Machine Learning for the Geosciences: Challenges and Opportunities
Geosciences is a field of great societal relevance that requires solutions to several urgent problems facing our humanity and the planet. As geosciences enters the era of big data, machine learning (ML)—that has been widely successful in commercial domains—offers immense potential to contribute to p...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on knowledge and data engineering Jg. 31; H. 8; S. 1544 - 1554 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1041-4347, 1558-2191 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Geosciences is a field of great societal relevance that requires solutions to several urgent problems facing our humanity and the planet. As geosciences enters the era of big data, machine learning (ML)—that has been widely successful in commercial domains—offers immense potential to contribute to problems in geosciences. However, geoscience applications introduce novel challenges for ML due to combinations of geoscience properties encountered in every problem, requiring novel research in machine learning. This article introduces researchers in the machine learning (ML) community to these challenges offered by geoscience problems and the opportunities that exist for advancing both machine learning and geosciences. We first highlight typical sources of geoscience data and describe their common properties. We then describe some of the common categories of geoscience problems where machine learning can play a role, discussing the challenges faced by existing ML methods and opportunities for novel ML research. We conclude by discussing some of the cross-cutting research themes in machine learning that are applicable across several geoscience problems, and the importance of a deep collaboration between machine learning and geosciences for synergistic advancements in both disciplines. |
|---|---|
| AbstractList | Geosciences is a field of great societal relevance that requires solutions to several urgent problems facing our humanity and the planet. As geosciences enters the era of big data, machine learning (ML)—that has been widely successful in commercial domains—offers immense potential to contribute to problems in geosciences. However, geoscience applications introduce novel challenges for ML due to combinations of geoscience properties encountered in every problem, requiring novel research in machine learning. This article introduces researchers in the machine learning (ML) community to these challenges offered by geoscience problems and the opportunities that exist for advancing both machine learning and geosciences. We first highlight typical sources of geoscience data and describe their common properties. We then describe some of the common categories of geoscience problems where machine learning can play a role, discussing the challenges faced by existing ML methods and opportunities for novel ML research. We conclude by discussing some of the cross-cutting research themes in machine learning that are applicable across several geoscience problems, and the importance of a deep collaboration between machine learning and geosciences for synergistic advancements in both disciplines. |
| Author | Karpatne, Anuj Ebert-Uphoff, Imme Babaie, Hassan Ali Ravela, Sai Kumar, Vipin |
| Author_xml | – sequence: 1 givenname: Anuj orcidid: 0000-0003-1647-3534 surname: Karpatne fullname: Karpatne, Anuj email: karpa009@umn.edu organization: University of Minnesota, Minneapolis, MN, USA – sequence: 2 givenname: Imme orcidid: 0000-0001-6470-1947 surname: Ebert-Uphoff fullname: Ebert-Uphoff, Imme email: iebert@colostate.edu organization: Colorado State University, Fort Collins, CO, USA – sequence: 3 givenname: Sai surname: Ravela fullname: Ravela, Sai email: ravela@mit.edu organization: Massachusetts Insititue of Technology, Cambridge, MA, USA – sequence: 4 givenname: Hassan Ali surname: Babaie fullname: Babaie, Hassan Ali email: hbabaie@gsu.edu organization: Georgia State University, Atlanta, GA, USA – sequence: 5 givenname: Vipin surname: Kumar fullname: Kumar, Vipin email: kumar001@umn.edu organization: University of Minnesota, Minneapolis, MN, USA |
| BookMark | eNp9kE1PAjEQQBuDiYD-AONlE8-L_aRdb4qIRgwXPDfdMgsla4ttOfjvXQLx4MFT5_DeTPMGqOeDB4SuCR4Rgqu75dvTdEQxUSOqxgTj8RnqEyFUSUlFet2MOSk54_ICDVLaYoyVVKSPHt-N3TgPxRxM9M6viybEIm-gmEFI1oG3kO6Lyca0Lfg1pML4VbHY7ULMe--yg3SJzhvTJrg6vUP08TxdTl7K-WL2OnmYl5ZWLJcgmF2BZEIYQpruq5xUNShKjQAgopaNrGuJa0kxlkwypgyjxuJaQYU7ng3R7XHvLoavPaSst2EffXdSUyoYF5xXrKPkkbIxpBSh0dZlk13wORrXaoL1IZg-BNOHYPoUrDPJH3MX3aeJ3_86N0fHAcAvrzhlWFL2A6xFduQ |
| CODEN | ITKEEH |
| CitedBy_id | crossref_primary_10_1029_2021EA001896 crossref_primary_10_1111_exsy_13654 crossref_primary_10_1007_s10596_024_10317_7 crossref_primary_10_1016_j_jenvman_2024_120966 crossref_primary_10_1109_TGRS_2023_3293137 crossref_primary_10_1007_s11356_021_18037_6 crossref_primary_10_1007_s11625_019_00735_3 crossref_primary_10_1007_s11053_025_10547_1 crossref_primary_10_1016_j_agsy_2025_104300 crossref_primary_10_1002_adem_202402157 crossref_primary_10_1016_j_jappgeo_2022_104846 crossref_primary_10_3390_app9061248 crossref_primary_10_1016_j_earscirev_2025_105140 crossref_primary_10_2118_212869_PA crossref_primary_10_1039_D2NH00377E crossref_primary_10_1007_s12145_022_00816_5 crossref_primary_10_1016_j_geomorph_2020_107055 crossref_primary_10_1007_s10596_020_10023_0 crossref_primary_10_1029_2020GL088229 crossref_primary_10_1016_j_rse_2024_114312 crossref_primary_10_1029_2024JH000468 crossref_primary_10_3390_rs16132264 crossref_primary_10_1016_j_apm_2024_115783 crossref_primary_10_1007_s10021_022_00789_y crossref_primary_10_1175_JHM_D_20_0111_1 crossref_primary_10_1007_s11053_023_10237_w crossref_primary_10_1016_j_rse_2022_112947 crossref_primary_10_5194_se_10_1469_2019 crossref_primary_10_1016_j_inffus_2023_102180 crossref_primary_10_3390_rs17152626 crossref_primary_10_1007_s11004_023_10076_8 crossref_primary_10_1016_j_acags_2025_100279 crossref_primary_10_1128_spectrum_01712_24 crossref_primary_10_1016_j_cageo_2024_105738 crossref_primary_10_1111_1752_1688_12998 crossref_primary_10_1002_int_22557 crossref_primary_10_1016_j_rsase_2025_101449 crossref_primary_10_1080_01431161_2021_1947540 crossref_primary_10_1016_j_resourpol_2021_102522 crossref_primary_10_1016_j_swevo_2023_101244 crossref_primary_10_1007_s12145_019_00408_w crossref_primary_10_1016_j_neucom_2020_09_060 crossref_primary_10_1016_j_chemgeo_2023_121676 crossref_primary_10_3390_min12070879 crossref_primary_10_1016_j_jseaes_2025_106780 crossref_primary_10_1109_TCYB_2025_3539990 crossref_primary_10_1016_j_cageo_2025_105913 crossref_primary_10_1145_3444691 crossref_primary_10_3390_ijgi10080546 crossref_primary_10_1109_TGRS_2024_3481448 crossref_primary_10_1190_geo2023_0038_1 crossref_primary_10_1109_TGRS_2024_3401768 crossref_primary_10_3390_rs13173436 crossref_primary_10_1016_j_jpubtr_2025_100117 crossref_primary_10_1109_TGRS_2020_2971345 crossref_primary_10_1016_j_cageo_2021_104817 crossref_primary_10_3390_en15134602 crossref_primary_10_1109_JSTARS_2021_3119001 crossref_primary_10_1007_s12144_024_06813_9 crossref_primary_10_1016_j_gexplo_2019_106431 crossref_primary_10_1209_0295_5075_ad0575 crossref_primary_10_3390_min15040372 crossref_primary_10_1109_ACCESS_2020_2976199 crossref_primary_10_1007_s12145_024_01236_3 crossref_primary_10_1007_s12665_020_09322_7 crossref_primary_10_1016_j_knosys_2025_113671 crossref_primary_10_1016_j_cageo_2022_105082 crossref_primary_10_3390_app11094129 crossref_primary_10_1080_19475705_2023_2286903 crossref_primary_10_3390_ijgi12100415 crossref_primary_10_1016_j_cageo_2023_105420 crossref_primary_10_3390_math10152708 crossref_primary_10_1007_s11004_022_09998_6 crossref_primary_10_1080_13658816_2024_2358052 crossref_primary_10_1145_3686990 crossref_primary_10_1002_wat2_1496 crossref_primary_10_1016_j_gsf_2022_101383 crossref_primary_10_1016_j_scitotenv_2021_147762 crossref_primary_10_1190_geo2020_0312_1 crossref_primary_10_3390_app12199611 crossref_primary_10_3390_su122410499 crossref_primary_10_1186_s40562_023_00261_2 crossref_primary_10_5194_esd_11_201_2020 crossref_primary_10_1007_s12517_025_12204_6 crossref_primary_10_1016_j_comnet_2024_110258 crossref_primary_10_1038_s43247_023_00872_9 crossref_primary_10_1016_j_scitotenv_2023_165494 crossref_primary_10_1007_s12145_024_01224_7 crossref_primary_10_1051_e3sconf_202455201074 crossref_primary_10_1016_j_apgeochem_2024_106124 crossref_primary_10_1175_JAMC_D_22_0036_1 crossref_primary_10_3390_rs11151797 crossref_primary_10_1016_j_gsf_2025_102044 crossref_primary_10_1016_j_oregeorev_2025_106638 crossref_primary_10_1038_s41558_023_01890_3 crossref_primary_10_1007_s00521_020_05529_8 crossref_primary_10_1007_s11004_021_09946_w crossref_primary_10_1029_2024JD042265 crossref_primary_10_1109_JSTARS_2022_3181744 crossref_primary_10_1145_3446243_3446249 crossref_primary_10_2138_am_2023_9254 crossref_primary_10_1007_s12145_024_01303_9 crossref_primary_10_1016_j_ijdrr_2024_104892 crossref_primary_10_1007_s11242_022_01856_7 crossref_primary_10_1007_s11004_020_09867_0 crossref_primary_10_1080_13658816_2020_1725016 crossref_primary_10_1109_TGRS_2024_3509526 crossref_primary_10_1109_TGRS_2022_3153520 crossref_primary_10_1007_s13347_024_00782_4 crossref_primary_10_1016_j_compedu_2024_105149 crossref_primary_10_1007_s10596_022_10151_9 crossref_primary_10_1109_ACCESS_2025_3552626 crossref_primary_10_3390_su16166971 crossref_primary_10_1016_j_oregeorev_2023_105419 crossref_primary_10_1177_03611981241257512 crossref_primary_10_1007_s11004_021_09979_1 crossref_primary_10_1007_s11430_022_9999_9 crossref_primary_10_1016_j_oregeorev_2024_106248 crossref_primary_10_1145_3494568 crossref_primary_10_1007_s10479_021_04377_6 crossref_primary_10_1016_j_coal_2023_104435 crossref_primary_10_3390_soilsystems7040088 crossref_primary_10_1016_j_envsoft_2025_106585 crossref_primary_10_1007_s11053_023_10276_3 crossref_primary_10_1016_j_geomat_2025_100066 crossref_primary_10_3390_rs11242916 crossref_primary_10_3390_rs15174153 crossref_primary_10_1175_BAMS_D_20_0097_1 crossref_primary_10_1017_pab_2023_3 crossref_primary_10_1016_j_inffus_2024_102832 crossref_primary_10_1016_j_trgeo_2024_101470 crossref_primary_10_3390_atmos15050534 crossref_primary_10_1016_j_apgeochem_2024_106146 crossref_primary_10_1007_s10115_022_01754_w crossref_primary_10_1016_j_jenvman_2023_118862 crossref_primary_10_1111_mice_12494 crossref_primary_10_1016_j_marpetgeo_2024_107231 crossref_primary_10_1016_j_wasman_2022_12_015 crossref_primary_10_1002_eap_2610 crossref_primary_10_1016_j_isprsjprs_2021_04_001 crossref_primary_10_1016_j_envpol_2024_124634 crossref_primary_10_1109_JBHI_2023_3253208 crossref_primary_10_1109_TGRS_2021_3071189 crossref_primary_10_1175_AIES_D_21_0002_1 crossref_primary_10_1088_1742_6596_2651_1_012028 crossref_primary_10_17491_jgsi_2025_174229 crossref_primary_10_1029_2021RG000744 crossref_primary_10_1016_j_jappgeo_2020_104107 crossref_primary_10_2118_205498_PA crossref_primary_10_1109_ACCESS_2020_2966080 crossref_primary_10_1016_j_gexplo_2024_107388 crossref_primary_10_1038_s41467_025_62024_1 crossref_primary_10_5194_hess_26_795_2022 crossref_primary_10_2174_0115701638313233240830132804 crossref_primary_10_3390_min13060800 crossref_primary_10_1007_s10596_022_10152_8 crossref_primary_10_1007_s11831_025_10244_5 crossref_primary_10_1109_ACCESS_2019_2951605 crossref_primary_10_1016_j_oregeorev_2025_106768 crossref_primary_10_1109_TGRS_2023_3325444 crossref_primary_10_1016_j_jweia_2024_105936 crossref_primary_10_1016_j_advwatres_2020_103619 crossref_primary_10_1016_j_dsr_2024_104257 crossref_primary_10_1016_j_atmosres_2023_106635 crossref_primary_10_3390_min12091080 crossref_primary_10_1016_j_cageo_2020_104667 crossref_primary_10_1016_j_earscirev_2025_105209 crossref_primary_10_1016_j_aiig_2025_100153 crossref_primary_10_3390_fi16110396 crossref_primary_10_1007_s11069_019_03795_x crossref_primary_10_1016_j_apenergy_2021_116580 crossref_primary_10_1029_2025JC022723 crossref_primary_10_1007_s11273_025_10058_z crossref_primary_10_1038_s41598_025_11953_4 crossref_primary_10_1007_s41060_023_00414_8 crossref_primary_10_1038_s41598_025_09300_8 crossref_primary_10_1109_TGRS_2021_3095922 crossref_primary_10_1177_87552930231195113 crossref_primary_10_3390_ijgi12030097 crossref_primary_10_1016_j_oregeorev_2025_106712 crossref_primary_10_1190_geo2024_0935_1 crossref_primary_10_3390_app13064029 crossref_primary_10_1007_s12145_023_01160_y crossref_primary_10_3389_feart_2025_1604299 crossref_primary_10_1016_j_compag_2025_110006 crossref_primary_10_3390_f15010216 crossref_primary_10_3390_rs16111964 crossref_primary_10_1109_TGRS_2023_3334291 crossref_primary_10_1007_s11269_023_03624_8 crossref_primary_10_1029_2023WR036297 crossref_primary_10_1007_s11053_024_10394_6 crossref_primary_10_1016_j_jhazmat_2023_131712 crossref_primary_10_1016_j_apgeochem_2020_104679 crossref_primary_10_1111_gec3_12563 crossref_primary_10_1190_geo2019_0815_1 crossref_primary_10_3390_ma15031157 crossref_primary_10_1109_TKDE_2019_2913376 crossref_primary_10_3390_en14010197 crossref_primary_10_1016_j_cageo_2022_105100 crossref_primary_10_1088_1755_1315_851_1_012012 crossref_primary_10_5194_esd_13_1289_2022 crossref_primary_10_1029_2024EF005622 crossref_primary_10_1038_s41598_020_57897_9 crossref_primary_10_3390_land12061125 crossref_primary_10_3390_rs15184585 crossref_primary_10_3390_rs16111854 crossref_primary_10_1016_j_jhydrol_2024_132195 crossref_primary_10_1016_j_petrol_2021_109901 crossref_primary_10_1190_geo2019_0138_1 crossref_primary_10_1007_s10596_022_10168_0 crossref_primary_10_1016_j_hydroa_2025_100201 crossref_primary_10_3389_frwa_2021_655837 crossref_primary_10_1016_j_gsf_2022_101435 crossref_primary_10_1016_j_scitotenv_2025_180050 crossref_primary_10_1016_j_enggeo_2021_106344 crossref_primary_10_1038_s41598_023_47546_2 crossref_primary_10_1109_JSTARS_2025_3578728 crossref_primary_10_1007_s11004_021_09967_5 crossref_primary_10_1088_1572_9494_accb8d crossref_primary_10_3390_ai6060127 crossref_primary_10_1017_eds_2024_34 crossref_primary_10_1109_JSTARS_2021_3108669 crossref_primary_10_1016_j_geomorph_2024_109539 crossref_primary_10_1016_j_envsoft_2023_105879 crossref_primary_10_1029_2021GH000391 crossref_primary_10_5194_bg_22_3965_2025 crossref_primary_10_1016_j_ijhydene_2025_150885 crossref_primary_10_1007_s12145_024_01278_7 crossref_primary_10_1007_s00704_023_04571_5 crossref_primary_10_1007_s11600_025_01649_8 crossref_primary_10_1016_j_gsf_2022_101521 crossref_primary_10_1016_j_compgeo_2022_105159 crossref_primary_10_1016_j_cageo_2024_105682 crossref_primary_10_1016_j_cageo_2025_105981 crossref_primary_10_1007_s10763_023_10426_2 crossref_primary_10_1007_s11004_023_10133_2 crossref_primary_10_1002_hyp_70065 crossref_primary_10_1002_wat2_1533 crossref_primary_10_1371_journal_pone_0263790 crossref_primary_10_1007_s40808_024_01992_7 crossref_primary_10_1002_qj_4167 crossref_primary_10_1016_j_oregeorev_2021_104300 crossref_primary_10_1016_j_jcp_2020_110074 crossref_primary_10_3389_fclim_2024_1504475 crossref_primary_10_1029_2024JG008610 crossref_primary_10_1080_13658816_2025_2508840 crossref_primary_10_3389_fspas_2020_00036 crossref_primary_10_1016_j_cageo_2022_105248 crossref_primary_10_1093_petrology_egae036 crossref_primary_10_5194_bg_19_5591_2022 crossref_primary_10_3390_app14156459 crossref_primary_10_1515_geo_2020_0274 crossref_primary_10_1029_2024JH000155 crossref_primary_10_1007_s10462_022_10329_8 crossref_primary_10_1007_s12145_025_02008_3 crossref_primary_10_1007_s13351_025_4080_y crossref_primary_10_1080_08120099_2025_2543463 crossref_primary_10_1016_j_geomorph_2023_108626 crossref_primary_10_1016_j_jhydrol_2022_128323 crossref_primary_10_1016_j_cageo_2024_105657 crossref_primary_10_1016_j_scitotenv_2024_176410 crossref_primary_10_3390_w16010152 crossref_primary_10_1007_s12145_024_01515_z crossref_primary_10_1109_TGRS_2023_3308077 crossref_primary_10_5194_essd_14_381_2022 crossref_primary_10_1109_LGRS_2021_3068132 crossref_primary_10_1016_j_apgeochem_2021_104994 crossref_primary_10_1016_j_chemer_2024_126111 crossref_primary_10_1109_ACCESS_2024_3401009 crossref_primary_10_1017_eds_2022_7 crossref_primary_10_1007_s10950_024_10258_9 crossref_primary_10_1007_s10462_024_10874_4 crossref_primary_10_1016_j_srs_2025_100277 crossref_primary_10_1021_acssusresmgt_5c00104 crossref_primary_10_1016_j_compenvurbsys_2021_101598 crossref_primary_10_1029_2020WR027948 crossref_primary_10_1111_1752_1688_70020 crossref_primary_10_1016_j_jappgeo_2022_104648 crossref_primary_10_1016_j_jag_2025_104807 crossref_primary_10_3390_w15244246 crossref_primary_10_1016_j_geoen_2024_213231 crossref_primary_10_1016_j_jag_2023_103312 crossref_primary_10_1016_j_earscirev_2023_104371 crossref_primary_10_1029_2019MS002002 crossref_primary_10_1016_j_cageo_2024_105663 crossref_primary_10_1007_s00366_023_01852_5 crossref_primary_10_3390_rs14236017 crossref_primary_10_1016_j_watres_2025_123928 crossref_primary_10_1007_s10967_025_10368_9 crossref_primary_10_1007_s11430_019_9584_9 crossref_primary_10_3390_rs11212575 crossref_primary_10_1016_j_acags_2025_100233 crossref_primary_10_3390_app13148275 crossref_primary_10_1007_s10115_023_01847_0 crossref_primary_10_1016_j_marpetgeo_2023_106231 crossref_primary_10_1007_s00376_022_1343_8 crossref_primary_10_1109_TGRS_2023_3334304 crossref_primary_10_1016_j_oregeorev_2022_104753 crossref_primary_10_1109_JOE_2023_3288970 crossref_primary_10_1007_s10596_020_09962_5 crossref_primary_10_1016_j_jhydrol_2024_131434 crossref_primary_10_1190_geo2018_0787_1 crossref_primary_10_1086_717847 crossref_primary_10_3390_rs16183354 crossref_primary_10_1155_2022_3109609 crossref_primary_10_1007_s12145_024_01501_5 crossref_primary_10_3390_make6020059 crossref_primary_10_1016_j_eja_2025_127850 crossref_primary_10_1029_2019WR026933 crossref_primary_10_1016_j_cageo_2022_105284 crossref_primary_10_1029_2022GL098645 crossref_primary_10_1142_S0129183124420105 crossref_primary_10_1016_j_cageo_2023_105341 crossref_primary_10_5194_amt_17_961_2024 crossref_primary_10_1007_s11053_023_10273_6 crossref_primary_10_1007_s44379_025_00016_0 crossref_primary_10_1016_j_acags_2025_100259 crossref_primary_10_1007_s10064_024_03739_1 crossref_primary_10_1029_2022JE007384 crossref_primary_10_1175_AIES_D_22_0012_1 crossref_primary_10_1029_2024WR038515 crossref_primary_10_1109_TGRS_2024_3445462 crossref_primary_10_1080_19475705_2022_2030414 crossref_primary_10_1007_s12665_025_12095_6 crossref_primary_10_1016_j_compag_2024_109501 crossref_primary_10_5194_hess_28_3161_2024 crossref_primary_10_3390_atmos16010048 crossref_primary_10_1007_s11004_021_09989_z crossref_primary_10_3724_j_issn_1007_2802_20240161 crossref_primary_10_1038_s41467_020_16692_w crossref_primary_10_1029_2019JC015947 |
| Cites_doi | 10.2307/1912791 10.1089/big.2014.0026 10.1038/35106547 10.1109/TKDE.2017.2739739 10.1016/j.physa.2003.10.045 10.1109/MCSE.2013.50 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 10.1175/JCLI-D-17-0334.1 10.1613/jair.731 10.1137/1.9781611974010.82 10.1109/MASSP.1986.1165342 10.1029/2007GL030812 10.1198/016214504000000872 10.1109/ICCV.2015.123 10.1145/3097983.3098099 10.1109/MCSE.2015.128 10.1016/B978-1-55860-307-3.50012-5 10.1145/3097983.3098004 10.1007/978-1-4939-6568-7_14 10.1016/j.ijforecast.2006.03.005 10.1145/1882471.1882476 10.1109/ICDM.2015.149 10.1002/2014WR015402 10.1029/2009GL039129 10.1002/sam.10100 10.1137/1.9781611974973.20 10.1038/nature06595 10.1017/CBO9781107049994 10.1002/2013WR015096 10.1126/science.1059386 10.1175/JCLI-D-11-00387.1 10.1109/ICNSC.2016.7479007 10.1002/2013WR015141 10.1038/sdata.2015.28 10.1109/BigData.2016.7840723 10.1109/MCSE.2015.127 10.1109/TKDE.2017.2720168 10.1145/2783258.2788612 10.1109/ICDM.2015.93 10.1126/science.aaf7894 10.1111/j.1467-8306.2004.09402005.x 10.1073/pnas.1605617113 10.1073/pnas.1409822111 10.1175/JCLI-D-13-00713.1 10.1145/1557019.1557086 10.5194/npg-21-1145-2014 10.1137/1.9781611972818.10 10.1016/j.rse.2017.05.039 10.1109/MCSE.2015.114 10.1175/JCLI-D-14-00452.1 10.1109/ICDM.2015.147 10.1175/WAF-D-17-0010.1 10.1140/epjst/e2009-01098-2 10.1016/j.procs.2012.04.128 10.1109/ICMLA.2014.96 10.1126/science.1196263 10.1175/BAMS-D-14-00034.1 10.1109/TGRS.2008.2010404 10.1109/ICTAI.2005.17 10.1145/3097983.3098112 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2 10.1145/956750.956801 10.1109/CVPR.2009.5206848 10.1109/ICDM.2013.162 10.1109/MGRS.2016.2528038 10.1145/2820783.2820816 10.1175/BAMS-D-14-00006.1 10.1007/978-3-319-25138-7_12 10.1002/sam.11181 10.1175/JCLI-D-15-0884.1 10.1002/sam.10126 10.1029/2017EO079977 10.1137/1.9781611972825.5 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TKDE.2018.2861006 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 1554 |
| ExternalDocumentID | 10_1109_TKDE_2018_2861006 8423072 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF grantid: #1029711 – fundername: NSF-funded 2015 IS-GEO workshop grantid: #1533930 – fundername: Research Collaboration Network grantid: #1632211 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-e53cde7355a11f201419be822a5ee15b7f7bb70b7200737338a32ac0b8e90f203 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 401 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474586200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1041-4347 |
| IngestDate | Sun Nov 09 07:13:44 EST 2025 Sat Nov 29 04:46:48 EST 2025 Tue Nov 18 22:11:18 EST 2025 Wed Aug 27 05:51:22 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-e53cde7355a11f201419be822a5ee15b7f7bb70b7200737338a32ac0b8e90f203 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6470-1947 0000-0003-1647-3534 |
| PQID | 2253454493 |
| PQPubID | 85438 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_TKDE_2018_2861006 crossref_primary_10_1109_TKDE_2018_2861006 ieee_primary_8423072 proquest_journals_2253454493 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-01 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref58 ref53 ref52 ref54 atluri (ref14) 2017 (ref19) 2017 xie (ref97) 2015 faghmous (ref33) 2014 (ref9) 2017 ref51 ref50 ref46 ref45 karpatne (ref40) 2014 geological survey (ref16) 2017 ref41 ref44 ref43 pearl (ref76) 1991 (ref10) 2017 ref3 ref100 ref101 ref35 ref34 ref37 ref36 ref31 ref30 ref32 ref39 ref38 (ref21) 2017 peckham (ref5) 2014 gil (ref105) 2015 (ref4) 2014 ref24 babaie (ref29) 2017 ref26 ref25 gagne ii (ref61) 2015 (ref20) 2017 ref27 ref13 ref12 ref15 ref96 ref99 ref11 ref98 ref18 ref93 ref92 ref95 ref94 box (ref55) 1976 ward (ref28) 2014; 111 ref86 ref85 ref88 liu (ref89) 0 ref87 (ref17) 2017 racah (ref90) 0 ref82 ref81 ref84 ref83 (ref22) 2017 (ref8) 2017 ref80 ref79 ref78 ref75 ref104 ref74 ref77 ref102 ref103 ref2 ref1 karpatne (ref91) 2017 aoki (ref56) 2013 ref71 ref70 ref73 mcquade (ref42) 2012 ref72 liu (ref59) 2012 ref68 ref67 zhu (ref48) 2007 ref69 ref64 ref63 ref66 (ref23) 2017 ref65 (ref6) 2018 ebert-uphoff (ref7) 2017 (ref47) 2017 settles (ref49) 2010 ref60 ref62 |
| References_xml | – year: 2017 ident: ref22 article-title: Coupled model intercomparison project – ident: ref75 doi: 10.2307/1912791 – ident: ref11 doi: 10.1089/big.2014.0026 – year: 2017 ident: ref16 article-title: Land processes distributed active archive center – ident: ref27 doi: 10.1038/35106547 – ident: ref52 doi: 10.1109/TKDE.2017.2739739 – ident: ref70 doi: 10.1016/j.physa.2003.10.045 – ident: ref12 doi: 10.1109/MCSE.2013.50 – ident: ref30 doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 – ident: ref83 doi: 10.1175/JCLI-D-17-0334.1 – ident: ref38 doi: 10.1613/jair.731 – year: 2017 ident: ref20 article-title: Global runoff data centre – ident: ref45 doi: 10.1137/1.9781611974010.82 – ident: ref57 doi: 10.1109/MASSP.1986.1165342 – year: 2010 ident: ref49 article-title: Active learning literature survey – ident: ref31 doi: 10.1029/2007GL030812 – year: 2012 ident: ref59 article-title: Sparse-GEV: Sparse latent space model for multivariate extreme value time serie modeling – ident: ref63 doi: 10.1198/016214504000000872 – ident: ref88 doi: 10.1109/ICCV.2015.123 – year: 2018 ident: ref6 article-title: Harnessing artificial intelligence for the earth – year: 2017 ident: ref19 article-title: National centers for environmental information – year: 2017 ident: ref8 article-title: Understanding climate change: A data-driven approach – ident: ref78 doi: 10.1145/3097983.3098099 – ident: ref35 doi: 10.1109/MCSE.2015.128 – ident: ref39 doi: 10.1016/B978-1-55860-307-3.50012-5 – ident: ref92 doi: 10.1145/3097983.3098004 – ident: ref64 doi: 10.1007/978-1-4939-6568-7_14 – ident: ref54 doi: 10.1016/j.ijforecast.2006.03.005 – year: 2017 ident: ref47 article-title: Global surface water monitoring system – ident: ref73 doi: 10.1145/1882471.1882476 – start-page: 253 year: 2014 ident: ref40 article-title: Predictive learning in the presence of heterogeneity and limited training data publication-title: Proc SIAM Int Conf Data Mining – year: 0 ident: ref90 article-title: Semi-supervised detection of extreme weather events in large climate datasets – ident: ref103 doi: 10.1109/ICDM.2015.149 – year: 2013 ident: ref56 publication-title: State Space Modeling of Time Series – ident: ref101 doi: 10.1002/2014WR015402 – ident: ref72 doi: 10.1029/2009GL039129 – ident: ref74 doi: 10.1002/sam.10100 – ident: ref95 doi: 10.1137/1.9781611974973.20 – year: 2017 ident: ref29 article-title: Ontology of earth's nonlinear dynamic complex systems publication-title: Proc EGU Gen Assem Conf Abstr – ident: ref2 doi: 10.1038/nature06595 – ident: ref58 doi: 10.1017/CBO9781107049994 – year: 2017 ident: ref14 article-title: Spatio-temporal data mining: A survey of problems and methods – ident: ref100 doi: 10.1002/2013WR015096 – year: 2007 ident: ref48 article-title: Semi-supervised learning literature survey – ident: ref1 doi: 10.1126/science.1059386 – ident: ref85 doi: 10.1175/JCLI-D-11-00387.1 – ident: ref65 doi: 10.1109/ICNSC.2016.7479007 – ident: ref102 doi: 10.1002/2013WR015141 – ident: ref34 doi: 10.1038/sdata.2015.28 – year: 2017 ident: ref91 article-title: Physics-guided neural networks (PGNN): An application in lake temperature modeling – ident: ref96 doi: 10.1109/BigData.2016.7840723 – ident: ref15 doi: 10.1109/MCSE.2015.127 – ident: ref99 doi: 10.1109/TKDE.2017.2720168 – year: 2017 ident: ref10 article-title: Intelligent systems for geosciences – ident: ref67 doi: 10.1145/2783258.2788612 – year: 2017 ident: ref23 article-title: Community land model – ident: ref66 doi: 10.1109/ICDM.2015.93 – ident: ref98 doi: 10.1126/science.aaf7894 – start-page: 410 year: 2014 ident: ref33 article-title: Spatio-temporal consistency as a means to identify unlabeled objects in a continuous data field publication-title: Proc 28th AAAI Conf Artif Intell – start-page: 441 year: 1991 ident: ref76 article-title: A theory of inferred causation publication-title: Proc 2nd Int Conf Princ Knowl Represent and Reason – year: 1976 ident: ref55 publication-title: Time Series Analysis Forecasting and Control – year: 2015 ident: ref105 article-title: Final workshop report publication-title: Workshop Intell Inf Syst Geosci – ident: ref24 doi: 10.1111/j.1467-8306.2004.09402005.x – start-page: 3954 year: 2015 ident: ref61 article-title: Day-ahead hail prediction integrating machine learning with storm-scale numerical weather models publication-title: Proc 29th AAAI Conf Artif Intell – ident: ref18 doi: 10.1073/pnas.1605617113 – volume: 111 start-page: 15 659 year: 2014 ident: ref28 article-title: Strong influence of EL niño southern oscillation on flood risk around the world publication-title: Proc Nat Acad Sci United States America doi: 10.1073/pnas.1409822111 – ident: ref81 doi: 10.1175/JCLI-D-13-00713.1 – ident: ref84 doi: 10.1145/1557019.1557086 – year: 0 ident: ref89 article-title: Application of deep convolutional neural networks for detecting extreme weather in climate datasets – ident: ref43 doi: 10.5194/npg-21-1145-2014 – ident: ref68 doi: 10.1137/1.9781611972818.10 – year: 2012 ident: ref42 article-title: Global climate model tracking using geospatial neighborhoods publication-title: Proc 26th AAAI Conf Artif Intell – ident: ref46 doi: 10.1016/j.rse.2017.05.039 – ident: ref13 doi: 10.1109/MCSE.2015.114 – ident: ref80 doi: 10.1175/JCLI-D-14-00452.1 – ident: ref44 doi: 10.1109/ICDM.2015.147 – ident: ref62 doi: 10.1175/WAF-D-17-0010.1 – ident: ref71 doi: 10.1140/epjst/e2009-01098-2 – ident: ref37 doi: 10.1016/j.procs.2012.04.128 – ident: ref77 doi: 10.1109/ICMLA.2014.96 – ident: ref3 doi: 10.1126/science.1196263 – year: 2017 ident: ref21 article-title: EarthScope – year: 2017 ident: ref17 article-title: Landsat data archive – ident: ref86 doi: 10.1175/BAMS-D-14-00034.1 – year: 2014 ident: ref4 publication-title: Climate Change 2014-Impacts Adaptation and Vulnerability Regional Aspects – ident: ref51 doi: 10.1109/TGRS.2008.2010404 – ident: ref50 doi: 10.1109/ICTAI.2005.17 – year: 2017 ident: ref9 article-title: Earth & space sciences informatics – ident: ref94 doi: 10.1145/3097983.3098112 – ident: ref25 doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2 – ident: ref69 doi: 10.1145/956750.956801 – ident: ref87 doi: 10.1109/CVPR.2009.5206848 – ident: ref32 doi: 10.1109/ICDM.2013.162 – ident: ref53 doi: 10.1109/MGRS.2016.2528038 – ident: ref93 doi: 10.1145/2820783.2820816 – ident: ref60 doi: 10.1175/BAMS-D-14-00006.1 – year: 2017 ident: ref7 article-title: Climate informatics – year: 2014 ident: ref5 article-title: The CSDMS standard names: Cross-domain naming conventions for describing process models, data sets and their associated variables publication-title: International Environmental Modelling and Software Society Proc – ident: ref36 doi: 10.1007/978-3-319-25138-7_12 – ident: ref26 doi: 10.1002/sam.11181 – ident: ref79 doi: 10.1175/JCLI-D-15-0884.1 – ident: ref41 doi: 10.1002/sam.10126 – ident: ref104 doi: 10.1029/2017EO079977 – ident: ref82 doi: 10.1137/1.9781611972825.5 – year: 2015 ident: ref97 article-title: Transfer learning from deep features for remote sensing and poverty mapping |
| SSID | ssj0008781 |
| Score | 2.6954973 |
| Snippet | Geosciences is a field of great societal relevance that requires solutions to several urgent problems facing our humanity and the planet. As geosciences enters... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1544 |
| SubjectTerms | Artificial intelligence Atmospheric modeling Cross cutting Data models Domains Earth earth observation data Earth science Geology geoscience Machine learning Machine tools Meteorology physics-based models Sensors |
| Title | Machine Learning for the Geosciences: Challenges and Opportunities |
| URI | https://ieeexplore.ieee.org/document/8423072 https://www.proquest.com/docview/2253454493 |
| Volume | 31 |
| WOSCitedRecordID | wos000474586200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7mUNAHp5vidEoefBK3tUu6NL75Y1NQpw9T9laSNhVBurFugv-9lywdA0XwrQ-XtuRyd98ll_sATlM0mbQrMS2RFBOUJNBNpZQwbSsNG1LChOVYen3gg0E4GonnEpwv78JorW3xmW6ZR3uWn4zjudkqa4fMlC2jw13jnC_uai29bsgtISlmF_hJyrg7wfQ90R7e3_RMEVfY6oSIFgy50UoMsqQqPzyxDS_9yv9-bAe2HYwklwu970JJZ1WoFBQNxFlsFbZW-g1WYePW8vh-1eDq0RZRauL6q74RBK8EwSBBERcV8wtyXVCt5ERmCXmaGLQ-z2wX1j146feG13dNR6fQjDGmz5o6oHGiOQIM6ftpx1R4CqURIMhAaz9QPOVKcU9xs31JOeauknZk7KlQCw_l6T6Us3GmD4AEiUS7pmnKpWZpzKQKu6yrOAY6zsMkqINXTHAUu17jhvLiI7I5hycio5PI6CRyOqnD2XLIZNFo4y_hmlHCUtDNfx0ahRYjZ4p5hA6LsoAxQQ9_H3UEm_husajqa0B5Np3rY1iPP2fv-fTErrJvdhDNPw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4Q1KgHH6ARRe3BkxHYpV269eYDxIjoAQ23TbvbNSZmITxM_PdOSyEkGhNve5imm05n5pt2Oh_AWYomkzYkpiWSYoKSBLqilBKmbaVhQ0qYsBxLrx3e7Yb9vnjOwcXiLYzW2haf6ar5tHf5ySCemqOyWshM2TI63JWAsbo_e6218Lsht5SkmF_gpJRxd4fpe6LWe7htmjKusFoPES8YeqOlKGRpVX74YhtgWtv_-7Ud2HJAklzNNL8LOZ0VYHtO0kCczRZgc6njYAHW7iyT71cRrh9tGaUmrsPqG0H4ShAOEhRxcXF8SW7mZCtjIrOEPA0NXp9mtg_rHry0mr2bdsURKlRijOqTig5onGiOEEP6flo3NZ5CaYQIMtDaDxRPuVLcU9wcYFKO2aukdRl7KtTCQ3m6D_lskOkDIEEi0bJpmnKpWRozqcIGayiOoY7zMAlK4M0XOIpdt3FDevER2azDE5HRSWR0EjmdlOB8MWQ4a7Xxl3DRKGEh6Na_BOW5FiNnjOMIXRZluGMEPfx91Cmst3uPnahz3304gg2cR8xq_MqQn4ym-hhW48_J-3h0YnfcN08B0IY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+for+the+Geosciences%3A+Challenges+and+Opportunities&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Karpatne%2C+Anuj&rft.au=Ebert-Uphoff%2C+Imme&rft.au=Ravela%2C+Sai&rft.au=Babaie%2C+Hassan+Ali&rft.date=2019-08-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=31&rft.issue=8&rft.spage=1544&rft.epage=1554&rft_id=info:doi/10.1109%2FTKDE.2018.2861006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2018_2861006 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |