Public Hospital Inpatient Room Allocation and Patient Scheduling Considering Equity

This article studies the optimal allocation of inpatient rooms for multiple types of patients in public hospitals and the patient scheduling problem with planned acceptance ratios (ARs). For public hospitals, it is important to allocate limited resources to multiple types of patients and manage pati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automation science and engineering Jg. 17; H. 3; S. 1124 - 1139
Hauptverfasser: Zhou, Liping, Geng, Na, Jiang, Zhibin, Wang, Xiuxian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1545-5955, 1558-3783
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This article studies the optimal allocation of inpatient rooms for multiple types of patients in public hospitals and the patient scheduling problem with planned acceptance ratios (ARs). For public hospitals, it is important to allocate limited resources to multiple types of patients and manage patient access for maximizing hospital revenue and upholding service equity. The problem is formulated as two-stage models. Considering uncertainties in patients' arrival and length of stay, we first propose a nonlinear stochastic programming (NSP) model for inpatient room allocation with the objective of maximizing revenue under the constraints of maintaining equity. To solve this problem, we transform the complex NSP model into a deterministic mixed-integer linear programming model, which is solved by CPLEX, by reformulating the chance constraints as knapsack constraints based on a linearization technique and a simulation model. Given the allocated capacity and planned AR, we further propose a two-stage stochastic mixed-integer program combined with a goal program model to optimize patient scheduling. To solve the model, a Benders decomposition based on the sample average approximation approach is proposed. The real data-based experimental results demonstrate the applicability and effectiveness of our models and approaches. The impacts of some parameters on the objective and decisions are also explored. A simulation procedure is developed to compare the performances of different patient scheduling methods, from which the results show that our proposed approach outperforms a benchmark policy. Note to Practitioners -Inpatient rooms are critical resources for hospitals. Against the background of aging populations and environmental problems, the twofold predicament-involving escalating healthcare demands and insufficient room-based resources-has led to the necessity for hospitals to operate more effectively and efficiently. Capacity management and patient scheduling are thus the two most important operations for hospital management. Because of the self-financing feature of hospitals and the quasi-public nature of medical services, it is important for public hospitals to judiciously allocate limited room capacities to multiple types of patients for balancing revenue and equity and schedule the arrival demands dynamically according to the planned capacity and acceptance ratio. In this article, we propose mathematical models and solution approaches for these two-stage problems, and their applicability and effectiveness are demonstrated by experiments based on real data. The managerial insights suggest that hospitals should improve the service equity gradually according to their financial situation because of the increasing marginal cost and should apply the scientific approaches and techniques, rather than by their experiences, to aid their management for better performance. By using approaches proposed in this article, hospital managers can be equipped with a decision support tool for effective capacity allocation and patient scheduling decisions. The parameters of our models could be tuned based on the preferences of different hospitals. Furthermore, these approaches can be applied to other settings with similar problems, such as government budget allocation considering both utility and equity, and service system management with waiting time requirement.
AbstractList This article studies the optimal allocation of inpatient rooms for multiple types of patients in public hospitals and the patient scheduling problem with planned acceptance ratios (ARs). For public hospitals, it is important to allocate limited resources to multiple types of patients and manage patient access for maximizing hospital revenue and upholding service equity. The problem is formulated as two-stage models. Considering uncertainties in patients’ arrival and length of stay, we first propose a nonlinear stochastic programming (NSP) model for inpatient room allocation with the objective of maximizing revenue under the constraints of maintaining equity. To solve this problem, we transform the complex NSP model into a deterministic mixed-integer linear programming model, which is solved by CPLEX, by reformulating the chance constraints as knapsack constraints based on a linearization technique and a simulation model. Given the allocated capacity and planned AR, we further propose a two-stage stochastic mixed-integer program combined with a goal program model to optimize patient scheduling. To solve the model, a Benders decomposition based on the sample average approximation approach is proposed. The real data-based experimental results demonstrate the applicability and effectiveness of our models and approaches. The impacts of some parameters on the objective and decisions are also explored. A simulation procedure is developed to compare the performances of different patient scheduling methods, from which the results show that our proposed approach outperforms a benchmark policy. Note to Practitioners —Inpatient rooms are critical resources for hospitals. Against the background of aging populations and environmental problems, the twofold predicament—involving escalating healthcare demands and insufficient room-based resources—has led to the necessity for hospitals to operate more effectively and efficiently. Capacity management and patient scheduling are thus the two most important operations for hospital management. Because of the self-financing feature of hospitals and the quasi-public nature of medical services, it is important for public hospitals to judiciously allocate limited room capacities to multiple types of patients for balancing revenue and equity and schedule the arrival demands dynamically according to the planned capacity and acceptance ratio. In this article, we propose mathematical models and solution approaches for these two-stage problems, and their applicability and effectiveness are demonstrated by experiments based on real data. The managerial insights suggest that hospitals should improve the service equity gradually according to their financial situation because of the increasing marginal cost and should apply the scientific approaches and techniques, rather than by their experiences, to aid their management for better performance. By using approaches proposed in this article, hospital managers can be equipped with a decision support tool for effective capacity allocation and patient scheduling decisions. The parameters of our models could be tuned based on the preferences of different hospitals. Furthermore, these approaches can be applied to other settings with similar problems, such as government budget allocation considering both utility and equity, and service system management with waiting time requirement.
Author Wang, Xiuxian
Geng, Na
Zhou, Liping
Jiang, Zhibin
Author_xml – sequence: 1
  givenname: Liping
  surname: Zhou
  fullname: Zhou, Liping
  email: zhoulp@sjtu.edu.cn
  organization: Sino-US Global Logistics Institute, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Na
  orcidid: 0000-0001-5389-6072
  surname: Geng
  fullname: Geng, Na
  email: gengna@sjtu.edu.cn
  organization: Sino-US Global Logistics Institute, Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Zhibin
  orcidid: 0000-0002-9241-0212
  surname: Jiang
  fullname: Jiang, Zhibin
  email: zbjiang@sjtu.edu.cn
  organization: Sino-US Global Logistics Institute, Shanghai Jiao Tong University, Shanghai, China
– sequence: 4
  givenname: Xiuxian
  surname: Wang
  fullname: Wang, Xiuxian
  email: wang_xx@sjtu.edu.cn
  organization: Department of Industrial Engineering and Management, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
BookMark eNp9UMFqAjEQDcVC1fYDSi8LPa9NsolJjiK2CkKl2nPIZpM2sia62T34982i9NBDmcMM896b4b0RGPjgDQCPCE4QguJlN9suJhgiMcGCYCHgDRgiSnleMF4M-pnQnApK78Aoxj2EmHABh2C76cra6WwZ4tG1qs5W_qhaZ3ybfYRwyGZ1HXRaBJ8pX2WbK7bV36bqaue_snnw0VWm6efFqXPt-R7cWlVH83DtY_D5utjNl_n6_W01n61zjUXR5qYiBBJUEjxVVlNmBGSVpZZRW1rFKOKqKLnidJoQi3AiWlXCCmlGNCxJMQbPl7vHJpw6E1u5D13j00uJCRIkFWOJxS4s3YQYG2OlTkZ7R22jXC0RlH2Csk9Q9gnKa4JJif4oj407qOb8r-bponHGmF8-51MOBS1-ANksfuA
CODEN ITASC7
CitedBy_id crossref_primary_10_1080_00207543_2021_1977407
crossref_primary_10_1080_17517575_2023_2188124
crossref_primary_10_1007_s00500_023_09470_5
crossref_primary_10_1109_TASE_2022_3221153
Cites_doi 10.1016/j.ejor.2017.01.026
10.1109/TASE.2016.2555854
10.1007/s10696-015-9213-7
10.1016/j.omega.2017.11.005
10.1016/j.ijpe.2012.07.023
10.1016/0167-6296(93)90004-X
10.4028/www.scientific.net/AMR.756-759.1423
10.1007/s10729-008-9080-9
10.1287/mnsc.42.3.321
10.1023/A:1020342509099
10.1016/j.ijmedinf.2004.09.001
10.1109/TASE.2018.2834486
10.1137/050622328
10.1080/07408170304395
10.1177/016059760903300105
10.1057/rpm.2010.30
10.1007/BF01047663
10.1002/hpm.1112
10.1007/s10107-003-0499-y
10.1016/j.ejor.2011.10.036
10.1016/j.ejor.2010.10.026
10.1287/msom.1120.0415
10.1023/A:1021039126272
10.1016/j.chieco.2009.04.001
10.1016/j.ejor.2016.06.064
10.1111/j.1937-5956.2003.tb00218.x
10.1080/0740817X.2012.763002
10.1016/j.puhe.2011.08.004
10.1109/TASE.2017.2697899
10.1007/s00291-011-0272-1
10.1016/j.cor.2014.04.007
10.1137/S1052623499363220
10.1287/ijoc.2015.0658
10.1016/S1574-0064(00)80047-5
10.1287/opre.2017.1634
10.1016/S0927-0507(06)13018-2
10.1016/j.ejor.2017.08.026
10.1287/mnsc.27.5.507
10.1016/j.cie.2018.09.030
10.1016/j.omega.2019.03.015
10.1007/s10107-002-0313-2
10.1016/j.ejor.2007.10.029
10.1016/S0377-2217(01)00219-3
10.1080/0740817X.2011.635174
10.1016/S0927-0507(06)13021-2
10.1023/A:1004649211111
10.1287/opre.2015.1421
10.1287/mnsc.1120.1515
10.1016/j.omega.2015.04.005
10.1377/hlthaff.27.4.949
10.1016/j.ejor.2015.05.074
10.1080/07408170802165880
10.1258/135581902760082517
10.1057/jors.2011.39
10.1111/poms.13012
10.1137/S1052623498349541
10.1016/j.ejor.2016.06.046
10.1108/01443570210420430
10.1287/ijoc.12.1.2.11900
10.1016/j.omega.2012.01.002
10.1287/mnsc.2015.2353
10.1007/978-981-10-0039-3
10.1016/j.cor.2016.04.017
10.1287/opre.2013.1220
10.1287/opre.24.5.884
10.1057/palgrave.jors.2602565
10.1007/978-1-4614-0237-4
10.1016/S0305-0548(03)00249-1
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2019.2942990
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 1139
ExternalDocumentID 10_1109_TASE_2019_2942990
8868095
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 71432006; 71972129; 71671111
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-ed44041b426afc57e907df5f75fbfa7518a3b8a856e90f12b42fab0d1c74c0b43
IEDL.DBID RIE
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545379200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sun Jun 29 16:53:51 EDT 2025
Tue Nov 18 22:20:17 EST 2025
Sat Nov 29 04:12:46 EST 2025
Wed Aug 27 02:37:46 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-ed44041b426afc57e907df5f75fbfa7518a3b8a856e90f12b42fab0d1c74c0b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5389-6072
0000-0002-9241-0212
PQID 2419494977
PQPubID 27623
PageCount 16
ParticipantIDs proquest_journals_2419494977
crossref_citationtrail_10_1109_TASE_2019_2942990
ieee_primary_8868095
crossref_primary_10_1109_TASE_2019_2942990
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
(ref8) 2000
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref49
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
(ref43) 2008
ref30
ref33
ref32
ref2
ref1
ref39
ref38
barton (ref58) 2006; 13
ref71
ref70
goldman (ref27) 1968; 3
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref21
wagstaff (ref7) 2000; 1
ref28
ref29
ref60
ref62
ref61
References_xml – ident: ref57
  doi: 10.1016/j.ejor.2017.01.026
– ident: ref54
  doi: 10.1109/TASE.2016.2555854
– ident: ref60
  doi: 10.1007/s10696-015-9213-7
– ident: ref5
  doi: 10.1016/j.omega.2017.11.005
– ident: ref32
  doi: 10.1016/j.ijpe.2012.07.023
– ident: ref6
  doi: 10.1016/0167-6296(93)90004-X
– ident: ref49
  doi: 10.4028/www.scientific.net/AMR.756-759.1423
– ident: ref36
  doi: 10.1007/s10729-008-9080-9
– ident: ref34
  doi: 10.1287/mnsc.42.3.321
– ident: ref24
  doi: 10.1023/A:1020342509099
– ident: ref25
  doi: 10.1016/j.ijmedinf.2004.09.001
– ident: ref71
  doi: 10.1109/TASE.2018.2834486
– ident: ref51
  doi: 10.1137/050622328
– ident: ref63
  doi: 10.1080/07408170304395
– ident: ref48
  doi: 10.1177/016059760903300105
– ident: ref35
  doi: 10.1057/rpm.2010.30
– ident: ref47
  doi: 10.1007/BF01047663
– ident: ref2
  doi: 10.1002/hpm.1112
– ident: ref52
  doi: 10.1007/s10107-003-0499-y
– ident: ref19
  doi: 10.1016/j.ejor.2011.10.036
– ident: ref17
  doi: 10.1016/j.ejor.2010.10.026
– ident: ref33
  doi: 10.1287/msom.1120.0415
– ident: ref15
  doi: 10.1023/A:1021039126272
– ident: ref45
  doi: 10.1016/j.chieco.2009.04.001
– ident: ref23
  doi: 10.1016/j.ejor.2016.06.064
– ident: ref21
  doi: 10.1111/j.1937-5956.2003.tb00218.x
– ident: ref61
  doi: 10.1080/0740817X.2012.763002
– ident: ref3
  doi: 10.1016/j.puhe.2011.08.004
– ident: ref53
  doi: 10.1109/TASE.2017.2697899
– ident: ref31
  doi: 10.1007/s00291-011-0272-1
– ident: ref66
  doi: 10.1016/j.cor.2014.04.007
– ident: ref14
  doi: 10.1137/S1052623499363220
– ident: ref68
  doi: 10.1287/ijoc.2015.0658
– volume: 1
  start-page: 1803
  year: 2000
  ident: ref7
  article-title: Equity in health care finance and delivery
  publication-title: Handbook of Health Economics
  doi: 10.1016/S1574-0064(00)80047-5
– year: 2008
  ident: ref43
  publication-title: Access for All Basic Public Services for 1 3 Billion People
– ident: ref65
  doi: 10.1287/opre.2017.1634
– volume: 13
  start-page: 535
  year: 2006
  ident: ref58
  article-title: Metamodel-based simulation optimization
  publication-title: Handbooks in Operations Research and Management Science
  doi: 10.1016/S0927-0507(06)13018-2
– ident: ref56
  doi: 10.1016/j.ejor.2017.08.026
– ident: ref20
  doi: 10.1287/mnsc.27.5.507
– ident: ref69
  doi: 10.1016/j.cie.2018.09.030
– ident: ref64
  doi: 10.1016/j.omega.2019.03.015
– year: 2000
  ident: ref8
  publication-title: The World Health Report 2000 Health Systems Improving Performance
– ident: ref12
  doi: 10.1007/s10107-002-0313-2
– ident: ref39
  doi: 10.1016/j.ejor.2007.10.029
– ident: ref40
  doi: 10.1016/S0377-2217(01)00219-3
– ident: ref67
  doi: 10.1080/0740817X.2011.635174
– ident: ref59
  doi: 10.1016/S0927-0507(06)13021-2
– ident: ref11
  doi: 10.1023/A:1004649211111
– ident: ref62
  doi: 10.1287/opre.2015.1421
– ident: ref30
  doi: 10.1287/mnsc.1120.1515
– ident: ref9
  doi: 10.1016/j.omega.2015.04.005
– volume: 3
  start-page: 119
  year: 1968
  ident: ref27
  article-title: Evaluating bed allocation policy with computer simulation
  publication-title: Health Services Res
– ident: ref44
  doi: 10.1377/hlthaff.27.4.949
– ident: ref10
  doi: 10.1016/j.ejor.2015.05.074
– ident: ref22
  doi: 10.1080/07408170802165880
– ident: ref46
  doi: 10.1258/135581902760082517
– ident: ref29
  doi: 10.1057/jors.2011.39
– ident: ref55
  doi: 10.1111/poms.13012
– ident: ref13
  doi: 10.1137/S1052623498349541
– ident: ref4
  doi: 10.1016/j.ejor.2016.06.046
– ident: ref37
  doi: 10.1108/01443570210420430
– ident: ref16
  doi: 10.1287/ijoc.12.1.2.11900
– ident: ref18
  doi: 10.1016/j.omega.2012.01.002
– ident: ref50
  doi: 10.1287/mnsc.2015.2353
– ident: ref42
  doi: 10.1007/978-981-10-0039-3
– ident: ref70
  doi: 10.1016/j.cor.2016.04.017
– ident: ref1
  doi: 10.1287/opre.2013.1220
– ident: ref28
  doi: 10.1287/opre.24.5.884
– ident: ref26
  doi: 10.1057/palgrave.jors.2602565
– ident: ref41
  doi: 10.1007/978-1-4614-0237-4
– ident: ref38
  doi: 10.1016/S0305-0548(03)00249-1
SSID ssj0024890
Score 2.3271654
Snippet This article studies the optimal allocation of inpatient rooms for multiple types of patients in public hospitals and the patient scheduling problem with...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1124
SubjectTerms Benders decomposition
Capacity allocation
Computer simulation
Decision support systems
Equity
Hospitals
Integer programming
Integers
Job shop scheduling
Linear programming
Management
Mathematical model
Mathematical models
Maximization
Optimization
Parameters
patient scheduling
Patients
Resource management
Revenue
Schedules
Scheduling
Stochastic processes
stochastic programming
Title Public Hospital Inpatient Room Allocation and Patient Scheduling Considering Equity
URI https://ieeexplore.ieee.org/document/8868095
https://www.proquest.com/docview/2419494977
Volume 17
WOSCitedRecordID wos000545379200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGP3Yhgc9-GuK0yk5eBKztV3TtMchG3oZw03YraRpIsLodD_8-82XpnOgCN4CSaDkpfleki_vAdxyYWDOpKI6iyQ18TinKARIuSfQrJAnWpRmE3w0imezZFyD--1bGKWUTT5THSzau_x8ITd4VNaN4yg2lKAOdc6j8q3Wt65ebM9TkBFQljDmbjB9L-lO-5MBJnElnSBxy-9ODLKmKj9WYhtehkf_-7BjOHQ0kvRL3E-gpopTONgRF2zCpDyRI5UzCHkqnIgqeTZsmfTnGMcQFyKKnIxd3cSgmGN6-iupzDyxPPjYGL5-Bi_DwfThkToLBSpNHF9TlaP-n5-ZOCy0ZFyZvXCumeZMZ1rglYvoZbGIWWRqtB-YhlpkXu5LHkovC3vn0CgWhboAwgyZ4ZIpYUheqJU0y6gKFfNFJA0lCHgLvGpQU-n0xdHmYp7afYaXpIhDijikDocW3G27vJfiGn81buLAbxu6MW9Bu0Iudb_fKjW0JEHZHc4vf-91BfsBbpxt3m0bGuvlRl3Dnvxcv62WN3ZmfQF8k8uh
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL3MKagPfk1xOjUPPond2q5p2schGxvOMdyEvZU0TUQYne7D329um86BIvgWSAIlJ809SW7OAbhlXMMcC2mp2BeWjseJhUKAFrM5mhWyUPHcbIINBsFkEg5LcL9-CyOlzJLPZB2L2V1-MhMrPCprBIEfaEqwBdvonGVea30r6wXZiQpyAouGlJo7TMcOG-PWqI1pXGHdDc0CvBGFMluVH2txFmA6h__7tCM4MESStHLkj6Ek0xPY35AXrMAoP5MjhTcI6aVGRpU8a75MWlOMZIgM4WlChqZupHFMMEH9lRR2nlhuf6w0Yz-Fl057_NC1jImCJXQkX1oyQQVAJ9aRmCtBmdS74URRxaiKFcdLF96MAx5QX9cox9UNFY_txBHME3bsNc-gnM5SeQ6EajrDBJVc0zxPSaEXUulJ6nBfaFLgsirYxaBGwiiMo9HFNMp2GnYYIQ4R4hAZHKpwt-7ynstr_NW4ggO_bmjGvAq1ArnI_ICLSBOTEIV3GLv4vdcN7HbHT_2o3xs8XsKei9voLAu3BuXlfCWvYEd8Lt8W8-tsln0BQxfO6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Public+Hospital+Inpatient+Room+Allocation+and+Patient+Scheduling+Considering+Equity&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Zhou%2C+Liping&rft.au=Geng%2C+Na&rft.au=Jiang%2C+Zhibin&rft.au=Wang%2C+Xiuxian&rft.date=2020-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=17&rft.issue=3&rft.spage=1124&rft_id=info:doi/10.1109%2FTASE.2019.2942990&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon