Convolutional Graph Autoencoder: A Generative Deep Neural Network for Probabilistic Spatio-Temporal Solar Irradiance Forecasting

Machine learning on graphs is an important and omnipresent task for a vast variety of applications including anomaly detection and dynamic network analysis. In this paper, a deep generative model is introduced to capture continuous probability densities corresponding to the nodes of an arbitrary gra...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on sustainable energy Ročník 11; číslo 2; s. 571 - 583
Hlavní autoři: Khodayar, Mahdi, Mohammadi, Saeed, Khodayar, Mohammad E., Wang, Jianhui, Liu, Guangyi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1949-3029, 1949-3037
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Machine learning on graphs is an important and omnipresent task for a vast variety of applications including anomaly detection and dynamic network analysis. In this paper, a deep generative model is introduced to capture continuous probability densities corresponding to the nodes of an arbitrary graph. In contrast to all learning formulations in the area of discriminative pattern recognition, we propose a scalable generative optimization/algorithm theoretically proved to capture distributions at the nodes of a graph. Our model is able to generate samples from the probability densities learned at each node. This probabilistic data generation model, i.e., convolutional graph autoencoder (CGAE), is devised based on the localized first-order approximation of spectral graph convolutions, deep learning, and the variational Bayesian inference. We apply the CGAE to a new problem, the spatio-temporal probabilistic solar irradiance prediction. Multiple solar radiation measurement sites in a wide area in northern states of the U.S. are modeled as an undirected graph. Using our proposed model, the distribution of future irradiance given historical radiation observations is estimated for every site/node. Numerical results on the national solar radiation database show state-of-the-art performance for probabilistic radiation prediction on geographically distributed irradiance data in terms of reliability, sharpness, and continuous ranked probability score.
AbstractList Machine learning on graphs is an important and omnipresent task for a vast variety of applications including anomaly detection and dynamic network analysis. In this paper, a deep generative model is introduced to capture continuous probability densities corresponding to the nodes of an arbitrary graph. In contrast to all learning formulations in the area of discriminative pattern recognition, we propose a scalable generative optimization/algorithm theoretically proved to capture distributions at the nodes of a graph. Our model is able to generate samples from the probability densities learned at each node. This probabilistic data generation model, i.e., convolutional graph autoencoder (CGAE), is devised based on the localized first-order approximation of spectral graph convolutions, deep learning, and the variational Bayesian inference. We apply the CGAE to a new problem, the spatio-temporal probabilistic solar irradiance prediction. Multiple solar radiation measurement sites in a wide area in northern states of the U.S. are modeled as an undirected graph. Using our proposed model, the distribution of future irradiance given historical radiation observations is estimated for every site/node. Numerical results on the national solar radiation database show state-of-the-art performance for probabilistic radiation prediction on geographically distributed irradiance data in terms of reliability, sharpness, and continuous ranked probability score.
Author Khodayar, Mahdi
Mohammadi, Saeed
Khodayar, Mohammad E.
Wang, Jianhui
Liu, Guangyi
Author_xml – sequence: 1
  givenname: Mahdi
  orcidid: 0000-0003-4683-7810
  surname: Khodayar
  fullname: Khodayar, Mahdi
  email: mahdik@smu.edu
  organization: Department of Electrical and Computer Engineering, Southern Methodist University, Dallas, TX, USA
– sequence: 2
  givenname: Saeed
  orcidid: 0000-0003-1823-9653
  surname: Mohammadi
  fullname: Mohammadi, Saeed
  email: smohammadi@smu.edu
  organization: Department of Electrical and Computer Engineering, Southern Methodist University, Dallas, TX, USA
– sequence: 3
  givenname: Mohammad E.
  orcidid: 0000-0003-3856-5704
  surname: Khodayar
  fullname: Khodayar, Mohammad E.
  email: mkhodayar@smu.edu
  organization: Department of Electrical and Computer Engineering, Southern Methodist University, Dallas, TX, USA
– sequence: 4
  givenname: Jianhui
  orcidid: 0000-0002-9716-3484
  surname: Wang
  fullname: Wang, Jianhui
  email: jianhui@smu.edu
  organization: Department of Electrical and Computer Engineering, Southern Methodist University, Dallas, TX, USA
– sequence: 5
  givenname: Guangyi
  orcidid: 0000-0001-9822-2039
  surname: Liu
  fullname: Liu, Guangyi
  email: guangyi.liu@geirina.net
  organization: Global Energy Interconnection Research Institute North America (GEIRI North America or GEIRINA), San Jose, CA, USA
BookMark eNp9kE1P3DAQQK2KSqXAD6h6scQ5ix1_xOa22sKChKDSbs-R4520psFOJw6IGz-dRIs49IAv9uG9Gfl9JQcxRSDkG2cLzpk92262F4uScbsoja20MZ_IIbfSFoKJ6uD9Xdov5GQY7tl0hBBasEPyskrxMXVjDim6jq7R9X_ocswJok87wHO6pGuIgC6HR6A_AHp6CyNO7C3kp4R_aZuQ_sTUuCZ0YcjB000_0anYwkOfZnKTOof0GtHtgose6GVC8G5i4-9j8rl13QAnb_cR-XV5sV1dFTd36-vV8qbwpRW5AGVUY5X2DWPWKKYU4yDNbqdV5ayUUpuGM6Fd47lkurUSVNXySQYlGZTiiJzu5_aY_o0w5Po-jTj9eahLYbhhuhTVRPE95TENA0Jb9xgeHD7XnNVz63puXc-t67fWk1P95_iQ5wAxowvdh-b3vRkA4H2T0VoIWYlXhuKOzg
CODEN ITSEAJ
CitedBy_id crossref_primary_10_1109_JIOT_2025_3586320
crossref_primary_10_1007_s00521_021_06639_7
crossref_primary_10_1016_j_eswa_2023_122925
crossref_primary_10_1109_ACCESS_2023_3234214
crossref_primary_10_1016_j_tej_2020_106882
crossref_primary_10_1016_j_eswa_2023_121313
crossref_primary_10_1109_TSTE_2021_3064326
crossref_primary_10_1007_s11356_023_30224_1
crossref_primary_10_1016_j_energy_2024_131131
crossref_primary_10_1016_j_apenergy_2022_120127
crossref_primary_10_1016_j_inffus_2023_102180
crossref_primary_10_1002_for_3199
crossref_primary_10_1109_ACCESS_2021_3122826
crossref_primary_10_1016_j_rser_2022_113105
crossref_primary_10_1109_TSTE_2021_3123476
crossref_primary_10_1109_TIA_2025_3542730
crossref_primary_10_1016_j_renene_2023_03_122
crossref_primary_10_1016_j_renene_2024_119943
crossref_primary_10_3390_en15124341
crossref_primary_10_1109_TII_2022_3217541
crossref_primary_10_1109_TSG_2023_3321116
crossref_primary_10_1109_ACCESS_2021_3117004
crossref_primary_10_1109_ACCESS_2024_3429073
crossref_primary_10_1016_j_energy_2023_128510
crossref_primary_10_1016_j_rser_2022_112128
crossref_primary_10_3390_s23084168
crossref_primary_10_1016_j_renene_2022_09_058
crossref_primary_10_3390_en16104249
crossref_primary_10_1109_TSTE_2021_3088951
crossref_primary_10_1109_JAS_2021_1003976
crossref_primary_10_1109_TII_2024_3485693
crossref_primary_10_1016_j_inffus_2025_103617
crossref_primary_10_1109_TNNLS_2020_3042434
crossref_primary_10_1155_2022_9261537
crossref_primary_10_1049_gtd2_13339
crossref_primary_10_1109_TPWRS_2021_3119338
crossref_primary_10_1109_TSG_2022_3175451
crossref_primary_10_1109_TIA_2023_3285202
crossref_primary_10_1016_j_egyr_2024_01_021
crossref_primary_10_1109_TPWRD_2024_3496998
crossref_primary_10_1016_j_apenergy_2020_116405
crossref_primary_10_1109_ACCESS_2022_3192039
crossref_primary_10_1109_TII_2024_3388089
crossref_primary_10_1109_TPWRS_2024_3503288
crossref_primary_10_1109_TSTE_2021_3125200
crossref_primary_10_1016_j_future_2024_107493
crossref_primary_10_1145_3577031
crossref_primary_10_1051_e3sconf_202454008008
crossref_primary_10_1109_ACCESS_2023_3282545
crossref_primary_10_1016_j_aei_2023_102322
crossref_primary_10_3390_en16052307
crossref_primary_10_1016_j_epsr_2023_109792
crossref_primary_10_1016_j_apenergy_2022_119277
crossref_primary_10_3390_s22197179
crossref_primary_10_1007_s11063_022_10935_1
crossref_primary_10_3390_data8040065
crossref_primary_10_3390_en15176267
crossref_primary_10_1109_TIA_2022_3213008
crossref_primary_10_1109_TSTE_2020_3043884
crossref_primary_10_1109_ACCESS_2022_3195053
crossref_primary_10_1016_j_tej_2022_107137
crossref_primary_10_1016_j_egyr_2023_05_063
crossref_primary_10_1109_TPWRS_2023_3342636
crossref_primary_10_1016_j_renene_2025_124354
crossref_primary_10_1002_2050_7038_12664
crossref_primary_10_1016_j_apenergy_2022_119579
crossref_primary_10_3390_en13215763
crossref_primary_10_1016_j_enconman_2025_119773
crossref_primary_10_1109_TITS_2023_3306559
crossref_primary_10_3390_en14092404
crossref_primary_10_1016_j_energy_2022_125592
crossref_primary_10_3390_en16124773
crossref_primary_10_1016_j_renene_2023_119043
crossref_primary_10_1109_TII_2024_3431027
crossref_primary_10_1109_TSTE_2022_3199161
crossref_primary_10_1109_TNNLS_2019_2921952
crossref_primary_10_1109_TSTE_2024_3447023
crossref_primary_10_1016_j_enconman_2023_116970
crossref_primary_10_1109_TII_2021_3133289
crossref_primary_10_1109_TKDE_2024_3435859
crossref_primary_10_1109_TSG_2020_3047863
crossref_primary_10_1109_ACCESS_2020_3047903
crossref_primary_10_1109_TIA_2021_3130852
crossref_primary_10_3390_computation11110232
crossref_primary_10_1016_j_renene_2022_08_054
crossref_primary_10_1080_15567036_2022_2143947
crossref_primary_10_1016_j_epsr_2025_112171
crossref_primary_10_1016_j_rser_2024_114391
crossref_primary_10_1109_TSIPN_2020_3040042
crossref_primary_10_1049_rpg2_12194
crossref_primary_10_1109_TSTE_2022_3186517
crossref_primary_10_3390_en12234490
crossref_primary_10_1109_TII_2022_3216006
crossref_primary_10_1109_ACCESS_2022_3162206
crossref_primary_10_1109_TII_2020_2996235
crossref_primary_10_1016_j_apenergy_2025_126419
crossref_primary_10_1109_TASE_2024_3389455
crossref_primary_10_1016_j_energy_2020_119572
Cites_doi 10.1016/j.rser.2018.02.002
10.1016/j.apenergy.2016.05.025
10.1063/1.4946798
10.1109/TPWRS.2016.2569608
10.1109/TSTE.2018.2847558
10.1016/j.renene.2016.09.012
10.1109/TSTE.2016.2535466
10.1016/j.renene.2016.12.095
10.1609/icwsm.v3i1.13937
10.1109/PEDG.2018.8447751
10.1016/j.ijforecast.2015.12.002
10.1109/IGARSS.2014.6947394
10.1109/TII.2017.2730846
10.1109/PESGM.2017.8273776
10.1016/j.ijforecast.2015.11.002
10.1016/0038-092X(76)90045-1
10.1016/j.envres.2017.08.039
10.1016/j.solener.2013.05.027
10.1109/ISGT-Asia.2018.8467888
10.1109/TPWRS.2015.2502423
10.1109/PESGM.2015.7285696
10.1016/j.apenergy.2015.08.011
10.1109/TSG.2018.2847223
10.1016/j.renene.2013.05.011
10.1016/j.solener.2014.12.014
10.1109/TSTE.2016.2544929
10.3390/en11112906
10.1109/TSTE.2017.2694551
10.3390/en10101591
10.1016/j.egypro.2015.03.208
10.3390/en11030528
10.1016/j.solener.2012.09.018
10.1109/CFIS.2015.7391664
10.1109/TPWRS.2013.2287871
10.1007/978-3-319-33747-0_17
10.1109/TSTE.2018.2844102
10.1109/TSTE.2016.2610523
10.1109/TPWRS.2016.2608740
10.1016/j.energy.2016.08.060
10.1016/j.rser.2018.03.003
10.1109/TPWRS.2018.2794541
10.1073/pnas.122653799
10.1016/j.ijforecast.2016.02.001
10.1016/j.rser.2017.05.212
10.17775/CSEEJPES.2015.00046
10.3390/app8050689
10.1109/ICMLA.2017.0-108
10.1109/APPEEC.2017.8308947
10.1016/j.renene.2016.01.039
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
DOI 10.1109/TSTE.2019.2897688
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1949-3037
EndPage 583
ExternalDocumentID 10_1109_TSTE_2019_2897688
8663347
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: ECCS-1710923
  funderid: 10.13039/100000001
– fundername: State Grid Corporation Technology
  grantid: 5455HJ180018
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
ID FETCH-LOGICAL-c293t-e585b956cb0098505501e48dd657a944468b1036abc1406f94e57f1c29e540e23
IEDL.DBID RIE
ISICitedReferencesCount 126
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522438600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1949-3029
IngestDate Mon Jun 30 08:34:37 EDT 2025
Sat Nov 29 03:10:19 EST 2025
Tue Nov 18 22:34:46 EST 2025
Wed Aug 27 02:36:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-e585b956cb0098505501e48dd657a944468b1036abc1406f94e57f1c29e540e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9822-2039
0000-0002-9716-3484
0000-0003-3856-5704
0000-0003-4683-7810
0000-0003-1823-9653
PQID 2381806237
PQPubID 2040348
PageCount 13
ParticipantIDs ieee_primary_8663347
crossref_primary_10_1109_TSTE_2019_2897688
crossref_citationtrail_10_1109_TSTE_2019_2897688
proquest_journals_2381806237
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on sustainable energy
PublicationTitleAbbrev TSTE
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref11
ref54
ref10
ref17
liu (ref9) 2018; 11
kingma (ref51) 0
ref16
ref18
szabó (ref55) 2014; 15
chollet (ref57) 2015
abadi (ref58) 0
ref46
ref48
ref47
ref41
ref44
ref43
ref49
ref8
ref7
le cadre (ref19) 0
ref4
ref3
ref6
ref5
ref40
ref35
ref34
kipf (ref52) 2016
ref37
ref36
ref31
tastu (ref45) 2013
ref30
ref33
ref32
ref2
ref1
ref39
ref38
bastian (ref56) 2009; 8
doersch (ref50) 2016
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
khodayar (ref42) 2018
References_xml – ident: ref29
  doi: 10.1016/j.rser.2018.02.002
– ident: ref27
  doi: 10.1016/j.apenergy.2016.05.025
– ident: ref33
  doi: 10.1063/1.4946798
– ident: ref14
  doi: 10.1109/TPWRS.2016.2569608
– volume: 15
  start-page: 283
  year: 2014
  ident: ref55
  article-title: Information theoretical estimators toolbox
  publication-title: J Mach Learn Res
– ident: ref46
  doi: 10.1109/TSTE.2018.2847558
– ident: ref22
  doi: 10.1016/j.renene.2016.09.012
– ident: ref12
  doi: 10.1109/TSTE.2016.2535466
– ident: ref1
  doi: 10.1016/j.renene.2016.12.095
– volume: 8
  start-page: 361
  year: 2009
  ident: ref56
  article-title: Gephi: An open source software for exploring and manipulating networks
  publication-title: ICWSM
  doi: 10.1609/icwsm.v3i1.13937
– ident: ref39
  doi: 10.1109/PEDG.2018.8447751
– ident: ref28
  doi: 10.1016/j.ijforecast.2015.12.002
– ident: ref10
  doi: 10.1109/IGARSS.2014.6947394
– year: 2015
  ident: ref57
  article-title: Keras
– year: 2013
  ident: ref45
  article-title: Space-time scenarios of wind power generation produced using a Gaussian copula with parametrized precision matrix
– ident: ref3
  doi: 10.1109/TII.2017.2730846
– ident: ref32
  doi: 10.1109/PESGM.2017.8273776
– ident: ref23
  doi: 10.1016/j.ijforecast.2015.11.002
– ident: ref5
  doi: 10.1016/0038-092X(76)90045-1
– year: 2018
  ident: ref42
  article-title: Energy disaggregation via deep temporal dictionary learning
– ident: ref48
  doi: 10.1016/j.envres.2017.08.039
– ident: ref13
  doi: 10.1016/j.solener.2013.05.027
– ident: ref43
  doi: 10.1109/ISGT-Asia.2018.8467888
– ident: ref24
  doi: 10.1109/TPWRS.2015.2502423
– ident: ref20
  doi: 10.1109/PESGM.2015.7285696
– ident: ref54
  doi: 10.1016/j.apenergy.2015.08.011
– start-page: 1
  year: 0
  ident: ref19
  article-title: Solar PV power forecasting using extreme learning machine and information fusion
  publication-title: Proc Eur Symp Artif Neural Netw Comput Intell Mach Learn
– ident: ref30
  doi: 10.1109/TSG.2018.2847223
– ident: ref31
  doi: 10.1016/j.renene.2013.05.011
– year: 2016
  ident: ref50
  article-title: Tutorial on variational autoencoders
– ident: ref17
  doi: 10.1016/j.solener.2014.12.014
– ident: ref47
  doi: 10.1109/TSTE.2016.2544929
– ident: ref15
  doi: 10.3390/en11112906
– ident: ref4
  doi: 10.1109/TSTE.2017.2694551
– ident: ref26
  doi: 10.3390/en10101591
– ident: ref8
  doi: 10.1016/j.egypro.2015.03.208
– volume: 11
  start-page: 528
  year: 2018
  ident: ref9
  article-title: Ultra-short-term forecast of photovoltaic output power under fog and haze weather
  publication-title: Energies
  doi: 10.3390/en11030528
– ident: ref11
  doi: 10.1016/j.solener.2012.09.018
– ident: ref16
  doi: 10.1109/CFIS.2015.7391664
– ident: ref18
  doi: 10.1109/TPWRS.2013.2287871
– ident: ref35
  doi: 10.1007/978-3-319-33747-0_17
– ident: ref53
  doi: 10.1109/TSTE.2018.2844102
– ident: ref40
  doi: 10.1109/TSTE.2016.2610523
– ident: ref25
  doi: 10.1109/TPWRS.2016.2608740
– ident: ref6
  doi: 10.1016/j.energy.2016.08.060
– ident: ref44
  doi: 10.1016/j.rser.2018.03.003
– ident: ref41
  doi: 10.1109/TPWRS.2018.2794541
– ident: ref49
  doi: 10.1073/pnas.122653799
– year: 2016
  ident: ref52
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref36
  doi: 10.1016/j.ijforecast.2016.02.001
– ident: ref21
  doi: 10.1016/j.rser.2017.05.212
– start-page: 265
  year: 0
  ident: ref58
  article-title: TensorFlow: A system for large-scale machine learning
  publication-title: Proc 11th USENIX Conf Operating Syst Des Implementation
– year: 0
  ident: ref51
  article-title: Auto-encoding variational bayes
– ident: ref2
  doi: 10.17775/CSEEJPES.2015.00046
– ident: ref37
  doi: 10.3390/app8050689
– ident: ref34
  doi: 10.1109/ICMLA.2017.0-108
– ident: ref38
  doi: 10.1109/APPEEC.2017.8308947
– ident: ref7
  doi: 10.1016/j.renene.2016.01.039
SSID ssj0000333630
Score 2.5996163
Snippet Machine learning on graphs is an important and omnipresent task for a vast variety of applications including anomaly detection and dynamic network analysis. In...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 571
SubjectTerms Algorithms
Anomalies
Artificial neural networks
Bayesian analysis
Computational modeling
Data models
Deep learning
Deep neural network
Forecasting
Geographical distribution
Graph neural networks
Irradiance
Learning algorithms
Machine learning
Mathematical analysis
Mathematical model
Neural networks
Nodes
Optimization
Pattern recognition
Predictive models
probabilistic forecasting
Probabilistic logic
Radiation
Radiation measurement
Solar radiation
spatio-temporal forecasting
spectral graph convolutions
Statistical analysis
Statistical inference
variational Bayesian inference
Title Convolutional Graph Autoencoder: A Generative Deep Neural Network for Probabilistic Spatio-Temporal Solar Irradiance Forecasting
URI https://ieeexplore.ieee.org/document/8663347
https://www.proquest.com/docview/2381806237
Volume 11
WOSCitedRecordID wos000522438600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1949-3037
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000333630
  issn: 1949-3029
  databaseCode: RIE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB108aAHv8XVVXLwJFb7kTaJt8VvkEXYVbyVNp2CsOxKd9ezP92ZtK6CInjrYQKFl2TmJS9vAI78xFBSZVF7INGToSw8bbT14jwvaUBpYve26ule9Xr6-dk8LMDJ_C0MIjrxGZ7yp7vLL8Z2xkdlZ5rSYyTVIiwqldRvtebnKX4URYlrLUK0nK_zQ9NcYga-ORv0B1es4zKnRDBU3WflKw25vio_NmOXYa7X_vdv67DaVJKiW0O_AQs42oSVb_6CW_B-MR69NXOLQm_YnFp0Z9Mxu1cWWJ2Lrqh9p3nTE5eIr4LdOii2V8vDBdW04qGiRc8iWvZ0Fn2nwfYGtafVUPSZHIu7qnIuBxYFd_u02YT11NvweH01uLj1mpYLnqW8P_WQ2ENOlMnmbDRK1VHsByh1USSxyowk7qjzgJJelltiZklpJMaqDGgwUumHYbQDrdF4hLsgUNkyTrQtJVUJsqS6QJvQ2sRqxCyMszb4nwiktvEj57YYw9TxEt-kDFrKoKUNaG04ng95rc04_greYpTmgQ1Abeh8wpw2y3WSurrFp0mr9n4ftQ_LIRNtJ9npQGtazfAAluzb9GVSHbqZ-AFWMduZ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEB2FFIlyaPmqSJuWPfSEMPHH2t7tLaJQUNMoUgziZtnrsYSEEuR8nPnpzKydFAmExM2HWcvS292Z5337BuCnG2lKqixq9yQ60peFo7QyTpjnJQ0odWjvVt0M4uFQ3d7qUQtO1ndhENGKz_CUH-1ZfjE1C_5V1lOUHgMZb8AHeoPv1re11n9U3CAIIttchIg5H-j7ujnG9FzdS8bJOSu59ClRjLjutPI_EdnOKi-2Y5tjLj6_7-t24FNTS4p-Df4utHCyB9vPHAb34fFsOlk2s4tC_7A9tegv5lP2ryyw-iX6onae5m1P_EZ8EOzXQbHDWiAuqKoVo4qWPcto2dVZjK0K20lqV6t7MWZ6LK6qyvocGBTc79NkM1ZUH8D1xXlyduk0TRccQ5l_7iDxh5xIk8nZapTqo9D1UKqiiMI405LYo8o9SntZboibRaWWGMalR4ORij_0gy_QnkwneAgCY1OGkTKlpDpBllQZKO0bExmFmPlh1gF3hUBqGkdyboxxn1pm4uqUQUsZtLQBrQPH6yEPtR3HW8H7jNI6sAGoA90VzGmzYGeprVxcmrbx19dHHcHWZfJvkA6uhn-_wUefabcV8HShPa8W-B02zXJ-N6t-2Fn5BOgC3uA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+Graph+Autoencoder%3A+A+Generative+Deep+Neural+Network+for+Probabilistic+Spatio-Temporal+Solar+Irradiance+Forecasting&rft.jtitle=IEEE+transactions+on+sustainable+energy&rft.au=Mahdi+Khodayar&rft.au=Mohammadi%2C+Saeed&rft.au=Khodayar%2C+Mohammad+E&rft.au=Wang%2C+Jianhui&rft.date=2020-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1949-3029&rft.eissn=1949-3037&rft.volume=11&rft.issue=2&rft.spage=571&rft_id=info:doi/10.1109%2FTSTE.2019.2897688&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3029&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3029&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3029&client=summon