MALOC: A Fully Pipelined FPGA Accelerator for Convolutional Neural Networks With All Layers Mapped on Chip
Recently, field-programmable gate arrays (FPGAs) have been widely used in the implementations of hardware accelerator for convolutional neural networks (CNNs). However, most of these existing accelerators are designed in the same idea as their ASIC counterparts, in which all operations from differen...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems Jg. 37; H. 11; S. 2601 - 2612 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0278-0070, 1937-4151 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Recently, field-programmable gate arrays (FPGAs) have been widely used in the implementations of hardware accelerator for convolutional neural networks (CNNs). However, most of these existing accelerators are designed in the same idea as their ASIC counterparts, in which all operations from different layers are mapped to the same hardware units and working in a multiplexed way. This manner does not take full advantage of reconfigurability and customizability of FPGAs, resulting in a certain degree of computational efficiency degradation. In this paper, we propose a new architecture for FPGA-based CNN accelerator that maps all the layers to their own on-chip units and working concurrently as a pipeline. A comprehensive mapping and optimizing methodology based on establishing roofline model oriented optimization model is proposed, which can achieve maximum resource utilization as well as optimal computational efficiency. Besides, to ease the programming burden, we propose a design framework which can provide a one-stop function for developers to generate the accelerator with our optimizing methodology. We evaluate our proposal by implementing different modern CNN models on Xilinx Zynq-7020 and Virtex-7 690t FPGA platforms. Experimental results show that our implementations can achieve a peak performance of 910.2 GOPS on Virtex-7 690t, and 36.36 GOP/s/W energy efficiency on Zynq-7020, which are superior to the previous approaches. |
|---|---|
| AbstractList | Recently, field-programmable gate arrays (FPGAs) have been widely used in the implementations of hardware accelerator for convolutional neural networks (CNNs). However, most of these existing accelerators are designed in the same idea as their ASIC counterparts, in which all operations from different layers are mapped to the same hardware units and working in a multiplexed way. This manner does not take full advantage of reconfigurability and customizability of FPGAs, resulting in a certain degree of computational efficiency degradation. In this paper, we propose a new architecture for FPGA-based CNN accelerator that maps all the layers to their own on-chip units and working concurrently as a pipeline. A comprehensive mapping and optimizing methodology based on establishing roofline model oriented optimization model is proposed, which can achieve maximum resource utilization as well as optimal computational efficiency. Besides, to ease the programming burden, we propose a design framework which can provide a one-stop function for developers to generate the accelerator with our optimizing methodology. We evaluate our proposal by implementing different modern CNN models on Xilinx Zynq-7020 and Virtex-7 690t FPGA platforms. Experimental results show that our implementations can achieve a peak performance of 910.2 GOPS on Virtex-7 690t, and 36.36 GOP/s/W energy efficiency on Zynq-7020, which are superior to the previous approaches. |
| Author | Zhou, Xuehai Gong, Lei Wang, Chao Li, Xi Chen, Huaping |
| Author_xml | – sequence: 1 givenname: Lei orcidid: 0000-0002-8391-5526 surname: Gong fullname: Gong, Lei email: leigong0203@mail.ustc.edu.cn organization: School of Computer Science and Technology, University of Science and Technology of China, Hefei, China – sequence: 2 givenname: Chao orcidid: 0000-0002-9403-5575 surname: Wang fullname: Wang, Chao email: cswang@ustc.edu.cn organization: School of Computer Science and Technology, University of Science and Technology of China, Hefei, China – sequence: 3 givenname: Xi surname: Li fullname: Li, Xi email: llxx@ustc.edu.cn organization: School of Computer Science and Technology, University of Science and Technology of China, Hefei, China – sequence: 4 givenname: Huaping surname: Chen fullname: Chen, Huaping email: hpchen@ustc.edu.cn organization: School of Software Engineering, University of Science and Technology of China, Hefei, China – sequence: 5 givenname: Xuehai orcidid: 0000-0002-8360-3143 surname: Zhou fullname: Zhou, Xuehai email: xhzhou@ustc.edu.cn organization: School of Computer Science and Technology, University of Science and Technology of China, Hefei, China |
| BookMark | eNp9kD9PwzAUxC0EEqXwARCLJeYU_6nrmC0KtCAV2qGIMXLTZ9XFxMFOQP32pLRiYGB4uuV-p3d3ho4rXwFCl5QMKCXqZpFndwNGaDpgqZBEpkeoRxWXyZAKeox6hMk0IUSSU3QW44YQOhRM9dDmKZvO8luc4XHr3BbPbQ3OVrDC4_kkw1lZgoOgGx-w6S731ad3bWN9pR1-hjb8SPPlw1vEr7ZZ48w5PNVbCBE_6bruknyF87Wtz9GJ0S7CxUH76GV8v8gfkuls8phn06RkijcJGKpLMHoEI8rEspQKGNeELNVqlQ6p4SMOXAlVCi0FSCNNSsEsuQHBlRaC99H1PrcO_qOF2BQb34bu31gwymiHkiHrXHLvKoOPMYApStvoXbEmaOsKSordsMVu2GI3bHEYtiPpH7IO9l2H7b_M1Z6xAPDr7-owIRj_BpKShQY |
| CODEN | ITCSDI |
| CitedBy_id | crossref_primary_10_1016_j_micpro_2020_103136 crossref_primary_10_1109_JIOT_2020_2990215 crossref_primary_10_1109_TC_2020_2995761 crossref_primary_10_1109_TCAD_2024_3391688 crossref_primary_10_1145_3576196 crossref_primary_10_1109_TCSI_2024_3384271 crossref_primary_10_1007_s11554_024_01423_x crossref_primary_10_1109_TCAD_2022_3197489 crossref_primary_10_1145_3519598 crossref_primary_10_1109_ACCESS_2020_3012900 crossref_primary_10_1016_j_compbiomed_2022_106390 crossref_primary_10_1109_LES_2022_3187382 crossref_primary_10_1109_TC_2022_3187338 crossref_primary_10_3390_electronics12173607 crossref_primary_10_1016_j_neucom_2021_02_106 crossref_primary_10_1007_s11554_021_01140_9 crossref_primary_10_1109_ACCESS_2020_3040366 crossref_primary_10_1016_j_matcom_2020_04_031 crossref_primary_10_1109_TCAD_2020_3012323 crossref_primary_10_1109_ACCESS_2022_3180829 crossref_primary_10_1145_3615870 crossref_primary_10_3390_electronics10202511 crossref_primary_10_1109_TC_2024_3517751 crossref_primary_10_1109_TPDS_2020_3046762 crossref_primary_10_1109_TBCAS_2023_3236976 crossref_primary_10_1109_TCAD_2024_3485571 crossref_primary_10_3390_app14125152 crossref_primary_10_1016_j_sysarc_2024_103113 crossref_primary_10_1111_coin_12481 crossref_primary_10_1109_TCAD_2024_3439488 crossref_primary_10_1016_j_jpdc_2025_105042 crossref_primary_10_1049_csy2_12006 crossref_primary_10_1007_s40009_025_01670_x crossref_primary_10_1109_ACCESS_2023_3285279 crossref_primary_10_32604_cmc_2023_045948 crossref_primary_10_1016_j_future_2024_04_038 crossref_primary_10_1016_j_mejo_2022_105492 crossref_primary_10_1016_j_sysarc_2021_101991 crossref_primary_10_1109_TPDS_2020_2990924 crossref_primary_10_1109_JETCAS_2019_2952137 crossref_primary_10_1007_s12652_022_04351_5 crossref_primary_10_1145_3544975 crossref_primary_10_1109_ACCESS_2023_3285549 crossref_primary_10_3390_s23094241 crossref_primary_10_1109_TCSI_2025_3553837 crossref_primary_10_1109_TCAD_2020_3011650 crossref_primary_10_3390_electronics9050832 crossref_primary_10_1016_j_neucom_2020_04_018 crossref_primary_10_1007_s11227_020_03325_8 crossref_primary_10_1109_TII_2020_3015833 crossref_primary_10_1145_3640464 crossref_primary_10_3390_a13090213 crossref_primary_10_3390_electronics8111321 crossref_primary_10_1109_TCAD_2025_3547275 crossref_primary_10_1109_TCAD_2020_2973355 crossref_primary_10_1109_TCSII_2020_3004616 crossref_primary_10_1109_ACCESS_2020_3000444 crossref_primary_10_1109_TCAD_2023_3281714 crossref_primary_10_1109_JSEN_2020_3002340 crossref_primary_10_1007_s11265_020_01606_2 crossref_primary_10_1109_TCSI_2025_3554635 crossref_primary_10_1007_s11554_025_01642_w crossref_primary_10_1109_TCSI_2021_3072622 crossref_primary_10_3389_fphys_2023_1079503 crossref_primary_10_3390_electronics13132676 crossref_primary_10_3390_electronics9111823 crossref_primary_10_1007_s10489_024_05898_w |
| Cites_doi | 10.1109/TCAD.2017.2783363 10.1145/2847263.2847265 10.1109/MICRO.2016.7783725 10.1145/1498765.1498785 10.1145/3007787.3001179 10.7873/DATE.2015.0536 10.1007/s11227-012-0810-x 10.1145/2435264.2435271 10.1109/TPDS.2015.2487346 10.1145/3125502.3125534 10.1145/3061639.3062244 10.1145/1815961.1815993 10.1145/2647868.2654889 10.1145/2897937.2898003 10.1109/FPL.2016.7577315 10.1145/2749469.2750389 10.1109/FCCM.2017.25 10.1145/2644865.2541967 10.1109/MICRO.2016.7783723 10.1109/TPDS.2017.2701828 10.1109/TSC.2017.2777478 10.1145/2847263.2847276 10.1109/MICRO.2016.7783720 10.1109/TC.2017.2777863 10.1109/FCCM.2017.64 10.1109/TC.2014.2315628 10.1080/00207217.2014.938312 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TCAD.2018.2857078 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1937-4151 |
| EndPage | 2612 |
| ExternalDocumentID | 10_1109_TCAD_2018_2857078 8412552 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Youth Innovation Promotion Association CAS grantid: 2017497 – fundername: State Key Laboratory of Computer Architecture, Institute of Computing Technology, CAS grantid: CARCH201709 – fundername: National Natural Science Foundation of China; NSFC grantid: 61772482 funderid: 10.13039/501100001809 – fundername: Suzhou Research Foundation grantid: SYG201625 – fundername: Fundamental Research Funds for the Central Universities grantid: WK2150110003 – fundername: Anhui Provincial NSF grantid: 1608085QF12 |
| GroupedDBID | --Z -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PZZ RIA RIE RNS TN5 VH1 VJK AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-ef1acefa6e6125bc79e23a00b9dd841f363e3959c5a75e7f7f81efb3fe539a553 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 94 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000447854500038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0070 |
| IngestDate | Sun Nov 09 08:20:24 EST 2025 Sat Nov 29 01:40:41 EST 2025 Tue Nov 18 20:45:15 EST 2025 Wed Aug 27 02:14:53 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-ef1acefa6e6125bc79e23a00b9dd841f363e3959c5a75e7f7f81efb3fe539a553 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8391-5526 0000-0002-8360-3143 0000-0002-9403-5575 |
| PQID | 2121959042 |
| PQPubID | 85470 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_TCAD_2018_2857078 crossref_primary_10_1109_TCAD_2018_2857078 proquest_journals_2121959042 ieee_primary_8412552 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-01 |
| PublicationDateYYYYMMDD | 2018-11-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on computer-aided design of integrated circuits and systems |
| PublicationTitleAbbrev | TCAD |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref12 ref37 ref15 ref36 ref14 ref31 chao wang (ref34) 2015 krizhevsky (ref19) 2012 ref33 ref11 ref32 ref10 sun (ref13) 2017 ref39 ref17 ref38 ref16 han (ref29) 2015; 56 zhang (ref8) 2015 ref23 ref26 ref22 lu (ref18) 2017 simonyan (ref20) 2014; abs 1409 1556 iandola (ref24) 2016 ref28 courbariaux (ref25) 2015 ref27 han (ref30) 2015 chen (ref2) 2015 ref7 ref4 mao (ref21) 2017 ref3 wang (ref6) 2017; 36 ref5 ref40 zhang (ref9) 2016 chen (ref1) 2014; 49 |
| References_xml | – ident: ref40 doi: 10.1109/TCAD.2017.2783363 – ident: ref10 doi: 10.1145/2847263.2847265 – ident: ref28 doi: 10.1109/MICRO.2016.7783725 – ident: ref27 doi: 10.1145/1498765.1498785 – start-page: 609 year: 2015 ident: ref2 article-title: DaDianNao: A machine-learning supercomputer publication-title: Proc MICRO – ident: ref5 doi: 10.1145/3007787.3001179 – start-page: 884 year: 2015 ident: ref34 article-title: SODA: Software Defined FPGA Based Accelerators for Big Data publication-title: Design Automation Test in Europe Conference Exhibition (DATE) doi: 10.7873/DATE.2015.0536 – ident: ref32 doi: 10.1007/s11227-012-0810-x – start-page: 161 year: 2015 ident: ref8 article-title: Optimizing FPGA-based accelerator design for deep convolutional neural networks publication-title: Proc ACM/SIGDA FPGA – start-page: 3123 year: 2015 ident: ref25 article-title: BinaryConnect: Training deep neural networks with binary weights during propagations publication-title: Proc NIPS – volume: 56 start-page: 3 year: 2015 ident: ref29 article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding publication-title: FIBER – start-page: 1 year: 2017 ident: ref13 article-title: UniCNN: A pipelined accelerator towards uniformed computing for CNNs publication-title: Int J Parallel Program – volume: abs 1409 1556 year: 2014 ident: ref20 article-title: Very deep convolutional networks for large-scale image recognition publication-title: CoRR – ident: ref39 doi: 10.1145/2435264.2435271 – ident: ref37 doi: 10.1109/TPDS.2015.2487346 – ident: ref15 doi: 10.1145/3125502.3125534 – ident: ref14 doi: 10.1145/3061639.3062244 – ident: ref7 doi: 10.1145/1815961.1815993 – ident: ref31 doi: 10.1145/2647868.2654889 – ident: ref36 doi: 10.1145/2897937.2898003 – ident: ref26 doi: 10.1109/FPL.2016.7577315 – ident: ref3 doi: 10.1145/2749469.2750389 – ident: ref12 doi: 10.1109/FCCM.2017.25 – volume: 49 start-page: 269 year: 2014 ident: ref1 article-title: DianNao: A small-footprint high-throughput accelerator for ubiquitous machine-learning publication-title: ACM SIGPLAN Notices doi: 10.1145/2644865.2541967 – start-page: 1135 year: 2015 ident: ref30 article-title: Learning both weights and connections for efficient neural networks publication-title: Proc 28th Int Conf Neural Inf Process Syst – start-page: 1 year: 2016 ident: ref24 article-title: SqueezeNet: AlexNet-level accuracy with 50 $\times$ fewer parameters and 0.5MB model size publication-title: Proc ICLR – start-page: 12 year: 2016 ident: ref9 article-title: Caffeine: Towards uniformed representation and acceleration for deep convolutional neural networks publication-title: Proc ICCAD – start-page: 1400 year: 2017 ident: ref21 article-title: MoDNN: Local distributed mobile computing system for deep neural network publication-title: Proc DATE – ident: ref4 doi: 10.1109/MICRO.2016.7783723 – ident: ref23 doi: 10.1109/TPDS.2017.2701828 – ident: ref17 doi: 10.1109/TSC.2017.2777478 – ident: ref11 doi: 10.1145/2847263.2847276 – ident: ref16 doi: 10.1109/MICRO.2016.7783720 – start-page: 1097 year: 2012 ident: ref19 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc NIPS – ident: ref22 doi: 10.1109/TC.2017.2777863 – ident: ref33 doi: 10.1109/FCCM.2017.64 – volume: 36 start-page: 513 year: 2017 ident: ref6 article-title: DLAU: A scalable deep learning accelerator unit on FPGA publication-title: IEEE Trans Comput -Aided Design Integr Circuits Syst – ident: ref38 doi: 10.1109/TC.2014.2315628 – start-page: 1 year: 2017 ident: ref18 article-title: SparseNN: A performance-efficient accelerator for large-scale sparse neural networks publication-title: Int J Parallel Program – ident: ref35 doi: 10.1080/00207217.2014.938312 |
| SSID | ssj0014529 |
| Score | 2.5606215 |
| Snippet | Recently, field-programmable gate arrays (FPGAs) have been widely used in the implementations of hardware accelerator for convolutional neural networks (CNNs).... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2601 |
| SubjectTerms | Accelerators Artificial neural networks Computational efficiency Computational modeling Computer architecture Computing time Convolutional neural network (CNN) Convolutional neural networks design space exploration (DSE) Efficiency Embedded systems Field programmable gate arrays field-programmable gate array (FPGA)-based accelerator Gate arrays Hardware Neural networks Optimization pipeline Pipelines programming framework Redundancy redundancy elimination Space exploration System-on-chip |
| Title | MALOC: A Fully Pipelined FPGA Accelerator for Convolutional Neural Networks With All Layers Mapped on Chip |
| URI | https://ieeexplore.ieee.org/document/8412552 https://www.proquest.com/docview/2121959042 |
| Volume | 37 |
| WOSCitedRecordID | wos000447854500038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1937-4151 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014529 issn: 0278-0070 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKxQADr4IoFOSBCZE2aZLaZosqCkNbOhTRLXKcsyiq0qgviX-Pz02rSiAkpmSwT0m-y93Z5_uOkDtXcWN6Xe0os8pxAiTBNHoTOlwHaeoBMFCWxLXL-n0-GolBiTxsa2EAwB4-gzre2lx-OlVL3Cpr8MC449AY3D3GWutarW3GABOIdj8FGWONHhcZTM8VjaF5KTzExetNpHPHjmo7Psg2Vflhia176Rz_78FOyFERRtJojfspKUF2Rg53yAUr5LMXdV_bjzSiuMz8ooNxjrXnkNLO4DmikVLG49gkOzWBK21Ps1WhhkYwcnbYiz0kPqfv48UHjSYT2pUYo9OezHMjaZrR9sc4Pydvnadh-8UpOis4yrj3hQPakwq0bAEGOIliApq-dN1EpKl5F-23fPBFKFQoWQhMM8090ImvIfSFDEP_gpSzaQaXhIoml0xLnbpaBkZGAgnjQgYs9XiiW1Al7uZbx6qgHcfuF5PYLj9cESM8McITF_BUyf12Sr7m3PhrcAXx2A4soKiS2gbQuPgr57Fx08ilY-zU1e-zrskByl7XGtZIeTFbwg3ZV6vFeD67tQr3DfOG0sU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4hFmnhsDxXdHn5wAltIGmS2uYWVRQQaemhq-UWOc5YdFWlES1I--_xuKZCYrUSp-RgO3G-yczY4_kG4DTUwqre0ATarnKChEgwrdykgTBJVUWIHLUjcc35YCAeHuRwBX4uc2EQ0R0-w3O6dbH8aqqfaavsQiTWHKdW4X6hylk-W2sZM6AQottRIc5YK8k-hhmF8mJkp0XHuMR5mwjdqabaOyvkyqp80MXOwPQ2P_dqW_DNO5IsWyC_DStY78DGO3rBXfjTz_L77iXLGC00_7LhuKHsc6xYb3idsUxra3NcmJ1Z15V1p_WLF0Q7MLF2uIs7Jj5jv8fzR5ZNJixX5KWzvmoaO9K0Zt3HcbMHv3pXo-5N4GsrBNoa-HmAJlIajeoguTil5hLbsQrDUlaVnYuJOzHGMpU6VTxFbrgREZoyNpjGUqVp_B1W62mN-8BkWyhulKlCoxI7RoklF1IlvIpEaTrYgvDtWxfaE49T_YtJ4RYgoSwInoLgKTw8LThbdmkWrBv_a7xLeCwbeihacPgGaOH_y1lhDTWx6VhN9ePfvU7g682onxf57eDuANbpOYvMw0NYnT894xGs6Zf5ePZ07ITvFRgc1g4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MALOC%3A+A+Fully+Pipelined+FPGA+Accelerator+for+Convolutional+Neural+Networks+With+All+Layers+Mapped+on+Chip&rft.jtitle=IEEE+transactions+on+computer-aided+design+of+integrated+circuits+and+systems&rft.au=Gong%2C+Lei&rft.au=Wang%2C+Chao&rft.au=Li%2C+Xi&rft.au=Chen%2C+Huaping&rft.date=2018-11-01&rft.pub=IEEE&rft.issn=0278-0070&rft.volume=37&rft.issue=11&rft.spage=2601&rft.epage=2612&rft_id=info:doi/10.1109%2FTCAD.2018.2857078&rft.externalDocID=8412552 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0070&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0070&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0070&client=summon |