Convolutional Graph Autoencoder: A Generative Deep Neural Network for Probabilistic Spatio-Temporal Solar Irradiance Forecasting
Machine learning on graphs is an important and omnipresent task for a vast variety of applications including anomaly detection and dynamic network analysis. In this paper, a deep generative model is introduced to capture continuous probability densities corresponding to the nodes of an arbitrary gra...
Uloženo v:
| Vydáno v: | IEEE transactions on sustainable energy Ročník 11; číslo 2; s. 571 - 583 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1949-3029, 1949-3037 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Machine learning on graphs is an important and omnipresent task for a vast variety of applications including anomaly detection and dynamic network analysis. In this paper, a deep generative model is introduced to capture continuous probability densities corresponding to the nodes of an arbitrary graph. In contrast to all learning formulations in the area of discriminative pattern recognition, we propose a scalable generative optimization/algorithm theoretically proved to capture distributions at the nodes of a graph. Our model is able to generate samples from the probability densities learned at each node. This probabilistic data generation model, i.e., convolutional graph autoencoder (CGAE), is devised based on the localized first-order approximation of spectral graph convolutions, deep learning, and the variational Bayesian inference. We apply the CGAE to a new problem, the spatio-temporal probabilistic solar irradiance prediction. Multiple solar radiation measurement sites in a wide area in northern states of the U.S. are modeled as an undirected graph. Using our proposed model, the distribution of future irradiance given historical radiation observations is estimated for every site/node. Numerical results on the national solar radiation database show state-of-the-art performance for probabilistic radiation prediction on geographically distributed irradiance data in terms of reliability, sharpness, and continuous ranked probability score. |
|---|---|
| AbstractList | Machine learning on graphs is an important and omnipresent task for a vast variety of applications including anomaly detection and dynamic network analysis. In this paper, a deep generative model is introduced to capture continuous probability densities corresponding to the nodes of an arbitrary graph. In contrast to all learning formulations in the area of discriminative pattern recognition, we propose a scalable generative optimization/algorithm theoretically proved to capture distributions at the nodes of a graph. Our model is able to generate samples from the probability densities learned at each node. This probabilistic data generation model, i.e., convolutional graph autoencoder (CGAE), is devised based on the localized first-order approximation of spectral graph convolutions, deep learning, and the variational Bayesian inference. We apply the CGAE to a new problem, the spatio-temporal probabilistic solar irradiance prediction. Multiple solar radiation measurement sites in a wide area in northern states of the U.S. are modeled as an undirected graph. Using our proposed model, the distribution of future irradiance given historical radiation observations is estimated for every site/node. Numerical results on the national solar radiation database show state-of-the-art performance for probabilistic radiation prediction on geographically distributed irradiance data in terms of reliability, sharpness, and continuous ranked probability score. |
| Author | Khodayar, Mahdi Mohammadi, Saeed Khodayar, Mohammad E. Wang, Jianhui Liu, Guangyi |
| Author_xml | – sequence: 1 givenname: Mahdi orcidid: 0000-0003-4683-7810 surname: Khodayar fullname: Khodayar, Mahdi email: mahdik@smu.edu organization: Department of Electrical and Computer Engineering, Southern Methodist University, Dallas, TX, USA – sequence: 2 givenname: Saeed orcidid: 0000-0003-1823-9653 surname: Mohammadi fullname: Mohammadi, Saeed email: smohammadi@smu.edu organization: Department of Electrical and Computer Engineering, Southern Methodist University, Dallas, TX, USA – sequence: 3 givenname: Mohammad E. orcidid: 0000-0003-3856-5704 surname: Khodayar fullname: Khodayar, Mohammad E. email: mkhodayar@smu.edu organization: Department of Electrical and Computer Engineering, Southern Methodist University, Dallas, TX, USA – sequence: 4 givenname: Jianhui orcidid: 0000-0002-9716-3484 surname: Wang fullname: Wang, Jianhui email: jianhui@smu.edu organization: Department of Electrical and Computer Engineering, Southern Methodist University, Dallas, TX, USA – sequence: 5 givenname: Guangyi orcidid: 0000-0001-9822-2039 surname: Liu fullname: Liu, Guangyi email: guangyi.liu@geirina.net organization: Global Energy Interconnection Research Institute North America (GEIRI North America or GEIRINA), San Jose, CA, USA |
| BookMark | eNp9kE1P3DAQQK2KSqXAD6h6scQ5ix1_xOa22sKChKDSbs-R4520psFOJw6IGz-dRIs49IAv9uG9Gfl9JQcxRSDkG2cLzpk92262F4uScbsoja20MZ_IIbfSFoKJ6uD9Xdov5GQY7tl0hBBasEPyskrxMXVjDim6jq7R9X_ocswJok87wHO6pGuIgC6HR6A_AHp6CyNO7C3kp4R_aZuQ_sTUuCZ0YcjB000_0anYwkOfZnKTOof0GtHtgose6GVC8G5i4-9j8rl13QAnb_cR-XV5sV1dFTd36-vV8qbwpRW5AGVUY5X2DWPWKKYU4yDNbqdV5ayUUpuGM6Fd47lkurUSVNXySQYlGZTiiJzu5_aY_o0w5Po-jTj9eahLYbhhuhTVRPE95TENA0Jb9xgeHD7XnNVz63puXc-t67fWk1P95_iQ5wAxowvdh-b3vRkA4H2T0VoIWYlXhuKOzg |
| CODEN | ITSEAJ |
| CitedBy_id | crossref_primary_10_1109_JIOT_2025_3586320 crossref_primary_10_1007_s00521_021_06639_7 crossref_primary_10_1016_j_eswa_2023_122925 crossref_primary_10_1109_ACCESS_2023_3234214 crossref_primary_10_1016_j_tej_2020_106882 crossref_primary_10_1016_j_eswa_2023_121313 crossref_primary_10_1109_TSTE_2021_3064326 crossref_primary_10_1007_s11356_023_30224_1 crossref_primary_10_1016_j_energy_2024_131131 crossref_primary_10_1016_j_apenergy_2022_120127 crossref_primary_10_1016_j_inffus_2023_102180 crossref_primary_10_1002_for_3199 crossref_primary_10_1109_ACCESS_2021_3122826 crossref_primary_10_1016_j_rser_2022_113105 crossref_primary_10_1109_TSTE_2021_3123476 crossref_primary_10_1109_TIA_2025_3542730 crossref_primary_10_1016_j_renene_2023_03_122 crossref_primary_10_1016_j_renene_2024_119943 crossref_primary_10_3390_en15124341 crossref_primary_10_1109_TII_2022_3217541 crossref_primary_10_1109_TSG_2023_3321116 crossref_primary_10_1109_ACCESS_2021_3117004 crossref_primary_10_1109_ACCESS_2024_3429073 crossref_primary_10_1016_j_energy_2023_128510 crossref_primary_10_1016_j_rser_2022_112128 crossref_primary_10_3390_s23084168 crossref_primary_10_1016_j_renene_2022_09_058 crossref_primary_10_3390_en16104249 crossref_primary_10_1109_TSTE_2021_3088951 crossref_primary_10_1109_JAS_2021_1003976 crossref_primary_10_1109_TII_2024_3485693 crossref_primary_10_1016_j_inffus_2025_103617 crossref_primary_10_1109_TNNLS_2020_3042434 crossref_primary_10_1155_2022_9261537 crossref_primary_10_1049_gtd2_13339 crossref_primary_10_1109_TPWRS_2021_3119338 crossref_primary_10_1109_TSG_2022_3175451 crossref_primary_10_1109_TIA_2023_3285202 crossref_primary_10_1016_j_egyr_2024_01_021 crossref_primary_10_1109_TPWRD_2024_3496998 crossref_primary_10_1016_j_apenergy_2020_116405 crossref_primary_10_1109_ACCESS_2022_3192039 crossref_primary_10_1109_TII_2024_3388089 crossref_primary_10_1109_TPWRS_2024_3503288 crossref_primary_10_1109_TSTE_2021_3125200 crossref_primary_10_1016_j_future_2024_107493 crossref_primary_10_1145_3577031 crossref_primary_10_1051_e3sconf_202454008008 crossref_primary_10_1109_ACCESS_2023_3282545 crossref_primary_10_1016_j_aei_2023_102322 crossref_primary_10_3390_en16052307 crossref_primary_10_1016_j_epsr_2023_109792 crossref_primary_10_1016_j_apenergy_2022_119277 crossref_primary_10_3390_s22197179 crossref_primary_10_1007_s11063_022_10935_1 crossref_primary_10_3390_data8040065 crossref_primary_10_3390_en15176267 crossref_primary_10_1109_TIA_2022_3213008 crossref_primary_10_1109_TSTE_2020_3043884 crossref_primary_10_1109_ACCESS_2022_3195053 crossref_primary_10_1016_j_tej_2022_107137 crossref_primary_10_1016_j_egyr_2023_05_063 crossref_primary_10_1109_TPWRS_2023_3342636 crossref_primary_10_1016_j_renene_2025_124354 crossref_primary_10_1002_2050_7038_12664 crossref_primary_10_1016_j_apenergy_2022_119579 crossref_primary_10_3390_en13215763 crossref_primary_10_1016_j_enconman_2025_119773 crossref_primary_10_1109_TITS_2023_3306559 crossref_primary_10_3390_en14092404 crossref_primary_10_1016_j_energy_2022_125592 crossref_primary_10_3390_en16124773 crossref_primary_10_1016_j_renene_2023_119043 crossref_primary_10_1109_TII_2024_3431027 crossref_primary_10_1109_TSTE_2022_3199161 crossref_primary_10_1109_TNNLS_2019_2921952 crossref_primary_10_1109_TSTE_2024_3447023 crossref_primary_10_1016_j_enconman_2023_116970 crossref_primary_10_1109_TII_2021_3133289 crossref_primary_10_1109_TKDE_2024_3435859 crossref_primary_10_1109_TSG_2020_3047863 crossref_primary_10_1109_ACCESS_2020_3047903 crossref_primary_10_1109_TIA_2021_3130852 crossref_primary_10_3390_computation11110232 crossref_primary_10_1016_j_renene_2022_08_054 crossref_primary_10_1080_15567036_2022_2143947 crossref_primary_10_1016_j_epsr_2025_112171 crossref_primary_10_1016_j_rser_2024_114391 crossref_primary_10_1109_TSIPN_2020_3040042 crossref_primary_10_1049_rpg2_12194 crossref_primary_10_1109_TSTE_2022_3186517 crossref_primary_10_3390_en12234490 crossref_primary_10_1109_TII_2022_3216006 crossref_primary_10_1109_ACCESS_2022_3162206 crossref_primary_10_1109_TII_2020_2996235 crossref_primary_10_1016_j_apenergy_2025_126419 crossref_primary_10_1109_TASE_2024_3389455 crossref_primary_10_1016_j_energy_2020_119572 |
| Cites_doi | 10.1016/j.rser.2018.02.002 10.1016/j.apenergy.2016.05.025 10.1063/1.4946798 10.1109/TPWRS.2016.2569608 10.1109/TSTE.2018.2847558 10.1016/j.renene.2016.09.012 10.1109/TSTE.2016.2535466 10.1016/j.renene.2016.12.095 10.1609/icwsm.v3i1.13937 10.1109/PEDG.2018.8447751 10.1016/j.ijforecast.2015.12.002 10.1109/IGARSS.2014.6947394 10.1109/TII.2017.2730846 10.1109/PESGM.2017.8273776 10.1016/j.ijforecast.2015.11.002 10.1016/0038-092X(76)90045-1 10.1016/j.envres.2017.08.039 10.1016/j.solener.2013.05.027 10.1109/ISGT-Asia.2018.8467888 10.1109/TPWRS.2015.2502423 10.1109/PESGM.2015.7285696 10.1016/j.apenergy.2015.08.011 10.1109/TSG.2018.2847223 10.1016/j.renene.2013.05.011 10.1016/j.solener.2014.12.014 10.1109/TSTE.2016.2544929 10.3390/en11112906 10.1109/TSTE.2017.2694551 10.3390/en10101591 10.1016/j.egypro.2015.03.208 10.3390/en11030528 10.1016/j.solener.2012.09.018 10.1109/CFIS.2015.7391664 10.1109/TPWRS.2013.2287871 10.1007/978-3-319-33747-0_17 10.1109/TSTE.2018.2844102 10.1109/TSTE.2016.2610523 10.1109/TPWRS.2016.2608740 10.1016/j.energy.2016.08.060 10.1016/j.rser.2018.03.003 10.1109/TPWRS.2018.2794541 10.1073/pnas.122653799 10.1016/j.ijforecast.2016.02.001 10.1016/j.rser.2017.05.212 10.17775/CSEEJPES.2015.00046 10.3390/app8050689 10.1109/ICMLA.2017.0-108 10.1109/APPEEC.2017.8308947 10.1016/j.renene.2016.01.039 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI |
| DOI | 10.1109/TSTE.2019.2897688 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1949-3037 |
| EndPage | 583 |
| ExternalDocumentID | 10_1109_TSTE_2019_2897688 8663347 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation grantid: ECCS-1710923 funderid: 10.13039/100000001 – fundername: State Grid Corporation Technology grantid: 5455HJ180018 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI |
| ID | FETCH-LOGICAL-c293t-e585b956cb0098505501e48dd657a944468b1036abc1406f94e57f1c29e540e23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 126 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522438600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1949-3029 |
| IngestDate | Mon Jun 30 08:34:37 EDT 2025 Sat Nov 29 03:10:19 EST 2025 Tue Nov 18 22:34:46 EST 2025 Wed Aug 27 02:36:26 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-e585b956cb0098505501e48dd657a944468b1036abc1406f94e57f1c29e540e23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9822-2039 0000-0002-9716-3484 0000-0003-3856-5704 0000-0003-4683-7810 0000-0003-1823-9653 |
| PQID | 2381806237 |
| PQPubID | 2040348 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_8663347 crossref_primary_10_1109_TSTE_2019_2897688 crossref_citationtrail_10_1109_TSTE_2019_2897688 proquest_journals_2381806237 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on sustainable energy |
| PublicationTitleAbbrev | TSTE |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref53 ref11 ref54 ref10 ref17 liu (ref9) 2018; 11 kingma (ref51) 0 ref16 ref18 szabó (ref55) 2014; 15 chollet (ref57) 2015 abadi (ref58) 0 ref46 ref48 ref47 ref41 ref44 ref43 ref49 ref8 ref7 le cadre (ref19) 0 ref4 ref3 ref6 ref5 ref40 ref35 ref34 kipf (ref52) 2016 ref37 ref36 ref31 tastu (ref45) 2013 ref30 ref33 ref32 ref2 ref1 ref39 ref38 bastian (ref56) 2009; 8 doersch (ref50) 2016 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 khodayar (ref42) 2018 |
| References_xml | – ident: ref29 doi: 10.1016/j.rser.2018.02.002 – ident: ref27 doi: 10.1016/j.apenergy.2016.05.025 – ident: ref33 doi: 10.1063/1.4946798 – ident: ref14 doi: 10.1109/TPWRS.2016.2569608 – volume: 15 start-page: 283 year: 2014 ident: ref55 article-title: Information theoretical estimators toolbox publication-title: J Mach Learn Res – ident: ref46 doi: 10.1109/TSTE.2018.2847558 – ident: ref22 doi: 10.1016/j.renene.2016.09.012 – ident: ref12 doi: 10.1109/TSTE.2016.2535466 – ident: ref1 doi: 10.1016/j.renene.2016.12.095 – volume: 8 start-page: 361 year: 2009 ident: ref56 article-title: Gephi: An open source software for exploring and manipulating networks publication-title: ICWSM doi: 10.1609/icwsm.v3i1.13937 – ident: ref39 doi: 10.1109/PEDG.2018.8447751 – ident: ref28 doi: 10.1016/j.ijforecast.2015.12.002 – ident: ref10 doi: 10.1109/IGARSS.2014.6947394 – year: 2015 ident: ref57 article-title: Keras – year: 2013 ident: ref45 article-title: Space-time scenarios of wind power generation produced using a Gaussian copula with parametrized precision matrix – ident: ref3 doi: 10.1109/TII.2017.2730846 – ident: ref32 doi: 10.1109/PESGM.2017.8273776 – ident: ref23 doi: 10.1016/j.ijforecast.2015.11.002 – ident: ref5 doi: 10.1016/0038-092X(76)90045-1 – year: 2018 ident: ref42 article-title: Energy disaggregation via deep temporal dictionary learning – ident: ref48 doi: 10.1016/j.envres.2017.08.039 – ident: ref13 doi: 10.1016/j.solener.2013.05.027 – ident: ref43 doi: 10.1109/ISGT-Asia.2018.8467888 – ident: ref24 doi: 10.1109/TPWRS.2015.2502423 – ident: ref20 doi: 10.1109/PESGM.2015.7285696 – ident: ref54 doi: 10.1016/j.apenergy.2015.08.011 – start-page: 1 year: 0 ident: ref19 article-title: Solar PV power forecasting using extreme learning machine and information fusion publication-title: Proc Eur Symp Artif Neural Netw Comput Intell Mach Learn – ident: ref30 doi: 10.1109/TSG.2018.2847223 – ident: ref31 doi: 10.1016/j.renene.2013.05.011 – year: 2016 ident: ref50 article-title: Tutorial on variational autoencoders – ident: ref17 doi: 10.1016/j.solener.2014.12.014 – ident: ref47 doi: 10.1109/TSTE.2016.2544929 – ident: ref15 doi: 10.3390/en11112906 – ident: ref4 doi: 10.1109/TSTE.2017.2694551 – ident: ref26 doi: 10.3390/en10101591 – ident: ref8 doi: 10.1016/j.egypro.2015.03.208 – volume: 11 start-page: 528 year: 2018 ident: ref9 article-title: Ultra-short-term forecast of photovoltaic output power under fog and haze weather publication-title: Energies doi: 10.3390/en11030528 – ident: ref11 doi: 10.1016/j.solener.2012.09.018 – ident: ref16 doi: 10.1109/CFIS.2015.7391664 – ident: ref18 doi: 10.1109/TPWRS.2013.2287871 – ident: ref35 doi: 10.1007/978-3-319-33747-0_17 – ident: ref53 doi: 10.1109/TSTE.2018.2844102 – ident: ref40 doi: 10.1109/TSTE.2016.2610523 – ident: ref25 doi: 10.1109/TPWRS.2016.2608740 – ident: ref6 doi: 10.1016/j.energy.2016.08.060 – ident: ref44 doi: 10.1016/j.rser.2018.03.003 – ident: ref41 doi: 10.1109/TPWRS.2018.2794541 – ident: ref49 doi: 10.1073/pnas.122653799 – year: 2016 ident: ref52 article-title: Semi-supervised classification with graph convolutional networks – ident: ref36 doi: 10.1016/j.ijforecast.2016.02.001 – ident: ref21 doi: 10.1016/j.rser.2017.05.212 – start-page: 265 year: 0 ident: ref58 article-title: TensorFlow: A system for large-scale machine learning publication-title: Proc 11th USENIX Conf Operating Syst Des Implementation – year: 0 ident: ref51 article-title: Auto-encoding variational bayes – ident: ref2 doi: 10.17775/CSEEJPES.2015.00046 – ident: ref37 doi: 10.3390/app8050689 – ident: ref34 doi: 10.1109/ICMLA.2017.0-108 – ident: ref38 doi: 10.1109/APPEEC.2017.8308947 – ident: ref7 doi: 10.1016/j.renene.2016.01.039 |
| SSID | ssj0000333630 |
| Score | 2.5996163 |
| Snippet | Machine learning on graphs is an important and omnipresent task for a vast variety of applications including anomaly detection and dynamic network analysis. In... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 571 |
| SubjectTerms | Algorithms Anomalies Artificial neural networks Bayesian analysis Computational modeling Data models Deep learning Deep neural network Forecasting Geographical distribution Graph neural networks Irradiance Learning algorithms Machine learning Mathematical analysis Mathematical model Neural networks Nodes Optimization Pattern recognition Predictive models probabilistic forecasting Probabilistic logic Radiation Radiation measurement Solar radiation spatio-temporal forecasting spectral graph convolutions Statistical analysis Statistical inference variational Bayesian inference |
| Title | Convolutional Graph Autoencoder: A Generative Deep Neural Network for Probabilistic Spatio-Temporal Solar Irradiance Forecasting |
| URI | https://ieeexplore.ieee.org/document/8663347 https://www.proquest.com/docview/2381806237 |
| Volume | 11 |
| WOSCitedRecordID | wos000522438600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1949-3037 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000333630 issn: 1949-3029 databaseCode: RIE dateStart: 20100101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB108aAHv8XVVXLwJFb7kTaJt8VvkEXYVbyVNp2CsOxKd9ezP92ZtK6CInjrYQKFl2TmJS9vAI78xFBSZVF7INGToSw8bbT14jwvaUBpYve26ule9Xr6-dk8LMDJ_C0MIjrxGZ7yp7vLL8Z2xkdlZ5rSYyTVIiwqldRvtebnKX4URYlrLUK0nK_zQ9NcYga-ORv0B1es4zKnRDBU3WflKw25vio_NmOXYa7X_vdv67DaVJKiW0O_AQs42oSVb_6CW_B-MR69NXOLQm_YnFp0Z9Mxu1cWWJ2Lrqh9p3nTE5eIr4LdOii2V8vDBdW04qGiRc8iWvZ0Fn2nwfYGtafVUPSZHIu7qnIuBxYFd_u02YT11NvweH01uLj1mpYLnqW8P_WQ2ENOlMnmbDRK1VHsByh1USSxyowk7qjzgJJelltiZklpJMaqDGgwUumHYbQDrdF4hLsgUNkyTrQtJVUJsqS6QJvQ2sRqxCyMszb4nwiktvEj57YYw9TxEt-kDFrKoKUNaG04ng95rc04_greYpTmgQ1Abeh8wpw2y3WSurrFp0mr9n4ftQ_LIRNtJ9npQGtazfAAluzb9GVSHbqZ-AFWMduZ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEB2FFIlyaPmqSJuWPfSEMPHH2t7tLaJQUNMoUgziZtnrsYSEEuR8nPnpzKydFAmExM2HWcvS292Z5337BuCnG2lKqixq9yQ60peFo7QyTpjnJQ0odWjvVt0M4uFQ3d7qUQtO1ndhENGKz_CUH-1ZfjE1C_5V1lOUHgMZb8AHeoPv1re11n9U3CAIIttchIg5H-j7ujnG9FzdS8bJOSu59ClRjLjutPI_EdnOKi-2Y5tjLj6_7-t24FNTS4p-Df4utHCyB9vPHAb34fFsOlk2s4tC_7A9tegv5lP2ryyw-iX6onae5m1P_EZ8EOzXQbHDWiAuqKoVo4qWPcto2dVZjK0K20lqV6t7MWZ6LK6qyvocGBTc79NkM1ZUH8D1xXlyduk0TRccQ5l_7iDxh5xIk8nZapTqo9D1UKqiiMI405LYo8o9SntZboibRaWWGMalR4ORij_0gy_QnkwneAgCY1OGkTKlpDpBllQZKO0bExmFmPlh1gF3hUBqGkdyboxxn1pm4uqUQUsZtLQBrQPH6yEPtR3HW8H7jNI6sAGoA90VzGmzYGeprVxcmrbx19dHHcHWZfJvkA6uhn-_wUefabcV8HShPa8W-B02zXJ-N6t-2Fn5BOgC3uA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+Graph+Autoencoder%3A+A+Generative+Deep+Neural+Network+for+Probabilistic+Spatio-Temporal+Solar+Irradiance+Forecasting&rft.jtitle=IEEE+transactions+on+sustainable+energy&rft.au=Mahdi+Khodayar&rft.au=Mohammadi%2C+Saeed&rft.au=Khodayar%2C+Mohammad+E&rft.au=Wang%2C+Jianhui&rft.date=2020-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1949-3029&rft.eissn=1949-3037&rft.volume=11&rft.issue=2&rft.spage=571&rft_id=info:doi/10.1109%2FTSTE.2019.2897688&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3029&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3029&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3029&client=summon |