Continuous Influence-Based Community Partition for Social Networks
Community partition is of great importance in social networks because of the rapid increasing network scale, data and applications. We consider the community partition problem under Linear Threshold (LT) model in social networks, which is a combinatorial optimization problem that divides the social...
Saved in:
| Published in: | IEEE transactions on network science and engineering Vol. 9; no. 3; pp. 1187 - 1197 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2327-4697, 2334-329X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Community partition is of great importance in social networks because of the rapid increasing network scale, data and applications. We consider the community partition problem under Linear Threshold (LT) model in social networks, which is a combinatorial optimization problem that divides the social network to disjoint <inline-formula><tex-math notation="LaTeX">m</tex-math></inline-formula> communities. Our goal is to maximize the sum of influence propagation within each community. As the influence propagation function of community partition problem is supermodular under LT model, we use the method of Lov<inline-formula><tex-math notation="LaTeX">{\acute{a}}</tex-math></inline-formula>sz Extension to relax the target influence function and transfer our goal to maximize the relaxed function over a matroid polytope. Next, we propose a continuous greedy algorithm using the properties of the relaxed function to solve our problem, which needs to be discretized in concrete implementation. Then, random rounding technique is used to convert the fractional solution to the integer solution. We present a theoretical analysis with <inline-formula><tex-math notation="LaTeX">1-1/e</tex-math></inline-formula> approximation ratio for the proposed algorithms. Extensive experiments are conducted to evaluate the performance of the proposed continuous greedy algorithms on real-world online social networks datasets. The results demonstrate that continuous community partition method can improve influence spread and accuracy of the community partition effectively. |
|---|---|
| AbstractList | Community partition is of great importance in social networks because of the rapid increasing network scale, data and applications. We consider the community partition problem under Linear Threshold (LT) model in social networks, which is a combinatorial optimization problem that divides the social network to disjoint <inline-formula><tex-math notation="LaTeX">m</tex-math></inline-formula> communities. Our goal is to maximize the sum of influence propagation within each community. As the influence propagation function of community partition problem is supermodular under LT model, we use the method of Lov<inline-formula><tex-math notation="LaTeX">{\acute{a}}</tex-math></inline-formula>sz Extension to relax the target influence function and transfer our goal to maximize the relaxed function over a matroid polytope. Next, we propose a continuous greedy algorithm using the properties of the relaxed function to solve our problem, which needs to be discretized in concrete implementation. Then, random rounding technique is used to convert the fractional solution to the integer solution. We present a theoretical analysis with <inline-formula><tex-math notation="LaTeX">1-1/e</tex-math></inline-formula> approximation ratio for the proposed algorithms. Extensive experiments are conducted to evaluate the performance of the proposed continuous greedy algorithms on real-world online social networks datasets. The results demonstrate that continuous community partition method can improve influence spread and accuracy of the community partition effectively. Community partition is of great importance in social networks because of the rapid increasing network scale, data and applications. We consider the community partition problem under Linear Threshold (LT) model in social networks, which is a combinatorial optimization problem that divides the social network to disjoint [Formula Omitted] communities. Our goal is to maximize the sum of influence propagation within each community. As the influence propagation function of community partition problem is supermodular under LT model, we use the method of Lov[Formula Omitted]sz Extension to relax the target influence function and transfer our goal to maximize the relaxed function over a matroid polytope. Next, we propose a continuous greedy algorithm using the properties of the relaxed function to solve our problem, which needs to be discretized in concrete implementation. Then, random rounding technique is used to convert the fractional solution to the integer solution. We present a theoretical analysis with [Formula Omitted] approximation ratio for the proposed algorithms. Extensive experiments are conducted to evaluate the performance of the proposed continuous greedy algorithms on real-world online social networks datasets. The results demonstrate that continuous community partition method can improve influence spread and accuracy of the community partition effectively. |
| Author | Wang, Huan Wu, Jigang Ni, Qiufen Wu, Weili Guo, Jianxiong |
| Author_xml | – sequence: 1 givenname: Qiufen orcidid: 0000-0002-0462-9549 surname: Ni fullname: Ni, Qiufen email: niqiufen@gdut.edu.cn organization: School of Computers, Guangdong University of Technology, Guangzhou, China – sequence: 2 givenname: Jianxiong orcidid: 0000-0002-0994-3297 surname: Guo fullname: Guo, Jianxiong email: jianxiongguo@bnu.edu.cn organization: BNU-UIC Institute of Artificial Intelligence and Future Networks, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, China – sequence: 3 givenname: Weili orcidid: 0000-0001-8747-6340 surname: Wu fullname: Wu, Weili email: weiliwu@utdallas.edu organization: Department of Computer Science, The University of Texas at Dallas, Richardson, TX, USA – sequence: 4 givenname: Huan orcidid: 0000-0002-3162-2350 surname: Wang fullname: Wang, Huan email: hwang@mail.hzau.edu.cn organization: College of Informatics, Huazhong Agricultural University, Wuhan, China – sequence: 5 givenname: Jigang orcidid: 0000-0002-6470-9794 surname: Wu fullname: Wu, Jigang email: asjgwucn@outlook.com organization: School of Computers, Guangdong University of Technology, Guangzhou, China |
| BookMark | eNp9kE1Lw0AQhhepYK39AeIl4Dl1P5JN9mhD1UKpQit4C5vNBLamu3V3g_Tfm9DiwYOnGZj3mRmeazQy1gBCtwTPCMHiYbveLGYUUzJjhGUsZRdoTBlLYkbFx2joaRYnXGRXaOr9DmNMaM4ZY2M0L6wJ2nS289HSNG0HRkE8lx7qqLD7fWd0OEZv0gUdtDVRY120sUrLNlpD-Lbu09-gy0a2HqbnOkHvT4tt8RKvXp-XxeMqVlSwEEOFc0hZlXDAkNZKVJzUFYWqJliyOsd1kjc5ZAT6_7IqoSmvWFMzomTdECXYBN2f9h6c_erAh3JnO2f6kyXlXJBUED6kslNKOeu9g6ZUOsjh9-CkbkuCy8FZOTgrB2fl2VlPkj_kwem9dMd_mbsTowHgNy94mpN-_APWl3nB |
| CODEN | ITNSD5 |
| CitedBy_id | crossref_primary_10_1007_s10878_024_01254_3 crossref_primary_10_1016_j_jobe_2023_106031 crossref_primary_10_1109_ACCESS_2023_3337602 crossref_primary_10_1186_s13677_023_00456_0 crossref_primary_10_1007_s10723_023_09715_5 crossref_primary_10_1007_s10723_023_09719_1 crossref_primary_10_1016_j_jksuci_2023_101906 crossref_primary_10_1007_s10723_023_09710_w crossref_primary_10_1007_s11042_023_17719_2 crossref_primary_10_1007_s10586_023_04102_x crossref_primary_10_1016_j_suscom_2023_100920 crossref_primary_10_1109_ACCESS_2023_3333280 crossref_primary_10_1109_TNSE_2025_3544429 crossref_primary_10_1109_TKDE_2022_3223403 crossref_primary_10_1007_s10257_023_00665_9 crossref_primary_10_1109_TCSS_2023_3332562 crossref_primary_10_1007_s00500_023_09311_5 crossref_primary_10_3390_sym15010117 crossref_primary_10_1007_s00521_023_08857_7 crossref_primary_10_1016_j_eswa_2023_122088 crossref_primary_10_1007_s00521_023_09236_y crossref_primary_10_1007_s00500_023_09405_0 crossref_primary_10_1002_dac_5886 crossref_primary_10_1007_s10723_023_09662_1 crossref_primary_10_1007_s10878_023_01018_5 crossref_primary_10_1007_s10723_023_09701_x crossref_primary_10_1016_j_tcs_2023_113847 crossref_primary_10_1109_ACCESS_2023_3298105 crossref_primary_10_1007_s10723_023_09704_8 crossref_primary_10_1007_s10723_023_09706_6 crossref_primary_10_1007_s10723_023_09708_4 crossref_primary_10_1007_s10910_023_01555_8 crossref_primary_10_1109_ACCESS_2023_3339553 crossref_primary_10_1111_exsy_13460 crossref_primary_10_1007_s11227_023_05818_8 crossref_primary_10_1016_j_tcs_2024_114833 crossref_primary_10_1371_journal_pone_0284204 crossref_primary_10_7717_peerj_cs_1666 crossref_primary_10_3390_pr11061689 crossref_primary_10_3390_s23167233 crossref_primary_10_1109_ACCESS_2023_3322924 crossref_primary_10_1371_journal_pone_0328825 crossref_primary_10_1007_s12530_023_09547_4 crossref_primary_10_1007_s10723_023_09712_8 crossref_primary_10_1007_s10723_023_09714_6 crossref_primary_10_1007_s00500_023_09450_9 crossref_primary_10_1007_s00500_023_09452_7 crossref_primary_10_1007_s10723_023_09671_0 crossref_primary_10_1177_10963480251361951 crossref_primary_10_1016_j_heliyon_2023_e22191 crossref_primary_10_3390_app13137599 crossref_primary_10_7717_peerj_cs_1497 crossref_primary_10_1186_s13677_023_00571_y crossref_primary_10_1109_TCSS_2022_3148411 crossref_primary_10_1007_s10723_023_09688_5 crossref_primary_10_1093_jcde_qwad092 crossref_primary_10_1016_j_eswa_2024_123304 crossref_primary_10_3390_s23020741 crossref_primary_10_1007_s10723_023_09702_w crossref_primary_10_1007_s10723_023_09720_8 crossref_primary_10_1007_s10723_023_09722_6 crossref_primary_10_1016_j_suscom_2023_100895 crossref_primary_10_3390_bs13020126 crossref_primary_10_1016_j_asoc_2023_111037 crossref_primary_10_1016_j_compeleceng_2023_108655 crossref_primary_10_1016_j_heliyon_2024_e38916 crossref_primary_10_1007_s10723_023_09735_1 crossref_primary_10_1007_s11042_023_16382_x crossref_primary_10_1016_j_engappai_2023_106683 crossref_primary_10_1007_s10723_023_09659_w crossref_primary_10_1093_comnet_cnad053 |
| Cites_doi | 10.1186/s40649-014-0001-4 10.1038/s41598-019-39180-8 10.1109/TCYB.2019.2931983 10.1145/3297280.3297574 10.1016/j.tcs.2019.07.032 10.1145/1835804.1835934 10.1371/journal.pone.0224307 10.1103/PhysRevE.76.036106 10.1145/2979682 10.1145/3219819.3220061 10.1145/956755.956769 10.1038/s41467-020-15567-4 10.1155/2018/8098325 10.1145/1835804.1835935 10.1016/j.tcs.2020.04.017 10.1145/2588555.2593670 10.1109/ICDCS.2013.34 10.3390/math8112048 10.1145/3299869.3319879 10.1007/978-3-642-68874-4_10 10.1016/j.future.2018.01.009 10.1016/j.physa.2018.08.077 10.1109/TCSS.2018.2879494 10.1145/3148055.3148073 10.1089/omi.2018.0205 10.1007/s10489-018-1387-8 10.1109/NOMS.2018.8406245 10.1145/1873951.1874146 10.1007/s10618-012-0262-1 10.1016/j.knosys.2020.105935 10.1016/j.physa.2019.122058 10.1073/pnas.122653799 10.1007/978-3-319-26187-4_8 10.1016/j.socnet.2019.05.005 10.1016/j.physa.2018.01.025 10.1103/PhysRevE.69.066133 10.1016/j.micpro.2017.08.002 10.1145/2882903.2882961 10.1016/j.knosys.2010.12.004 10.1016/j.physa.2016.09.028 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TNSE.2021.3137353 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2334-329X |
| EndPage | 1197 |
| ExternalDocumentID | 10_1109_TNSE_2021_3137353 9658135 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Hubei Province grantid: 2020CFB168 funderid: 10.13039/501100003819 – fundername: National Natural Science Foundation of China grantid: 62072118 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-eb08e53b46e0e5dc9b61db2ebd10a3d80d48f8e71e0007b4256b3fd31cadf1c93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 81 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000800200900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4697 |
| IngestDate | Mon Jun 30 10:03:23 EDT 2025 Sat Nov 29 04:55:52 EST 2025 Tue Nov 18 21:58:06 EST 2025 Wed Aug 27 02:36:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-eb08e53b46e0e5dc9b61db2ebd10a3d80d48f8e71e0007b4256b3fd31cadf1c93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8747-6340 0000-0002-6470-9794 0000-0002-0994-3297 0000-0002-3162-2350 0000-0002-0462-9549 |
| PQID | 2669159169 |
| PQPubID | 2040409 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_TNSE_2021_3137353 ieee_primary_9658135 proquest_journals_2669159169 crossref_primary_10_1109_TNSE_2021_3137353 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on network science and engineering |
| PublicationTitleAbbrev | TNSE |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref28 ref27 Chen (ref33) 2019 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Vondrk (ref38) 2010 |
| References_xml | – ident: ref35 doi: 10.1186/s40649-014-0001-4 – ident: ref19 doi: 10.1038/s41598-019-39180-8 – ident: ref25 doi: 10.1109/TCYB.2019.2931983 – ident: ref32 doi: 10.1145/3297280.3297574 – ident: ref3 doi: 10.1016/j.tcs.2019.07.032 – ident: ref15 doi: 10.1145/1835804.1835934 – ident: ref18 doi: 10.1371/journal.pone.0224307 – ident: ref24 doi: 10.1103/PhysRevE.76.036106 – ident: ref36 doi: 10.1145/2979682 – ident: ref7 doi: 10.1145/3219819.3220061 – ident: ref9 doi: 10.1145/956755.956769 – ident: ref16 doi: 10.1038/s41467-020-15567-4 – ident: ref31 doi: 10.1155/2018/8098325 – ident: ref34 doi: 10.1145/1835804.1835935 – ident: ref1 doi: 10.1016/j.tcs.2020.04.017 – ident: ref41 doi: 10.1145/2588555.2593670 – year: 2010 ident: ref38 article-title: Continuous extensions of submodular functions continuous extensions of submodular functions. cs 369p: Polyhedral techniques in combinatorial optimization – ident: ref2 doi: 10.1109/ICDCS.2013.34 – ident: ref28 doi: 10.3390/math8112048 – ident: ref6 doi: 10.1145/3299869.3319879 – ident: ref37 doi: 10.1007/978-3-642-68874-4_10 – ident: ref11 doi: 10.1016/j.future.2018.01.009 – ident: ref27 doi: 10.1016/j.physa.2018.08.077 – ident: ref29 doi: 10.1109/TCSS.2018.2879494 – ident: ref4 doi: 10.1145/3148055.3148073 – ident: ref17 doi: 10.1089/omi.2018.0205 – volume-title: Proc. 7th Int. Conf. Learn. Representations year: 2019 ident: ref33 article-title: Supervised community detection with line graph neural networks – ident: ref10 doi: 10.1007/s10489-018-1387-8 – ident: ref8 doi: 10.1109/NOMS.2018.8406245 – ident: ref12 doi: 10.1145/1873951.1874146 – ident: ref40 doi: 10.1007/s10618-012-0262-1 – ident: ref30 doi: 10.1016/j.knosys.2020.105935 – ident: ref42 doi: 10.1016/j.physa.2019.122058 – ident: ref20 doi: 10.1073/pnas.122653799 – ident: ref26 doi: 10.1007/978-3-319-26187-4_8 – ident: ref14 doi: 10.1016/j.socnet.2019.05.005 – ident: ref22 doi: 10.1016/j.physa.2018.01.025 – ident: ref21 doi: 10.1103/PhysRevE.69.066133 – ident: ref13 doi: 10.1016/j.micpro.2017.08.002 – ident: ref39 doi: 10.1145/2882903.2882961 – ident: ref5 doi: 10.1016/j.knosys.2010.12.004 – ident: ref23 doi: 10.1016/j.physa.2016.09.028 |
| SSID | ssj0001286333 |
| Score | 2.4895675 |
| Snippet | Community partition is of great importance in social networks because of the rapid increasing network scale, data and applications. We consider the community... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1187 |
| SubjectTerms | Algorithms Approximation algorithms Combinatorial analysis Community partition Detection algorithms Greedy algorithms Heuristic algorithms Influence functions influence maximization Integrated circuit modeling Lov<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> acute{a}</tex-math> </inline-formula>sz extension matroid polytope Optimization Partitioning algorithms Propagation Rounding Social networking (online) Social networks |
| Title | Continuous Influence-Based Community Partition for Social Networks |
| URI | https://ieeexplore.ieee.org/document/9658135 https://www.proquest.com/docview/2669159169 |
| Volume | 9 |
| WOSCitedRecordID | wos000800200900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2334-329X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286333 issn: 2327-4697 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEPvqpYrZKDJ3FtstlHcrTSoiBLwQq9LZsXFKSVdiv4702y21JRBG97SGCZycx8k8x8A3BdpJEoWGQCbtG3TVCE9YNFFAaGmVRxayKx9Oz6z2mWscmEjxpwu-mF0Vr74jN95z79W76ay5W7Kus5ohJC4yY00zSperW27lNYQimtHy4J5r1x9jKwCWBIbF5KUxrTb6HHz1L54YB9VBke_O9_DmG_Ro_ovlL3ETT07Bj2tjgF29B3fFPT2cpm9OhpPYEk6NtgpVDdDVJ-opE7MU4nyIJWVPXooqwqCV-ewOtwMH54DOpBCYG00boMtMBMx1REicY6VpKLhCgRaqEILqhiWEXMMJ0S7SCBsGaaCGoUJbJQhkhOT6E1m8_0GaBUmjiiVCWxMRZbWU8eGZJIbGGJ1oypDuC1DHNZs4i7YRZvuc8mMM-d2HMn9rwWewduNlveKwqNvxa3nZw3C2sRd6C7VlReG9kyt9iCWzRGEn7--64L2A1dt4KvT-xCq1ys9CXsyI9yulxc-fPzBe0gxGU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQHv8Xp1D74JNYlTdomj042Npxl4IS9leYLBrLJPgT_e5O2GxNF8K0PCZS73N3vkrvfAdxkMRUZo8bnFn3bBEVYP5jRwDfMxIpbEwllzq7fi5OEDYe8X4G7VS-M1jovPtP37jN_y1cTuXBXZQ1HVIJJuAGbIaUBKrq11m5UWEQIKZ8uMeKNQfLSsilggG1mSmISkm_BJ5-m8sMF53Glvf-_PzqAvRI_eg-Fwg-hosdHsLvGKngMTcc4NRovbE7vdZczSPymDVfKK_tB5p9e350ZpxXPwlav6NL1kqIofHYCr-3W4LHjl6MSfGnj9dzXAjEdEkEjjXSoJBcRViLQQmGUEcWQoswwHWPtQIGwhhoJYhTBMlMGS05OoTqejPUZeLE0ISVERaExFl1ZX04NjiSywERrxlQN0FKGqSx5xN04i7c0zycQT53YUyf2tBR7DW5XW94LEo2_Fh87Oa8WliKuQX2pqLQ0s1lq0QW3eAxH_Pz3Xdew3Rk899JeN3m6gJ3A9S7k1Yp1qM6nC30JW_JjPppNr_Kz9AVNj8es |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+Influence-Based+Community+Partition+for+Social+Networks&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Ni%2C+Qiufen&rft.au=Guo%2C+Jianxiong&rft.au=Wu%2C+Weili&rft.au=Wang%2C+Huan&rft.date=2022-05-01&rft.pub=IEEE&rft.eissn=2334-329X&rft.volume=9&rft.issue=3&rft.spage=1187&rft.epage=1197&rft_id=info:doi/10.1109%2FTNSE.2021.3137353&rft.externalDocID=9658135 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon |