Distribution LMP-Based Demand Management in Industrial Park via a Bi-Level Programming Approach

To enhance industrial park's economic gains and effectively allocate its electricity bill among industrial users with combined heat and power (CHP) units and photovoltaic (PV) panels, this paper proposes a distribution locational marginal price (DLMP)-based bi-level demand management approach....

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on sustainable energy Vol. 12; no. 3; pp. 1695 - 1706
Main Authors: Wei, Jingdong, Zhang, Yao, Wang, Jianxue, Wu, Lei
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1949-3029, 1949-3037
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To enhance industrial park's economic gains and effectively allocate its electricity bill among industrial users with combined heat and power (CHP) units and photovoltaic (PV) panels, this paper proposes a distribution locational marginal price (DLMP)-based bi-level demand management approach. The upper level optimizes dispatching decisions of industrial users with the objective of minimizing their energy bills, and the lower level is a DLMP-based market clearing problem to minimize the two-part tariff cost of the industrial park operator. In order to solve the proposed bi-level model efficiently, it is first equivalently converted into a single-level mathematical programming with equilibrium constraints (MPEC), and then reformulated as a mixed-integer second-order conic programming (MISOCP) model by linearizing bilinear terms. Numerical results demonstrate the effectiveness of our proposed bi-level method in lowering industrial park's electricity bill and achieving effective allocation among users.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1949-3029
1949-3037
DOI:10.1109/TSTE.2021.3062044