Machine Learning for the Geosciences: Challenges and Opportunities

Geosciences is a field of great societal relevance that requires solutions to several urgent problems facing our humanity and the planet. As geosciences enters the era of big data, machine learning (ML)—that has been widely successful in commercial domains—offers immense potential to contribute to p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering Jg. 31; H. 8; S. 1544 - 1554
Hauptverfasser: Karpatne, Anuj, Ebert-Uphoff, Imme, Ravela, Sai, Babaie, Hassan Ali, Kumar, Vipin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1041-4347, 1558-2191
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Geosciences is a field of great societal relevance that requires solutions to several urgent problems facing our humanity and the planet. As geosciences enters the era of big data, machine learning (ML)—that has been widely successful in commercial domains—offers immense potential to contribute to problems in geosciences. However, geoscience applications introduce novel challenges for ML due to combinations of geoscience properties encountered in every problem, requiring novel research in machine learning. This article introduces researchers in the machine learning (ML) community to these challenges offered by geoscience problems and the opportunities that exist for advancing both machine learning and geosciences. We first highlight typical sources of geoscience data and describe their common properties. We then describe some of the common categories of geoscience problems where machine learning can play a role, discussing the challenges faced by existing ML methods and opportunities for novel ML research. We conclude by discussing some of the cross-cutting research themes in machine learning that are applicable across several geoscience problems, and the importance of a deep collaboration between machine learning and geosciences for synergistic advancements in both disciplines.
AbstractList Geosciences is a field of great societal relevance that requires solutions to several urgent problems facing our humanity and the planet. As geosciences enters the era of big data, machine learning (ML)—that has been widely successful in commercial domains—offers immense potential to contribute to problems in geosciences. However, geoscience applications introduce novel challenges for ML due to combinations of geoscience properties encountered in every problem, requiring novel research in machine learning. This article introduces researchers in the machine learning (ML) community to these challenges offered by geoscience problems and the opportunities that exist for advancing both machine learning and geosciences. We first highlight typical sources of geoscience data and describe their common properties. We then describe some of the common categories of geoscience problems where machine learning can play a role, discussing the challenges faced by existing ML methods and opportunities for novel ML research. We conclude by discussing some of the cross-cutting research themes in machine learning that are applicable across several geoscience problems, and the importance of a deep collaboration between machine learning and geosciences for synergistic advancements in both disciplines.
Author Karpatne, Anuj
Ebert-Uphoff, Imme
Babaie, Hassan Ali
Ravela, Sai
Kumar, Vipin
Author_xml – sequence: 1
  givenname: Anuj
  orcidid: 0000-0003-1647-3534
  surname: Karpatne
  fullname: Karpatne, Anuj
  email: karpa009@umn.edu
  organization: University of Minnesota, Minneapolis, MN, USA
– sequence: 2
  givenname: Imme
  orcidid: 0000-0001-6470-1947
  surname: Ebert-Uphoff
  fullname: Ebert-Uphoff, Imme
  email: iebert@colostate.edu
  organization: Colorado State University, Fort Collins, CO, USA
– sequence: 3
  givenname: Sai
  surname: Ravela
  fullname: Ravela, Sai
  email: ravela@mit.edu
  organization: Massachusetts Insititue of Technology, Cambridge, MA, USA
– sequence: 4
  givenname: Hassan Ali
  surname: Babaie
  fullname: Babaie, Hassan Ali
  email: hbabaie@gsu.edu
  organization: Georgia State University, Atlanta, GA, USA
– sequence: 5
  givenname: Vipin
  surname: Kumar
  fullname: Kumar, Vipin
  email: kumar001@umn.edu
  organization: University of Minnesota, Minneapolis, MN, USA
BookMark eNp9kE1PAjEQQBuDiYD-AONlE8-L_aRdb4qIRgwXPDfdMgsla4ttOfjvXQLx4MFT5_DeTPMGqOeDB4SuCR4Rgqu75dvTdEQxUSOqxgTj8RnqEyFUSUlFet2MOSk54_ICDVLaYoyVVKSPHt-N3TgPxRxM9M6viybEIm-gmEFI1oG3kO6Lyca0Lfg1pML4VbHY7ULMe--yg3SJzhvTJrg6vUP08TxdTl7K-WL2OnmYl5ZWLJcgmF2BZEIYQpruq5xUNShKjQAgopaNrGuJa0kxlkwypgyjxuJaQYU7ng3R7XHvLoavPaSst2EffXdSUyoYF5xXrKPkkbIxpBSh0dZlk13wORrXaoL1IZg-BNOHYPoUrDPJH3MX3aeJ3_86N0fHAcAvrzhlWFL2A6xFduQ
CODEN ITKEEH
CitedBy_id crossref_primary_10_1029_2021EA001896
crossref_primary_10_1111_exsy_13654
crossref_primary_10_1007_s10596_024_10317_7
crossref_primary_10_1016_j_jenvman_2024_120966
crossref_primary_10_1109_TGRS_2023_3293137
crossref_primary_10_1007_s11356_021_18037_6
crossref_primary_10_1007_s11625_019_00735_3
crossref_primary_10_1007_s11053_025_10547_1
crossref_primary_10_1016_j_agsy_2025_104300
crossref_primary_10_1002_adem_202402157
crossref_primary_10_1016_j_jappgeo_2022_104846
crossref_primary_10_3390_app9061248
crossref_primary_10_1016_j_earscirev_2025_105140
crossref_primary_10_2118_212869_PA
crossref_primary_10_1039_D2NH00377E
crossref_primary_10_1007_s12145_022_00816_5
crossref_primary_10_1016_j_geomorph_2020_107055
crossref_primary_10_1007_s10596_020_10023_0
crossref_primary_10_1029_2020GL088229
crossref_primary_10_1016_j_rse_2024_114312
crossref_primary_10_1029_2024JH000468
crossref_primary_10_3390_rs16132264
crossref_primary_10_1016_j_apm_2024_115783
crossref_primary_10_1007_s10021_022_00789_y
crossref_primary_10_1175_JHM_D_20_0111_1
crossref_primary_10_1007_s11053_023_10237_w
crossref_primary_10_1016_j_rse_2022_112947
crossref_primary_10_5194_se_10_1469_2019
crossref_primary_10_1016_j_inffus_2023_102180
crossref_primary_10_3390_rs17152626
crossref_primary_10_1007_s11004_023_10076_8
crossref_primary_10_1016_j_acags_2025_100279
crossref_primary_10_1128_spectrum_01712_24
crossref_primary_10_1016_j_cageo_2024_105738
crossref_primary_10_1111_1752_1688_12998
crossref_primary_10_1002_int_22557
crossref_primary_10_1016_j_rsase_2025_101449
crossref_primary_10_1080_01431161_2021_1947540
crossref_primary_10_1016_j_resourpol_2021_102522
crossref_primary_10_1016_j_swevo_2023_101244
crossref_primary_10_1007_s12145_019_00408_w
crossref_primary_10_1016_j_neucom_2020_09_060
crossref_primary_10_1016_j_chemgeo_2023_121676
crossref_primary_10_3390_min12070879
crossref_primary_10_1016_j_jseaes_2025_106780
crossref_primary_10_1109_TCYB_2025_3539990
crossref_primary_10_1016_j_cageo_2025_105913
crossref_primary_10_1145_3444691
crossref_primary_10_3390_ijgi10080546
crossref_primary_10_1109_TGRS_2024_3481448
crossref_primary_10_1190_geo2023_0038_1
crossref_primary_10_1109_TGRS_2024_3401768
crossref_primary_10_3390_rs13173436
crossref_primary_10_1016_j_jpubtr_2025_100117
crossref_primary_10_1109_TGRS_2020_2971345
crossref_primary_10_1016_j_cageo_2021_104817
crossref_primary_10_3390_en15134602
crossref_primary_10_1109_JSTARS_2021_3119001
crossref_primary_10_1007_s12144_024_06813_9
crossref_primary_10_1016_j_gexplo_2019_106431
crossref_primary_10_1209_0295_5075_ad0575
crossref_primary_10_3390_min15040372
crossref_primary_10_1109_ACCESS_2020_2976199
crossref_primary_10_1007_s12145_024_01236_3
crossref_primary_10_1007_s12665_020_09322_7
crossref_primary_10_1016_j_knosys_2025_113671
crossref_primary_10_1016_j_cageo_2022_105082
crossref_primary_10_3390_app11094129
crossref_primary_10_1080_19475705_2023_2286903
crossref_primary_10_3390_ijgi12100415
crossref_primary_10_1016_j_cageo_2023_105420
crossref_primary_10_3390_math10152708
crossref_primary_10_1007_s11004_022_09998_6
crossref_primary_10_1080_13658816_2024_2358052
crossref_primary_10_1145_3686990
crossref_primary_10_1002_wat2_1496
crossref_primary_10_1016_j_gsf_2022_101383
crossref_primary_10_1016_j_scitotenv_2021_147762
crossref_primary_10_1190_geo2020_0312_1
crossref_primary_10_3390_app12199611
crossref_primary_10_3390_su122410499
crossref_primary_10_1186_s40562_023_00261_2
crossref_primary_10_5194_esd_11_201_2020
crossref_primary_10_1007_s12517_025_12204_6
crossref_primary_10_1016_j_comnet_2024_110258
crossref_primary_10_1038_s43247_023_00872_9
crossref_primary_10_1016_j_scitotenv_2023_165494
crossref_primary_10_1007_s12145_024_01224_7
crossref_primary_10_1051_e3sconf_202455201074
crossref_primary_10_1016_j_apgeochem_2024_106124
crossref_primary_10_1175_JAMC_D_22_0036_1
crossref_primary_10_3390_rs11151797
crossref_primary_10_1016_j_gsf_2025_102044
crossref_primary_10_1016_j_oregeorev_2025_106638
crossref_primary_10_1038_s41558_023_01890_3
crossref_primary_10_1007_s00521_020_05529_8
crossref_primary_10_1007_s11004_021_09946_w
crossref_primary_10_1029_2024JD042265
crossref_primary_10_1109_JSTARS_2022_3181744
crossref_primary_10_1145_3446243_3446249
crossref_primary_10_2138_am_2023_9254
crossref_primary_10_1007_s12145_024_01303_9
crossref_primary_10_1016_j_ijdrr_2024_104892
crossref_primary_10_1007_s11242_022_01856_7
crossref_primary_10_1007_s11004_020_09867_0
crossref_primary_10_1080_13658816_2020_1725016
crossref_primary_10_1109_TGRS_2024_3509526
crossref_primary_10_1109_TGRS_2022_3153520
crossref_primary_10_1007_s13347_024_00782_4
crossref_primary_10_1016_j_compedu_2024_105149
crossref_primary_10_1007_s10596_022_10151_9
crossref_primary_10_1109_ACCESS_2025_3552626
crossref_primary_10_3390_su16166971
crossref_primary_10_1016_j_oregeorev_2023_105419
crossref_primary_10_1177_03611981241257512
crossref_primary_10_1007_s11004_021_09979_1
crossref_primary_10_1007_s11430_022_9999_9
crossref_primary_10_1016_j_oregeorev_2024_106248
crossref_primary_10_1145_3494568
crossref_primary_10_1007_s10479_021_04377_6
crossref_primary_10_1016_j_coal_2023_104435
crossref_primary_10_3390_soilsystems7040088
crossref_primary_10_1016_j_envsoft_2025_106585
crossref_primary_10_1007_s11053_023_10276_3
crossref_primary_10_1016_j_geomat_2025_100066
crossref_primary_10_3390_rs11242916
crossref_primary_10_3390_rs15174153
crossref_primary_10_1175_BAMS_D_20_0097_1
crossref_primary_10_1017_pab_2023_3
crossref_primary_10_1016_j_inffus_2024_102832
crossref_primary_10_1016_j_trgeo_2024_101470
crossref_primary_10_3390_atmos15050534
crossref_primary_10_1016_j_apgeochem_2024_106146
crossref_primary_10_1007_s10115_022_01754_w
crossref_primary_10_1016_j_jenvman_2023_118862
crossref_primary_10_1111_mice_12494
crossref_primary_10_1016_j_marpetgeo_2024_107231
crossref_primary_10_1016_j_wasman_2022_12_015
crossref_primary_10_1002_eap_2610
crossref_primary_10_1016_j_isprsjprs_2021_04_001
crossref_primary_10_1016_j_envpol_2024_124634
crossref_primary_10_1109_JBHI_2023_3253208
crossref_primary_10_1109_TGRS_2021_3071189
crossref_primary_10_1175_AIES_D_21_0002_1
crossref_primary_10_1088_1742_6596_2651_1_012028
crossref_primary_10_17491_jgsi_2025_174229
crossref_primary_10_1029_2021RG000744
crossref_primary_10_1016_j_jappgeo_2020_104107
crossref_primary_10_2118_205498_PA
crossref_primary_10_1109_ACCESS_2020_2966080
crossref_primary_10_1016_j_gexplo_2024_107388
crossref_primary_10_1038_s41467_025_62024_1
crossref_primary_10_5194_hess_26_795_2022
crossref_primary_10_2174_0115701638313233240830132804
crossref_primary_10_3390_min13060800
crossref_primary_10_1007_s10596_022_10152_8
crossref_primary_10_1007_s11831_025_10244_5
crossref_primary_10_1109_ACCESS_2019_2951605
crossref_primary_10_1016_j_oregeorev_2025_106768
crossref_primary_10_1109_TGRS_2023_3325444
crossref_primary_10_1016_j_jweia_2024_105936
crossref_primary_10_1016_j_advwatres_2020_103619
crossref_primary_10_1016_j_dsr_2024_104257
crossref_primary_10_1016_j_atmosres_2023_106635
crossref_primary_10_3390_min12091080
crossref_primary_10_1016_j_cageo_2020_104667
crossref_primary_10_1016_j_earscirev_2025_105209
crossref_primary_10_1016_j_aiig_2025_100153
crossref_primary_10_3390_fi16110396
crossref_primary_10_1007_s11069_019_03795_x
crossref_primary_10_1016_j_apenergy_2021_116580
crossref_primary_10_1029_2025JC022723
crossref_primary_10_1007_s11273_025_10058_z
crossref_primary_10_1038_s41598_025_11953_4
crossref_primary_10_1007_s41060_023_00414_8
crossref_primary_10_1038_s41598_025_09300_8
crossref_primary_10_1109_TGRS_2021_3095922
crossref_primary_10_1177_87552930231195113
crossref_primary_10_3390_ijgi12030097
crossref_primary_10_1016_j_oregeorev_2025_106712
crossref_primary_10_1190_geo2024_0935_1
crossref_primary_10_3390_app13064029
crossref_primary_10_1007_s12145_023_01160_y
crossref_primary_10_3389_feart_2025_1604299
crossref_primary_10_1016_j_compag_2025_110006
crossref_primary_10_3390_f15010216
crossref_primary_10_3390_rs16111964
crossref_primary_10_1109_TGRS_2023_3334291
crossref_primary_10_1007_s11269_023_03624_8
crossref_primary_10_1029_2023WR036297
crossref_primary_10_1007_s11053_024_10394_6
crossref_primary_10_1016_j_jhazmat_2023_131712
crossref_primary_10_1016_j_apgeochem_2020_104679
crossref_primary_10_1111_gec3_12563
crossref_primary_10_1190_geo2019_0815_1
crossref_primary_10_3390_ma15031157
crossref_primary_10_1109_TKDE_2019_2913376
crossref_primary_10_3390_en14010197
crossref_primary_10_1016_j_cageo_2022_105100
crossref_primary_10_1088_1755_1315_851_1_012012
crossref_primary_10_5194_esd_13_1289_2022
crossref_primary_10_1029_2024EF005622
crossref_primary_10_1038_s41598_020_57897_9
crossref_primary_10_3390_land12061125
crossref_primary_10_3390_rs15184585
crossref_primary_10_3390_rs16111854
crossref_primary_10_1016_j_jhydrol_2024_132195
crossref_primary_10_1016_j_petrol_2021_109901
crossref_primary_10_1190_geo2019_0138_1
crossref_primary_10_1007_s10596_022_10168_0
crossref_primary_10_1016_j_hydroa_2025_100201
crossref_primary_10_3389_frwa_2021_655837
crossref_primary_10_1016_j_gsf_2022_101435
crossref_primary_10_1016_j_scitotenv_2025_180050
crossref_primary_10_1016_j_enggeo_2021_106344
crossref_primary_10_1038_s41598_023_47546_2
crossref_primary_10_1109_JSTARS_2025_3578728
crossref_primary_10_1007_s11004_021_09967_5
crossref_primary_10_1088_1572_9494_accb8d
crossref_primary_10_3390_ai6060127
crossref_primary_10_1017_eds_2024_34
crossref_primary_10_1109_JSTARS_2021_3108669
crossref_primary_10_1016_j_geomorph_2024_109539
crossref_primary_10_1016_j_envsoft_2023_105879
crossref_primary_10_1029_2021GH000391
crossref_primary_10_5194_bg_22_3965_2025
crossref_primary_10_1016_j_ijhydene_2025_150885
crossref_primary_10_1007_s12145_024_01278_7
crossref_primary_10_1007_s00704_023_04571_5
crossref_primary_10_1007_s11600_025_01649_8
crossref_primary_10_1016_j_gsf_2022_101521
crossref_primary_10_1016_j_compgeo_2022_105159
crossref_primary_10_1016_j_cageo_2024_105682
crossref_primary_10_1016_j_cageo_2025_105981
crossref_primary_10_1007_s10763_023_10426_2
crossref_primary_10_1007_s11004_023_10133_2
crossref_primary_10_1002_hyp_70065
crossref_primary_10_1002_wat2_1533
crossref_primary_10_1371_journal_pone_0263790
crossref_primary_10_1007_s40808_024_01992_7
crossref_primary_10_1002_qj_4167
crossref_primary_10_1016_j_oregeorev_2021_104300
crossref_primary_10_1016_j_jcp_2020_110074
crossref_primary_10_3389_fclim_2024_1504475
crossref_primary_10_1029_2024JG008610
crossref_primary_10_1080_13658816_2025_2508840
crossref_primary_10_3389_fspas_2020_00036
crossref_primary_10_1016_j_cageo_2022_105248
crossref_primary_10_1093_petrology_egae036
crossref_primary_10_5194_bg_19_5591_2022
crossref_primary_10_3390_app14156459
crossref_primary_10_1515_geo_2020_0274
crossref_primary_10_1029_2024JH000155
crossref_primary_10_1007_s10462_022_10329_8
crossref_primary_10_1007_s12145_025_02008_3
crossref_primary_10_1007_s13351_025_4080_y
crossref_primary_10_1080_08120099_2025_2543463
crossref_primary_10_1016_j_geomorph_2023_108626
crossref_primary_10_1016_j_jhydrol_2022_128323
crossref_primary_10_1016_j_cageo_2024_105657
crossref_primary_10_1016_j_scitotenv_2024_176410
crossref_primary_10_3390_w16010152
crossref_primary_10_1007_s12145_024_01515_z
crossref_primary_10_1109_TGRS_2023_3308077
crossref_primary_10_5194_essd_14_381_2022
crossref_primary_10_1109_LGRS_2021_3068132
crossref_primary_10_1016_j_apgeochem_2021_104994
crossref_primary_10_1016_j_chemer_2024_126111
crossref_primary_10_1109_ACCESS_2024_3401009
crossref_primary_10_1017_eds_2022_7
crossref_primary_10_1007_s10950_024_10258_9
crossref_primary_10_1007_s10462_024_10874_4
crossref_primary_10_1016_j_srs_2025_100277
crossref_primary_10_1021_acssusresmgt_5c00104
crossref_primary_10_1016_j_compenvurbsys_2021_101598
crossref_primary_10_1029_2020WR027948
crossref_primary_10_1111_1752_1688_70020
crossref_primary_10_1016_j_jappgeo_2022_104648
crossref_primary_10_1016_j_jag_2025_104807
crossref_primary_10_3390_w15244246
crossref_primary_10_1016_j_geoen_2024_213231
crossref_primary_10_1016_j_jag_2023_103312
crossref_primary_10_1016_j_earscirev_2023_104371
crossref_primary_10_1029_2019MS002002
crossref_primary_10_1016_j_cageo_2024_105663
crossref_primary_10_1007_s00366_023_01852_5
crossref_primary_10_3390_rs14236017
crossref_primary_10_1016_j_watres_2025_123928
crossref_primary_10_1007_s10967_025_10368_9
crossref_primary_10_1007_s11430_019_9584_9
crossref_primary_10_3390_rs11212575
crossref_primary_10_1016_j_acags_2025_100233
crossref_primary_10_3390_app13148275
crossref_primary_10_1007_s10115_023_01847_0
crossref_primary_10_1016_j_marpetgeo_2023_106231
crossref_primary_10_1007_s00376_022_1343_8
crossref_primary_10_1109_TGRS_2023_3334304
crossref_primary_10_1016_j_oregeorev_2022_104753
crossref_primary_10_1109_JOE_2023_3288970
crossref_primary_10_1007_s10596_020_09962_5
crossref_primary_10_1016_j_jhydrol_2024_131434
crossref_primary_10_1190_geo2018_0787_1
crossref_primary_10_1086_717847
crossref_primary_10_3390_rs16183354
crossref_primary_10_1155_2022_3109609
crossref_primary_10_1007_s12145_024_01501_5
crossref_primary_10_3390_make6020059
crossref_primary_10_1016_j_eja_2025_127850
crossref_primary_10_1029_2019WR026933
crossref_primary_10_1016_j_cageo_2022_105284
crossref_primary_10_1029_2022GL098645
crossref_primary_10_1142_S0129183124420105
crossref_primary_10_1016_j_cageo_2023_105341
crossref_primary_10_5194_amt_17_961_2024
crossref_primary_10_1007_s11053_023_10273_6
crossref_primary_10_1007_s44379_025_00016_0
crossref_primary_10_1016_j_acags_2025_100259
crossref_primary_10_1007_s10064_024_03739_1
crossref_primary_10_1029_2022JE007384
crossref_primary_10_1175_AIES_D_22_0012_1
crossref_primary_10_1029_2024WR038515
crossref_primary_10_1109_TGRS_2024_3445462
crossref_primary_10_1080_19475705_2022_2030414
crossref_primary_10_1007_s12665_025_12095_6
crossref_primary_10_1016_j_compag_2024_109501
crossref_primary_10_5194_hess_28_3161_2024
crossref_primary_10_3390_atmos16010048
crossref_primary_10_1007_s11004_021_09989_z
crossref_primary_10_3724_j_issn_1007_2802_20240161
crossref_primary_10_1038_s41467_020_16692_w
crossref_primary_10_1029_2019JC015947
Cites_doi 10.2307/1912791
10.1089/big.2014.0026
10.1038/35106547
10.1109/TKDE.2017.2739739
10.1016/j.physa.2003.10.045
10.1109/MCSE.2013.50
10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
10.1175/JCLI-D-17-0334.1
10.1613/jair.731
10.1137/1.9781611974010.82
10.1109/MASSP.1986.1165342
10.1029/2007GL030812
10.1198/016214504000000872
10.1109/ICCV.2015.123
10.1145/3097983.3098099
10.1109/MCSE.2015.128
10.1016/B978-1-55860-307-3.50012-5
10.1145/3097983.3098004
10.1007/978-1-4939-6568-7_14
10.1016/j.ijforecast.2006.03.005
10.1145/1882471.1882476
10.1109/ICDM.2015.149
10.1002/2014WR015402
10.1029/2009GL039129
10.1002/sam.10100
10.1137/1.9781611974973.20
10.1038/nature06595
10.1017/CBO9781107049994
10.1002/2013WR015096
10.1126/science.1059386
10.1175/JCLI-D-11-00387.1
10.1109/ICNSC.2016.7479007
10.1002/2013WR015141
10.1038/sdata.2015.28
10.1109/BigData.2016.7840723
10.1109/MCSE.2015.127
10.1109/TKDE.2017.2720168
10.1145/2783258.2788612
10.1109/ICDM.2015.93
10.1126/science.aaf7894
10.1111/j.1467-8306.2004.09402005.x
10.1073/pnas.1605617113
10.1073/pnas.1409822111
10.1175/JCLI-D-13-00713.1
10.1145/1557019.1557086
10.5194/npg-21-1145-2014
10.1137/1.9781611972818.10
10.1016/j.rse.2017.05.039
10.1109/MCSE.2015.114
10.1175/JCLI-D-14-00452.1
10.1109/ICDM.2015.147
10.1175/WAF-D-17-0010.1
10.1140/epjst/e2009-01098-2
10.1016/j.procs.2012.04.128
10.1109/ICMLA.2014.96
10.1126/science.1196263
10.1175/BAMS-D-14-00034.1
10.1109/TGRS.2008.2010404
10.1109/ICTAI.2005.17
10.1145/3097983.3098112
10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
10.1145/956750.956801
10.1109/CVPR.2009.5206848
10.1109/ICDM.2013.162
10.1109/MGRS.2016.2528038
10.1145/2820783.2820816
10.1175/BAMS-D-14-00006.1
10.1007/978-3-319-25138-7_12
10.1002/sam.11181
10.1175/JCLI-D-15-0884.1
10.1002/sam.10126
10.1029/2017EO079977
10.1137/1.9781611972825.5
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2018.2861006
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
Computer Science
EISSN 1558-2191
EndPage 1554
ExternalDocumentID 10_1109_TKDE_2018_2861006
8423072
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: #1029711
– fundername: NSF-funded 2015 IS-GEO workshop
  grantid: #1533930
– fundername: Research Collaboration Network
  grantid: #1632211
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-e53cde7355a11f201419be822a5ee15b7f7bb70b7200737338a32ac0b8e90f203
IEDL.DBID RIE
ISICitedReferencesCount 401
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474586200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sun Nov 09 07:13:44 EST 2025
Sat Nov 29 04:46:48 EST 2025
Tue Nov 18 22:11:18 EST 2025
Wed Aug 27 05:51:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-e53cde7355a11f201419be822a5ee15b7f7bb70b7200737338a32ac0b8e90f203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6470-1947
0000-0003-1647-3534
PQID 2253454493
PQPubID 85438
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TKDE_2018_2861006
crossref_primary_10_1109_TKDE_2018_2861006
ieee_primary_8423072
proquest_journals_2253454493
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref58
ref53
ref52
ref54
atluri (ref14) 2017
(ref19) 2017
xie (ref97) 2015
faghmous (ref33) 2014
(ref9) 2017
ref51
ref50
ref46
ref45
karpatne (ref40) 2014
geological survey (ref16) 2017
ref41
ref44
ref43
pearl (ref76) 1991
(ref10) 2017
ref3
ref100
ref101
ref35
ref34
ref37
ref36
ref31
ref30
ref32
ref39
ref38
(ref21) 2017
peckham (ref5) 2014
gil (ref105) 2015
(ref4) 2014
ref24
babaie (ref29) 2017
ref26
ref25
gagne ii (ref61) 2015
(ref20) 2017
ref27
ref13
ref12
ref15
ref96
ref99
ref11
ref98
ref18
ref93
ref92
ref95
ref94
box (ref55) 1976
ward (ref28) 2014; 111
ref86
ref85
ref88
liu (ref89) 0
ref87
(ref17) 2017
racah (ref90) 0
ref82
ref81
ref84
ref83
(ref22) 2017
(ref8) 2017
ref80
ref79
ref78
ref75
ref104
ref74
ref77
ref102
ref103
ref2
ref1
karpatne (ref91) 2017
aoki (ref56) 2013
ref71
ref70
ref73
mcquade (ref42) 2012
ref72
liu (ref59) 2012
ref68
ref67
zhu (ref48) 2007
ref69
ref64
ref63
ref66
(ref23) 2017
ref65
(ref6) 2018
ebert-uphoff (ref7) 2017
(ref47) 2017
settles (ref49) 2010
ref60
ref62
References_xml – year: 2017
  ident: ref22
  article-title: Coupled model intercomparison project
– ident: ref75
  doi: 10.2307/1912791
– ident: ref11
  doi: 10.1089/big.2014.0026
– year: 2017
  ident: ref16
  article-title: Land processes distributed active archive center
– ident: ref27
  doi: 10.1038/35106547
– ident: ref52
  doi: 10.1109/TKDE.2017.2739739
– ident: ref70
  doi: 10.1016/j.physa.2003.10.045
– ident: ref12
  doi: 10.1109/MCSE.2013.50
– ident: ref30
  doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
– ident: ref83
  doi: 10.1175/JCLI-D-17-0334.1
– ident: ref38
  doi: 10.1613/jair.731
– year: 2017
  ident: ref20
  article-title: Global runoff data centre
– ident: ref45
  doi: 10.1137/1.9781611974010.82
– ident: ref57
  doi: 10.1109/MASSP.1986.1165342
– year: 2010
  ident: ref49
  article-title: Active learning literature survey
– ident: ref31
  doi: 10.1029/2007GL030812
– year: 2012
  ident: ref59
  article-title: Sparse-GEV: Sparse latent space model for multivariate extreme value time serie modeling
– ident: ref63
  doi: 10.1198/016214504000000872
– ident: ref88
  doi: 10.1109/ICCV.2015.123
– year: 2018
  ident: ref6
  article-title: Harnessing artificial intelligence for the earth
– year: 2017
  ident: ref19
  article-title: National centers for environmental information
– year: 2017
  ident: ref8
  article-title: Understanding climate change: A data-driven approach
– ident: ref78
  doi: 10.1145/3097983.3098099
– ident: ref35
  doi: 10.1109/MCSE.2015.128
– ident: ref39
  doi: 10.1016/B978-1-55860-307-3.50012-5
– ident: ref92
  doi: 10.1145/3097983.3098004
– ident: ref64
  doi: 10.1007/978-1-4939-6568-7_14
– ident: ref54
  doi: 10.1016/j.ijforecast.2006.03.005
– year: 2017
  ident: ref47
  article-title: Global surface water monitoring system
– ident: ref73
  doi: 10.1145/1882471.1882476
– start-page: 253
  year: 2014
  ident: ref40
  article-title: Predictive learning in the presence of heterogeneity and limited training data
  publication-title: Proc SIAM Int Conf Data Mining
– year: 0
  ident: ref90
  article-title: Semi-supervised detection of extreme weather events in large climate datasets
– ident: ref103
  doi: 10.1109/ICDM.2015.149
– year: 2013
  ident: ref56
  publication-title: State Space Modeling of Time Series
– ident: ref101
  doi: 10.1002/2014WR015402
– ident: ref72
  doi: 10.1029/2009GL039129
– ident: ref74
  doi: 10.1002/sam.10100
– ident: ref95
  doi: 10.1137/1.9781611974973.20
– year: 2017
  ident: ref29
  article-title: Ontology of earth's nonlinear dynamic complex systems
  publication-title: Proc EGU Gen Assem Conf Abstr
– ident: ref2
  doi: 10.1038/nature06595
– ident: ref58
  doi: 10.1017/CBO9781107049994
– year: 2017
  ident: ref14
  article-title: Spatio-temporal data mining: A survey of problems and methods
– ident: ref100
  doi: 10.1002/2013WR015096
– year: 2007
  ident: ref48
  article-title: Semi-supervised learning literature survey
– ident: ref1
  doi: 10.1126/science.1059386
– ident: ref85
  doi: 10.1175/JCLI-D-11-00387.1
– ident: ref65
  doi: 10.1109/ICNSC.2016.7479007
– ident: ref102
  doi: 10.1002/2013WR015141
– ident: ref34
  doi: 10.1038/sdata.2015.28
– year: 2017
  ident: ref91
  article-title: Physics-guided neural networks (PGNN): An application in lake temperature modeling
– ident: ref96
  doi: 10.1109/BigData.2016.7840723
– ident: ref15
  doi: 10.1109/MCSE.2015.127
– ident: ref99
  doi: 10.1109/TKDE.2017.2720168
– year: 2017
  ident: ref10
  article-title: Intelligent systems for geosciences
– ident: ref67
  doi: 10.1145/2783258.2788612
– year: 2017
  ident: ref23
  article-title: Community land model
– ident: ref66
  doi: 10.1109/ICDM.2015.93
– ident: ref98
  doi: 10.1126/science.aaf7894
– start-page: 410
  year: 2014
  ident: ref33
  article-title: Spatio-temporal consistency as a means to identify unlabeled objects in a continuous data field
  publication-title: Proc 28th AAAI Conf Artif Intell
– start-page: 441
  year: 1991
  ident: ref76
  article-title: A theory of inferred causation
  publication-title: Proc 2nd Int Conf Princ Knowl Represent and Reason
– year: 1976
  ident: ref55
  publication-title: Time Series Analysis Forecasting and Control
– year: 2015
  ident: ref105
  article-title: Final workshop report
  publication-title: Workshop Intell Inf Syst Geosci
– ident: ref24
  doi: 10.1111/j.1467-8306.2004.09402005.x
– start-page: 3954
  year: 2015
  ident: ref61
  article-title: Day-ahead hail prediction integrating machine learning with storm-scale numerical weather models
  publication-title: Proc 29th AAAI Conf Artif Intell
– ident: ref18
  doi: 10.1073/pnas.1605617113
– volume: 111
  start-page: 15 659
  year: 2014
  ident: ref28
  article-title: Strong influence of EL niño southern oscillation on flood risk around the world
  publication-title: Proc Nat Acad Sci United States America
  doi: 10.1073/pnas.1409822111
– ident: ref81
  doi: 10.1175/JCLI-D-13-00713.1
– ident: ref84
  doi: 10.1145/1557019.1557086
– year: 0
  ident: ref89
  article-title: Application of deep convolutional neural networks for detecting extreme weather in climate datasets
– ident: ref43
  doi: 10.5194/npg-21-1145-2014
– ident: ref68
  doi: 10.1137/1.9781611972818.10
– year: 2012
  ident: ref42
  article-title: Global climate model tracking using geospatial neighborhoods
  publication-title: Proc 26th AAAI Conf Artif Intell
– ident: ref46
  doi: 10.1016/j.rse.2017.05.039
– ident: ref13
  doi: 10.1109/MCSE.2015.114
– ident: ref80
  doi: 10.1175/JCLI-D-14-00452.1
– ident: ref44
  doi: 10.1109/ICDM.2015.147
– ident: ref62
  doi: 10.1175/WAF-D-17-0010.1
– ident: ref71
  doi: 10.1140/epjst/e2009-01098-2
– ident: ref37
  doi: 10.1016/j.procs.2012.04.128
– ident: ref77
  doi: 10.1109/ICMLA.2014.96
– ident: ref3
  doi: 10.1126/science.1196263
– year: 2017
  ident: ref21
  article-title: EarthScope
– year: 2017
  ident: ref17
  article-title: Landsat data archive
– ident: ref86
  doi: 10.1175/BAMS-D-14-00034.1
– year: 2014
  ident: ref4
  publication-title: Climate Change 2014-Impacts Adaptation and Vulnerability Regional Aspects
– ident: ref51
  doi: 10.1109/TGRS.2008.2010404
– ident: ref50
  doi: 10.1109/ICTAI.2005.17
– year: 2017
  ident: ref9
  article-title: Earth & space sciences informatics
– ident: ref94
  doi: 10.1145/3097983.3098112
– ident: ref25
  doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
– ident: ref69
  doi: 10.1145/956750.956801
– ident: ref87
  doi: 10.1109/CVPR.2009.5206848
– ident: ref32
  doi: 10.1109/ICDM.2013.162
– ident: ref53
  doi: 10.1109/MGRS.2016.2528038
– ident: ref93
  doi: 10.1145/2820783.2820816
– ident: ref60
  doi: 10.1175/BAMS-D-14-00006.1
– year: 2017
  ident: ref7
  article-title: Climate informatics
– year: 2014
  ident: ref5
  article-title: The CSDMS standard names: Cross-domain naming conventions for describing process models, data sets and their associated variables
  publication-title: International Environmental Modelling and Software Society Proc
– ident: ref36
  doi: 10.1007/978-3-319-25138-7_12
– ident: ref26
  doi: 10.1002/sam.11181
– ident: ref79
  doi: 10.1175/JCLI-D-15-0884.1
– ident: ref41
  doi: 10.1002/sam.10126
– ident: ref104
  doi: 10.1029/2017EO079977
– ident: ref82
  doi: 10.1137/1.9781611972825.5
– year: 2015
  ident: ref97
  article-title: Transfer learning from deep features for remote sensing and poverty mapping
SSID ssj0008781
Score 2.6954973
Snippet Geosciences is a field of great societal relevance that requires solutions to several urgent problems facing our humanity and the planet. As geosciences enters...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1544
SubjectTerms Artificial intelligence
Atmospheric modeling
Cross cutting
Data models
Domains
Earth
earth observation data
Earth science
Geology
geoscience
Machine learning
Machine tools
Meteorology
physics-based models
Sensors
Title Machine Learning for the Geosciences: Challenges and Opportunities
URI https://ieeexplore.ieee.org/document/8423072
https://www.proquest.com/docview/2253454493
Volume 31
WOSCitedRecordID wos000474586200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7mUNAHp5vidEoefBK3tUu6NL75Y1NQpw9T9laSNhVBurFugv-9lywdA0XwrQ-XtuRyd98ll_sATlM0mbQrMS2RFBOUJNBNpZQwbSsNG1LChOVYen3gg0E4GonnEpwv78JorW3xmW6ZR3uWn4zjudkqa4fMlC2jw13jnC_uai29bsgtISlmF_hJyrg7wfQ90R7e3_RMEVfY6oSIFgy50UoMsqQqPzyxDS_9yv9-bAe2HYwklwu970JJZ1WoFBQNxFlsFbZW-g1WYePW8vh-1eDq0RZRauL6q74RBK8EwSBBERcV8wtyXVCt5ERmCXmaGLQ-z2wX1j146feG13dNR6fQjDGmz5o6oHGiOQIM6ftpx1R4CqURIMhAaz9QPOVKcU9xs31JOeauknZk7KlQCw_l6T6Us3GmD4AEiUS7pmnKpWZpzKQKu6yrOAY6zsMkqINXTHAUu17jhvLiI7I5hycio5PI6CRyOqnD2XLIZNFo4y_hmlHCUtDNfx0ahRYjZ4p5hA6LsoAxQQ9_H3UEm_husajqa0B5Np3rY1iPP2fv-fTErrJvdhDNPw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4Q1KgHH6ARRe3BkxHYpV269eYDxIjoAQ23TbvbNSZmITxM_PdOSyEkGhNve5imm05n5pt2Oh_AWYomkzYkpiWSYoKSBLqilBKmbaVhQ0qYsBxLrx3e7Yb9vnjOwcXiLYzW2haf6ar5tHf5ySCemqOyWshM2TI63JWAsbo_e6218Lsht5SkmF_gpJRxd4fpe6LWe7htmjKusFoPES8YeqOlKGRpVX74YhtgWtv_-7Ud2HJAklzNNL8LOZ0VYHtO0kCczRZgc6njYAHW7iyT71cRrh9tGaUmrsPqG0H4ShAOEhRxcXF8SW7mZCtjIrOEPA0NXp9mtg_rHry0mr2bdsURKlRijOqTig5onGiOEEP6flo3NZ5CaYQIMtDaDxRPuVLcU9wcYFKO2aukdRl7KtTCQ3m6D_lskOkDIEEi0bJpmnKpWRozqcIGayiOoY7zMAlK4M0XOIpdt3FDevER2azDE5HRSWR0EjmdlOB8MWQ4a7Xxl3DRKGEh6Na_BOW5FiNnjOMIXRZluGMEPfx91Cmst3uPnahz3304gg2cR8xq_MqQn4ym-hhW48_J-3h0YnfcN08B0IY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+for+the+Geosciences%3A+Challenges+and+Opportunities&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Karpatne%2C+Anuj&rft.au=Ebert-Uphoff%2C+Imme&rft.au=Ravela%2C+Sai&rft.au=Babaie%2C+Hassan+Ali&rft.date=2019-08-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=31&rft.issue=8&rft.spage=1544&rft.epage=1554&rft_id=info:doi/10.1109%2FTKDE.2018.2861006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2018_2861006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon