Public Hospital Inpatient Room Allocation and Patient Scheduling Considering Equity
This article studies the optimal allocation of inpatient rooms for multiple types of patients in public hospitals and the patient scheduling problem with planned acceptance ratios (ARs). For public hospitals, it is important to allocate limited resources to multiple types of patients and manage pati...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on automation science and engineering Jg. 17; H. 3; S. 1124 - 1139 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1545-5955, 1558-3783 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This article studies the optimal allocation of inpatient rooms for multiple types of patients in public hospitals and the patient scheduling problem with planned acceptance ratios (ARs). For public hospitals, it is important to allocate limited resources to multiple types of patients and manage patient access for maximizing hospital revenue and upholding service equity. The problem is formulated as two-stage models. Considering uncertainties in patients' arrival and length of stay, we first propose a nonlinear stochastic programming (NSP) model for inpatient room allocation with the objective of maximizing revenue under the constraints of maintaining equity. To solve this problem, we transform the complex NSP model into a deterministic mixed-integer linear programming model, which is solved by CPLEX, by reformulating the chance constraints as knapsack constraints based on a linearization technique and a simulation model. Given the allocated capacity and planned AR, we further propose a two-stage stochastic mixed-integer program combined with a goal program model to optimize patient scheduling. To solve the model, a Benders decomposition based on the sample average approximation approach is proposed. The real data-based experimental results demonstrate the applicability and effectiveness of our models and approaches. The impacts of some parameters on the objective and decisions are also explored. A simulation procedure is developed to compare the performances of different patient scheduling methods, from which the results show that our proposed approach outperforms a benchmark policy. Note to Practitioners -Inpatient rooms are critical resources for hospitals. Against the background of aging populations and environmental problems, the twofold predicament-involving escalating healthcare demands and insufficient room-based resources-has led to the necessity for hospitals to operate more effectively and efficiently. Capacity management and patient scheduling are thus the two most important operations for hospital management. Because of the self-financing feature of hospitals and the quasi-public nature of medical services, it is important for public hospitals to judiciously allocate limited room capacities to multiple types of patients for balancing revenue and equity and schedule the arrival demands dynamically according to the planned capacity and acceptance ratio. In this article, we propose mathematical models and solution approaches for these two-stage problems, and their applicability and effectiveness are demonstrated by experiments based on real data. The managerial insights suggest that hospitals should improve the service equity gradually according to their financial situation because of the increasing marginal cost and should apply the scientific approaches and techniques, rather than by their experiences, to aid their management for better performance. By using approaches proposed in this article, hospital managers can be equipped with a decision support tool for effective capacity allocation and patient scheduling decisions. The parameters of our models could be tuned based on the preferences of different hospitals. Furthermore, these approaches can be applied to other settings with similar problems, such as government budget allocation considering both utility and equity, and service system management with waiting time requirement. |
|---|---|
| AbstractList | This article studies the optimal allocation of inpatient rooms for multiple types of patients in public hospitals and the patient scheduling problem with planned acceptance ratios (ARs). For public hospitals, it is important to allocate limited resources to multiple types of patients and manage patient access for maximizing hospital revenue and upholding service equity. The problem is formulated as two-stage models. Considering uncertainties in patients’ arrival and length of stay, we first propose a nonlinear stochastic programming (NSP) model for inpatient room allocation with the objective of maximizing revenue under the constraints of maintaining equity. To solve this problem, we transform the complex NSP model into a deterministic mixed-integer linear programming model, which is solved by CPLEX, by reformulating the chance constraints as knapsack constraints based on a linearization technique and a simulation model. Given the allocated capacity and planned AR, we further propose a two-stage stochastic mixed-integer program combined with a goal program model to optimize patient scheduling. To solve the model, a Benders decomposition based on the sample average approximation approach is proposed. The real data-based experimental results demonstrate the applicability and effectiveness of our models and approaches. The impacts of some parameters on the objective and decisions are also explored. A simulation procedure is developed to compare the performances of different patient scheduling methods, from which the results show that our proposed approach outperforms a benchmark policy. Note to Practitioners —Inpatient rooms are critical resources for hospitals. Against the background of aging populations and environmental problems, the twofold predicament—involving escalating healthcare demands and insufficient room-based resources—has led to the necessity for hospitals to operate more effectively and efficiently. Capacity management and patient scheduling are thus the two most important operations for hospital management. Because of the self-financing feature of hospitals and the quasi-public nature of medical services, it is important for public hospitals to judiciously allocate limited room capacities to multiple types of patients for balancing revenue and equity and schedule the arrival demands dynamically according to the planned capacity and acceptance ratio. In this article, we propose mathematical models and solution approaches for these two-stage problems, and their applicability and effectiveness are demonstrated by experiments based on real data. The managerial insights suggest that hospitals should improve the service equity gradually according to their financial situation because of the increasing marginal cost and should apply the scientific approaches and techniques, rather than by their experiences, to aid their management for better performance. By using approaches proposed in this article, hospital managers can be equipped with a decision support tool for effective capacity allocation and patient scheduling decisions. The parameters of our models could be tuned based on the preferences of different hospitals. Furthermore, these approaches can be applied to other settings with similar problems, such as government budget allocation considering both utility and equity, and service system management with waiting time requirement. |
| Author | Wang, Xiuxian Geng, Na Zhou, Liping Jiang, Zhibin |
| Author_xml | – sequence: 1 givenname: Liping surname: Zhou fullname: Zhou, Liping email: zhoulp@sjtu.edu.cn organization: Sino-US Global Logistics Institute, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Na orcidid: 0000-0001-5389-6072 surname: Geng fullname: Geng, Na email: gengna@sjtu.edu.cn organization: Sino-US Global Logistics Institute, Shanghai Jiao Tong University, Shanghai, China – sequence: 3 givenname: Zhibin orcidid: 0000-0002-9241-0212 surname: Jiang fullname: Jiang, Zhibin email: zbjiang@sjtu.edu.cn organization: Sino-US Global Logistics Institute, Shanghai Jiao Tong University, Shanghai, China – sequence: 4 givenname: Xiuxian surname: Wang fullname: Wang, Xiuxian email: wang_xx@sjtu.edu.cn organization: Department of Industrial Engineering and Management, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China |
| BookMark | eNp9UMFqAjEQDcVC1fYDSi8LPa9NsolJjiK2CkKl2nPIZpM2sia62T34982i9NBDmcMM896b4b0RGPjgDQCPCE4QguJlN9suJhgiMcGCYCHgDRgiSnleMF4M-pnQnApK78Aoxj2EmHABh2C76cra6WwZ4tG1qs5W_qhaZ3ybfYRwyGZ1HXRaBJ8pX2WbK7bV36bqaue_snnw0VWm6efFqXPt-R7cWlVH83DtY_D5utjNl_n6_W01n61zjUXR5qYiBBJUEjxVVlNmBGSVpZZRW1rFKOKqKLnidJoQi3AiWlXCCmlGNCxJMQbPl7vHJpw6E1u5D13j00uJCRIkFWOJxS4s3YQYG2OlTkZ7R22jXC0RlH2Csk9Q9gnKa4JJif4oj407qOb8r-bponHGmF8-51MOBS1-ANksfuA |
| CODEN | ITASC7 |
| CitedBy_id | crossref_primary_10_1080_00207543_2021_1977407 crossref_primary_10_1080_17517575_2023_2188124 crossref_primary_10_1007_s00500_023_09470_5 crossref_primary_10_1109_TASE_2022_3221153 |
| Cites_doi | 10.1016/j.ejor.2017.01.026 10.1109/TASE.2016.2555854 10.1007/s10696-015-9213-7 10.1016/j.omega.2017.11.005 10.1016/j.ijpe.2012.07.023 10.1016/0167-6296(93)90004-X 10.4028/www.scientific.net/AMR.756-759.1423 10.1007/s10729-008-9080-9 10.1287/mnsc.42.3.321 10.1023/A:1020342509099 10.1016/j.ijmedinf.2004.09.001 10.1109/TASE.2018.2834486 10.1137/050622328 10.1080/07408170304395 10.1177/016059760903300105 10.1057/rpm.2010.30 10.1007/BF01047663 10.1002/hpm.1112 10.1007/s10107-003-0499-y 10.1016/j.ejor.2011.10.036 10.1016/j.ejor.2010.10.026 10.1287/msom.1120.0415 10.1023/A:1021039126272 10.1016/j.chieco.2009.04.001 10.1016/j.ejor.2016.06.064 10.1111/j.1937-5956.2003.tb00218.x 10.1080/0740817X.2012.763002 10.1016/j.puhe.2011.08.004 10.1109/TASE.2017.2697899 10.1007/s00291-011-0272-1 10.1016/j.cor.2014.04.007 10.1137/S1052623499363220 10.1287/ijoc.2015.0658 10.1016/S1574-0064(00)80047-5 10.1287/opre.2017.1634 10.1016/S0927-0507(06)13018-2 10.1016/j.ejor.2017.08.026 10.1287/mnsc.27.5.507 10.1016/j.cie.2018.09.030 10.1016/j.omega.2019.03.015 10.1007/s10107-002-0313-2 10.1016/j.ejor.2007.10.029 10.1016/S0377-2217(01)00219-3 10.1080/0740817X.2011.635174 10.1016/S0927-0507(06)13021-2 10.1023/A:1004649211111 10.1287/opre.2015.1421 10.1287/mnsc.1120.1515 10.1016/j.omega.2015.04.005 10.1377/hlthaff.27.4.949 10.1016/j.ejor.2015.05.074 10.1080/07408170802165880 10.1258/135581902760082517 10.1057/jors.2011.39 10.1111/poms.13012 10.1137/S1052623498349541 10.1016/j.ejor.2016.06.046 10.1108/01443570210420430 10.1287/ijoc.12.1.2.11900 10.1016/j.omega.2012.01.002 10.1287/mnsc.2015.2353 10.1007/978-981-10-0039-3 10.1016/j.cor.2016.04.017 10.1287/opre.2013.1220 10.1287/opre.24.5.884 10.1057/palgrave.jors.2602565 10.1007/978-1-4614-0237-4 10.1016/S0305-0548(03)00249-1 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TASE.2019.2942990 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3783 |
| EndPage | 1139 |
| ExternalDocumentID | 10_1109_TASE_2019_2942990 8868095 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 71432006; 71972129; 71671111 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-ed44041b426afc57e907df5f75fbfa7518a3b8a856e90f12b42fab0d1c74c0b43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545379200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5955 |
| IngestDate | Sun Jun 29 16:53:51 EDT 2025 Tue Nov 18 22:20:17 EST 2025 Sat Nov 29 04:12:46 EST 2025 Wed Aug 27 02:37:46 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-ed44041b426afc57e907df5f75fbfa7518a3b8a856e90f12b42fab0d1c74c0b43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5389-6072 0000-0002-9241-0212 |
| PQID | 2419494977 |
| PQPubID | 27623 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2419494977 crossref_citationtrail_10_1109_TASE_2019_2942990 ieee_primary_8868095 crossref_primary_10_1109_TASE_2019_2942990 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-01 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on automation science and engineering |
| PublicationTitleAbbrev | TASE |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref59 ref15 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 (ref8) 2000 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref49 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 (ref43) 2008 ref30 ref33 ref32 ref2 ref1 ref39 ref38 barton (ref58) 2006; 13 ref71 ref70 goldman (ref27) 1968; 3 ref68 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref21 wagstaff (ref7) 2000; 1 ref28 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref57 doi: 10.1016/j.ejor.2017.01.026 – ident: ref54 doi: 10.1109/TASE.2016.2555854 – ident: ref60 doi: 10.1007/s10696-015-9213-7 – ident: ref5 doi: 10.1016/j.omega.2017.11.005 – ident: ref32 doi: 10.1016/j.ijpe.2012.07.023 – ident: ref6 doi: 10.1016/0167-6296(93)90004-X – ident: ref49 doi: 10.4028/www.scientific.net/AMR.756-759.1423 – ident: ref36 doi: 10.1007/s10729-008-9080-9 – ident: ref34 doi: 10.1287/mnsc.42.3.321 – ident: ref24 doi: 10.1023/A:1020342509099 – ident: ref25 doi: 10.1016/j.ijmedinf.2004.09.001 – ident: ref71 doi: 10.1109/TASE.2018.2834486 – ident: ref51 doi: 10.1137/050622328 – ident: ref63 doi: 10.1080/07408170304395 – ident: ref48 doi: 10.1177/016059760903300105 – ident: ref35 doi: 10.1057/rpm.2010.30 – ident: ref47 doi: 10.1007/BF01047663 – ident: ref2 doi: 10.1002/hpm.1112 – ident: ref52 doi: 10.1007/s10107-003-0499-y – ident: ref19 doi: 10.1016/j.ejor.2011.10.036 – ident: ref17 doi: 10.1016/j.ejor.2010.10.026 – ident: ref33 doi: 10.1287/msom.1120.0415 – ident: ref15 doi: 10.1023/A:1021039126272 – ident: ref45 doi: 10.1016/j.chieco.2009.04.001 – ident: ref23 doi: 10.1016/j.ejor.2016.06.064 – ident: ref21 doi: 10.1111/j.1937-5956.2003.tb00218.x – ident: ref61 doi: 10.1080/0740817X.2012.763002 – ident: ref3 doi: 10.1016/j.puhe.2011.08.004 – ident: ref53 doi: 10.1109/TASE.2017.2697899 – ident: ref31 doi: 10.1007/s00291-011-0272-1 – ident: ref66 doi: 10.1016/j.cor.2014.04.007 – ident: ref14 doi: 10.1137/S1052623499363220 – ident: ref68 doi: 10.1287/ijoc.2015.0658 – volume: 1 start-page: 1803 year: 2000 ident: ref7 article-title: Equity in health care finance and delivery publication-title: Handbook of Health Economics doi: 10.1016/S1574-0064(00)80047-5 – year: 2008 ident: ref43 publication-title: Access for All Basic Public Services for 1 3 Billion People – ident: ref65 doi: 10.1287/opre.2017.1634 – volume: 13 start-page: 535 year: 2006 ident: ref58 article-title: Metamodel-based simulation optimization publication-title: Handbooks in Operations Research and Management Science doi: 10.1016/S0927-0507(06)13018-2 – ident: ref56 doi: 10.1016/j.ejor.2017.08.026 – ident: ref20 doi: 10.1287/mnsc.27.5.507 – ident: ref69 doi: 10.1016/j.cie.2018.09.030 – ident: ref64 doi: 10.1016/j.omega.2019.03.015 – year: 2000 ident: ref8 publication-title: The World Health Report 2000 Health Systems Improving Performance – ident: ref12 doi: 10.1007/s10107-002-0313-2 – ident: ref39 doi: 10.1016/j.ejor.2007.10.029 – ident: ref40 doi: 10.1016/S0377-2217(01)00219-3 – ident: ref67 doi: 10.1080/0740817X.2011.635174 – ident: ref59 doi: 10.1016/S0927-0507(06)13021-2 – ident: ref11 doi: 10.1023/A:1004649211111 – ident: ref62 doi: 10.1287/opre.2015.1421 – ident: ref30 doi: 10.1287/mnsc.1120.1515 – ident: ref9 doi: 10.1016/j.omega.2015.04.005 – volume: 3 start-page: 119 year: 1968 ident: ref27 article-title: Evaluating bed allocation policy with computer simulation publication-title: Health Services Res – ident: ref44 doi: 10.1377/hlthaff.27.4.949 – ident: ref10 doi: 10.1016/j.ejor.2015.05.074 – ident: ref22 doi: 10.1080/07408170802165880 – ident: ref46 doi: 10.1258/135581902760082517 – ident: ref29 doi: 10.1057/jors.2011.39 – ident: ref55 doi: 10.1111/poms.13012 – ident: ref13 doi: 10.1137/S1052623498349541 – ident: ref4 doi: 10.1016/j.ejor.2016.06.046 – ident: ref37 doi: 10.1108/01443570210420430 – ident: ref16 doi: 10.1287/ijoc.12.1.2.11900 – ident: ref18 doi: 10.1016/j.omega.2012.01.002 – ident: ref50 doi: 10.1287/mnsc.2015.2353 – ident: ref42 doi: 10.1007/978-981-10-0039-3 – ident: ref70 doi: 10.1016/j.cor.2016.04.017 – ident: ref1 doi: 10.1287/opre.2013.1220 – ident: ref28 doi: 10.1287/opre.24.5.884 – ident: ref26 doi: 10.1057/palgrave.jors.2602565 – ident: ref41 doi: 10.1007/978-1-4614-0237-4 – ident: ref38 doi: 10.1016/S0305-0548(03)00249-1 |
| SSID | ssj0024890 |
| Score | 2.3271654 |
| Snippet | This article studies the optimal allocation of inpatient rooms for multiple types of patients in public hospitals and the patient scheduling problem with... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1124 |
| SubjectTerms | Benders decomposition Capacity allocation Computer simulation Decision support systems Equity Hospitals Integer programming Integers Job shop scheduling Linear programming Management Mathematical model Mathematical models Maximization Optimization Parameters patient scheduling Patients Resource management Revenue Schedules Scheduling Stochastic processes stochastic programming |
| Title | Public Hospital Inpatient Room Allocation and Patient Scheduling Considering Equity |
| URI | https://ieeexplore.ieee.org/document/8868095 https://www.proquest.com/docview/2419494977 |
| Volume | 17 |
| WOSCitedRecordID | wos000545379200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-3783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024890 issn: 1545-5955 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGP3Yhgc9-GuK0yk5eBKztV3TtMchG3oZw03YraRpIsLodD_8-82XpnOgCN4CSaDkpfleki_vAdxyYWDOpKI6iyQ18TinKARIuSfQrJAnWpRmE3w0imezZFyD--1bGKWUTT5THSzau_x8ITd4VNaN4yg2lKAOdc6j8q3Wt65ebM9TkBFQljDmbjB9L-lO-5MBJnElnSBxy-9ODLKmKj9WYhtehkf_-7BjOHQ0kvRL3E-gpopTONgRF2zCpDyRI5UzCHkqnIgqeTZsmfTnGMcQFyKKnIxd3cSgmGN6-iupzDyxPPjYGL5-Bi_DwfThkToLBSpNHF9TlaP-n5-ZOCy0ZFyZvXCumeZMZ1rglYvoZbGIWWRqtB-YhlpkXu5LHkovC3vn0CgWhboAwgyZ4ZIpYUheqJU0y6gKFfNFJA0lCHgLvGpQU-n0xdHmYp7afYaXpIhDijikDocW3G27vJfiGn81buLAbxu6MW9Bu0Iudb_fKjW0JEHZHc4vf-91BfsBbpxt3m0bGuvlRl3Dnvxcv62WN3ZmfQF8k8uh |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL3MKagPfk1xOjUPPond2q5p2schGxvOMdyEvZU0TUQYne7D329um86BIvgWSAIlJ809SW7OAbhlXMMcC2mp2BeWjseJhUKAFrM5mhWyUPHcbIINBsFkEg5LcL9-CyOlzJLPZB2L2V1-MhMrPCprBIEfaEqwBdvonGVea30r6wXZiQpyAouGlJo7TMcOG-PWqI1pXGHdDc0CvBGFMluVH2txFmA6h__7tCM4MESStHLkj6Ek0xPY35AXrMAoP5MjhTcI6aVGRpU8a75MWlOMZIgM4WlChqZupHFMMEH9lRR2nlhuf6w0Yz-Fl057_NC1jImCJXQkX1oyQQVAJ9aRmCtBmdS74URRxaiKFcdLF96MAx5QX9cox9UNFY_txBHME3bsNc-gnM5SeQ6EajrDBJVc0zxPSaEXUulJ6nBfaFLgsirYxaBGwiiMo9HFNMp2GnYYIQ4R4hAZHKpwt-7ynstr_NW4ggO_bmjGvAq1ArnI_ICLSBOTEIV3GLv4vdcN7HbHT_2o3xs8XsKei9voLAu3BuXlfCWvYEd8Lt8W8-tsln0BQxfO6g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Public+Hospital+Inpatient+Room+Allocation+and+Patient+Scheduling+Considering+Equity&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Zhou%2C+Liping&rft.au=Geng%2C+Na&rft.au=Jiang%2C+Zhibin&rft.au=Wang%2C+Xiuxian&rft.date=2020-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=17&rft.issue=3&rft.spage=1124&rft_id=info:doi/10.1109%2FTASE.2019.2942990&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |