3125534
10.1145/3061639.3062244
10.1145/1815961.1815993
10.1145/2647868.2654889
10.1145/2897937.2898003
10.1109/FPL.2016.7577315
10.1145/2749469.2750389
10.1109/FCCM.2017.25
10.1145/2644865.2541967
10.1109/MICRO.2016.7783723
10.1109/TPDS.2017.2701828
10.1109/TSC.2017.2777478
10.1145/2847263.2847276
10.1109/MICRO.2016.7783720
10.1109/TC.2017.2777863
10.1109/FCCM.2017.64
10.1109/TC.2014.2315628
10.1080/00207217.2014.938312
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCAD.2018.2857078
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1937-4151
EndPage 2612
ExternalDocumentID 10_1109_TCAD_2018_2857078
8412552
Genre orig-research
GrantInformation_xml – fundername: Youth Innovation Promotion Association CAS
  grantid: 2017497
– fundername: State Key Laboratory of Computer Architecture, Institute of Computing Technology, CAS
  grantid: CARCH201709
– fundername: National Natural Science Foundation of China; NSFC
  grantid: 61772482
  funderid: 10.13039/501100001809
– fundername: Suzhou Research Foundation
  grantid: SYG201625
– fundername: Fundamental Research Funds for the Central Universities
  grantid: WK2150110003
– fundername: Anhui Provincial NSF
  grantid: 1608085QF12
GroupedDBID --Z
-~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PZZ
RIA
RIE
RNS
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-ef1acefa6e6125bc79e23a00b9dd841f363e3959c5a75e7f7f81efb3fe539a553
IEDL.DBID RIE
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000447854500038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0070
IngestDate Sun Nov 09 08:20:24 EST 2025
Sat Nov 29 01:40:41 EST 2025
Tue Nov 18 20:45:15 EST 2025
Wed Aug 27 02:14:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-ef1acefa6e6125bc79e23a00b9dd841f363e3959c5a75e7f7f81efb3fe539a553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8391-5526
0000-0002-8360-3143
0000-0002-9403-5575
PQID 2121959042
PQPubID 85470
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TCAD_2018_2857078
crossref_primary_10_1109_TCAD_2018_2857078
proquest_journals_2121959042
ieee_primary_8412552
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on computer-aided design of integrated circuits and systems
PublicationTitleAbbrev TCAD
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref37
ref15
ref36
ref14
ref31
chao wang (ref34) 2015
krizhevsky (ref19) 2012
ref33
ref11
ref32
ref10
sun (ref13) 2017
ref39
ref17
ref38
ref16
han (ref29) 2015; 56
zhang (ref8) 2015
ref23
ref26
ref22
lu (ref18) 2017
simonyan (ref20) 2014; abs 1409 1556
iandola (ref24) 2016
ref28
courbariaux (ref25) 2015
ref27
han (ref30) 2015
chen (ref2) 2015
ref7
ref4
mao (ref21) 2017
ref3
wang (ref6) 2017; 36
ref5
ref40
zhang (ref9) 2016
chen (ref1) 2014; 49
References_xml – ident: ref40
  doi: 10.1109/TCAD.2017.2783363
– ident: ref10
  doi: 10.1145/2847263.2847265
– ident: ref28
  doi: 10.1109/MICRO.2016.7783725
– ident: ref27
  doi: 10.1145/1498765.1498785
– start-page: 609
  year: 2015
  ident: ref2
  article-title: DaDianNao: A machine-learning supercomputer
  publication-title: Proc MICRO
– ident: ref5
  doi: 10.1145/3007787.3001179
– start-page: 884
  year: 2015
  ident: ref34
  article-title: SODA: Software Defined FPGA Based Accelerators for Big Data
  publication-title: Design Automation Test in Europe Conference Exhibition (DATE)
  doi: 10.7873/DATE.2015.0536
– ident: ref32
  doi: 10.1007/s11227-012-0810-x
– start-page: 161
  year: 2015
  ident: ref8
  article-title: Optimizing FPGA-based accelerator design for deep convolutional neural networks
  publication-title: Proc ACM/SIGDA FPGA
– start-page: 3123
  year: 2015
  ident: ref25
  article-title: BinaryConnect: Training deep neural networks with binary weights during propagations
  publication-title: Proc NIPS
– volume: 56
  start-page: 3
  year: 2015
  ident: ref29
  article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding
  publication-title: FIBER
– start-page: 1
  year: 2017
  ident: ref13
  article-title: UniCNN: A pipelined accelerator towards uniformed computing for CNNs
  publication-title: Int J Parallel Program
– volume: abs 1409 1556
  year: 2014
  ident: ref20
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: CoRR
– ident: ref39
  doi: 10.1145/2435264.2435271
– ident: ref37
  doi: 10.1109/TPDS.2015.2487346
– ident: ref15
  doi: 10.1145/3125502.3125534
– ident: ref14
  doi: 10.1145/3061639.3062244
– ident: ref7
  doi: 10.1145/1815961.1815993
– ident: ref31
  doi: 10.1145/2647868.2654889
– ident: ref36
  doi: 10.1145/2897937.2898003
– ident: ref26
  doi: 10.1109/FPL.2016.7577315
– ident: ref3
  doi: 10.1145/2749469.2750389
– ident: ref12
  doi: 10.1109/FCCM.2017.25
– volume: 49
  start-page: 269
  year: 2014
  ident: ref1
  article-title: DianNao: A small-footprint high-throughput accelerator for ubiquitous machine-learning
  publication-title: ACM SIGPLAN Notices
  doi: 10.1145/2644865.2541967
– start-page: 1135
  year: 2015
  ident: ref30
  article-title: Learning both weights and connections for efficient neural networks
  publication-title: Proc 28th Int Conf Neural Inf Process Syst
– start-page: 1
  year: 2016
  ident: ref24
  article-title: SqueezeNet: AlexNet-level accuracy with 50 $\times$ fewer parameters and 0.5MB model size
  publication-title: Proc ICLR
– start-page: 12
  year: 2016
  ident: ref9
  article-title: Caffeine: Towards uniformed representation and acceleration for deep convolutional neural networks
  publication-title: Proc ICCAD
– start-page: 1400
  year: 2017
  ident: ref21
  article-title: MoDNN: Local distributed mobile computing system for deep neural network
  publication-title: Proc DATE
– ident: ref4
  doi: 10.1109/MICRO.2016.7783723
– ident: ref23
  doi: 10.1109/TPDS.2017.2701828
– ident: ref17
  doi: 10.1109/TSC.2017.2777478
– ident: ref11
  doi: 10.1145/2847263.2847276
– ident: ref16
  doi: 10.1109/MICRO.2016.7783720
– start-page: 1097
  year: 2012
  ident: ref19
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc NIPS
– ident: ref22
  doi: 10.1109/TC.2017.2777863
– ident: ref33
  doi: 10.1109/FCCM.2017.64
– volume: 36
  start-page: 513
  year: 2017
  ident: ref6
  article-title: DLAU: A scalable deep learning accelerator unit on FPGA
  publication-title: IEEE Trans Comput -Aided Design Integr Circuits Syst
– ident: ref38
  doi: 10.1109/TC.2014.2315628
– start-page: 1
  year: 2017
  ident: ref18
  article-title: SparseNN: A performance-efficient accelerator for large-scale sparse neural networks
  publication-title: Int J Parallel Program
– ident: ref35
  doi: 10.1080/00207217.2014.938312
SSID ssj0014529
Score 2.5606215
Snippet Recently, field-programmable gate arrays (FPGAs) have been widely used in the implementations of hardware accelerator for convolutional neural networks (CNNs)....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2601
SubjectTerms Accelerators
Artificial neural networks
Computational efficiency
Computational modeling
Computer architecture
Computing time
Convolutional neural network (CNN)
Convolutional neural networks
design space exploration (DSE)
Efficiency
Embedded systems
Field programmable gate arrays
field-programmable gate array (FPGA)-based accelerator
Gate arrays
Hardware
Neural networks
Optimization
pipeline
Pipelines
programming framework
Redundancy
redundancy elimination
Space exploration
System-on-chip
Title MALOC: A Fully Pipelined FPGA Accelerator for Convolutional Neural Networks With All Layers Mapped on Chip
URI https://ieeexplore.ieee.org/document/8412552
https://www.proquest.com/docview/2121959042
Volume 37
WOSCitedRecordID wos000447854500038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1937-4151
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014529
  issn: 0278-0070
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKxQADr4IoFOSBCZE2aZLaZosqCkNbOhTRLXKcsyiq0qgviX-Pz02rSiAkpmSwT0m-y93Z5_uOkDtXcWN6Xe0os8pxAiTBNHoTOlwHaeoBMFCWxLXL-n0-GolBiTxsa2EAwB4-gzre2lx-OlVL3Cpr8MC449AY3D3GWutarW3GABOIdj8FGWONHhcZTM8VjaF5KTzExetNpHPHjmo7Psg2Vflhia176Rz_78FOyFERRtJojfspKUF2Rg53yAUr5LMXdV_bjzSiuMz8ooNxjrXnkNLO4DmikVLG49gkOzWBK21Ps1WhhkYwcnbYiz0kPqfv48UHjSYT2pUYo9OezHMjaZrR9sc4Pydvnadh-8UpOis4yrj3hQPakwq0bAEGOIliApq-dN1EpKl5F-23fPBFKFQoWQhMM8090ImvIfSFDEP_gpSzaQaXhIoml0xLnbpaBkZGAgnjQgYs9XiiW1Al7uZbx6qgHcfuF5PYLj9cESM8McITF_BUyf12Sr7m3PhrcAXx2A4soKiS2gbQuPgr57Fx08ilY-zU1e-zrskByl7XGtZIeTFbwg3ZV6vFeD67tQr3DfOG0sU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4hFmnhsDxXdHn5wAltIGmS2uYWVRQQaemhq-UWOc5YdFWlES1I--_xuKZCYrUSp-RgO3G-yczY4_kG4DTUwqre0ATarnKChEgwrdykgTBJVUWIHLUjcc35YCAeHuRwBX4uc2EQ0R0-w3O6dbH8aqqfaavsQiTWHKdW4X6hylk-W2sZM6AQottRIc5YK8k-hhmF8mJkp0XHuMR5mwjdqabaOyvkyqp80MXOwPQ2P_dqW_DNO5IsWyC_DStY78DGO3rBXfjTz_L77iXLGC00_7LhuKHsc6xYb3idsUxra3NcmJ1Z15V1p_WLF0Q7MLF2uIs7Jj5jv8fzR5ZNJixX5KWzvmoaO9K0Zt3HcbMHv3pXo-5N4GsrBNoa-HmAJlIajeoguTil5hLbsQrDUlaVnYuJOzHGMpU6VTxFbrgREZoyNpjGUqVp_B1W62mN-8BkWyhulKlCoxI7RoklF1IlvIpEaTrYgvDtWxfaE49T_YtJ4RYgoSwInoLgKTw8LThbdmkWrBv_a7xLeCwbeihacPgGaOH_y1lhDTWx6VhN9ePfvU7g682onxf57eDuANbpOYvMw0NYnT894xGs6Zf5ePZ07ITvFRgc1g4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MALOC%3A+A+Fully+Pipelined+FPGA+Accelerator+for+Convolutional+Neural+Networks+With+All+Layers+Mapped+on+Chip&rft.jtitle=IEEE+transactions+on+computer-aided+design+of+integrated+circuits+and+systems&rft.au=Gong%2C+Lei&rft.au=Wang%2C+Chao&rft.au=Li%2C+Xi&rft.au=Chen%2C+Huaping&rft.date=2018-11-01&rft.pub=IEEE&rft.issn=0278-0070&rft.volume=37&rft.issue=11&rft.spage=2601&rft.epage=2612&rft_id=info:doi/10.1109%2FTCAD.2018.2857078&rft.externalDocID=8412552
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0070&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0070&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0070&client=summon