Study of AR-, TS-, and MCS-Associated Precipitation and Extreme Precipitation in Present and Warmer Climates
Atmospheric rivers (ARs), tropical storms (TSs), and mesoscale convective systems (MCSs) are important weather phenomena that often threaten society through heavy precipitation and strong winds. Despite their potentially vital role in global and regional hydrological cycles, their contributions to l...
Uložené v:
| Vydané v: | Journal of climate Ročník 35; číslo 2; s. 479 - 497 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Boston
American Meteorological Society
15.01.2022
|
| Predmet: | |
| ISSN: | 0894-8755, 1520-0442 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Atmospheric rivers (ARs), tropical storms (TSs), and mesoscale convective systems (MCSs) are important weather phenomena that often threaten society through heavy precipitation and strong winds. Despite their potentially vital role in global and regional hydrological cycles, their contributions to long-term mean and extreme precipitation have not been systematically explored at the global scale. Using observational and reanalysis data, and NOAA’s Geophysical Fluid Dynamics Laboratory’s new high-resolution global climate model, we quantify that despite their occasional (13%) occurrence globally, AR, TS, and MCS days together account for ∼55% of global mean precipitation and ∼75% of extreme precipitation with daily rates exceeding its local 99th percentile. The model reproduces well the observed percentage of mean and extreme precipitation associated with AR, TS, and MCS days. In an idealized global warming simulation with a homogeneous SST increase of 4 K, the modeled changes in global mean and regional distribution of precipitation correspond well with changes in AR/TS/MCS precipitation. Globally, the frequency of AR days increases and migrates toward higher latitudes while the frequency of TS days increases over the central Pacific and part of the south Indian Ocean with a decrease elsewhere. The frequency of MCS days tends to increase over parts of the equatorial western and eastern Pacific warm pools and high latitudes and decreases over most part of the tropics and subtropics. The AR/TS/MCS mean precipitation intensity increases by ∼5% K−1 due primarily to precipitation increases in the top 25% of AR/TS/MCS days with the heaviest precipitation, which are dominated by the thermodynamic component with the dynamic and microphysical components playing a secondary role. |
|---|---|
| AbstractList | Atmospheric rivers (ARs), tropical storms (TSs), and mesoscale convective systems (MCSs) are important weather phenomena that often threaten society through heavy precipitation and strong winds. Despite their potentially vital role in global and regional hydrological cycles, their contributions to long-term mean and extreme precipitation have not been systematically explored at the global scale. Using observational and reanalysis data, and NOAA’s Geophysical Fluid Dynamics Laboratory’s new high-resolution global climate model, we quantify that despite their occasional (13%) occurrence globally, AR, TS, and MCS days together account for ∼55% of global mean precipitation and ∼75% of extreme precipitation with daily rates exceeding its local 99th percentile. The model reproduces well the observed percentage of mean and extreme precipitation associated with AR, TS, and MCS days. In an idealized global warming simulation with a homogeneous SST increase of 4 K, the modeled changes in global mean and regional distribution of precipitation correspond well with changes in AR/TS/MCS precipitation. Globally, the frequency of AR days increases and migrates toward higher latitudes while the frequency of TS days increases over the central Pacific and part of the south Indian Ocean with a decrease elsewhere. The frequency of MCS days tends to increase over parts of the equatorial western and eastern Pacific warm pools and high latitudes and decreases over most part of the tropics and subtropics. The AR/TS/MCS mean precipitation intensity increases by ∼5% K−1 due primarily to precipitation increases in the top 25% of AR/TS/MCS days with the heaviest precipitation, which are dominated by the thermodynamic component with the dynamic and microphysical components playing a secondary role. Atmospheric rivers (ARs), tropical storms (TSs), and mesoscale convective systems (MCSs) are important weather phenomena that often threaten society through heavy precipitation and strong winds. Despite their potentially vital role in global and regional hydrological cycles, their contributions to long-term mean and extreme precipitation have not been systematically explored at the global scale. Using observational and reanalysis data, and NOAA’s Geophysical Fluid Dynamics Laboratory’s new high-resolution global climate model, we quantify that despite their occasional (13%) occurrence globally, AR, TS, and MCS days together account for ∼55% of global mean precipitation and ∼75% of extreme precipitation with daily rates exceeding its local 99th percentile. The model reproduces well the observed percentage of mean and extreme precipitation associated with AR, TS, and MCS days. In an idealized global warming simulation with a homogeneous SST increase of 4 K, the modeled changes in global mean and regional distribution of precipitation correspond well with changes in AR/TS/MCS precipitation. Globally, the frequency of AR days increases and migrates toward higher latitudes while the frequency of TS days increases over the central Pacific and part of the south Indian Ocean with a decrease elsewhere. The frequency of MCS days tends to increase over parts of the equatorial western and eastern Pacific warm pools and high latitudes and decreases over most part of the tropics and subtropics. The AR/TS/MCS mean precipitation intensity increases by ∼5% K −1 due primarily to precipitation increases in the top 25% of AR/TS/MCS days with the heaviest precipitation, which are dominated by the thermodynamic component with the dynamic and microphysical components playing a secondary role. |
| Author | Zhao, Ming |
| Author_xml | – sequence: 1 givenname: Ming surname: Zhao fullname: Zhao, Ming |
| BookMark | eNp9kM9LwzAcxYNMcJvevQgFr2bmZ9MeRzd1MlHcxGPImhQ6umYmGbj_3nQbHjx4SSDfz3vvmzcAvda2BoBrjEYYC37_XMxncAIJhggzPsJnoI85QRAxRnqgj7KcwUxwfgEG3q8RwiRFqA-aRdjpfWKrZPwO75LlIh6q1clLsYBj721Zq2B08uZMWW_roEJt2wMw_Q7ObMyfSd12D9604QB9KrcxLimaehNt_CU4r1TjzdXpHoKPh-myeILz18dZMZ7DkuQ0QMNKQlVOK04JJSUnhlNRKZKKTOdmlSpNVynjGUE4AgZRkfHU5IJrzrjWKzoEt0ffrbNfO-ODXNuda2OkjCY8zSkWNFLoSJXOeu9MJbcu7un2EiPZdSq7TuVEEiy7TiWOkvSPpDz9PDhVN_8Jb47CtQ_W_QYRQRhDDNMfQziFSA |
| CitedBy_id | crossref_primary_10_1038_s41612_024_00681_7 crossref_primary_10_1038_s43247_025_02564_y crossref_primary_10_1007_s00382_025_07651_6 crossref_primary_10_1038_s41612_025_00998_x crossref_primary_10_1038_s41467_024_48743_x crossref_primary_10_1088_1748_9326_ad2163 crossref_primary_10_1002_joc_7647 crossref_primary_10_1007_s00382_022_06297_y crossref_primary_10_1007_s11430_022_9975_0 crossref_primary_10_1029_2022JD037041 crossref_primary_10_1038_s41612_023_00391_6 crossref_primary_10_1038_s41612_023_00347_w crossref_primary_10_1038_s41612_023_00540_x crossref_primary_10_5194_gmd_18_1307_2025 |
| Cites_doi | 10.1002/2016GL070470 10.1029/94GL01710 10.1038/nclimate1530 10.1175/JCLI-D-14-00065.1 10.1007/s00382-018-4071-0 10.1038/s41612-019-0095-3 10.1029/2017GL076968 10.1175/JCLI-D-16-0289.1 10.1002/2015GL067392 10.1029/2004RG000150 10.1088/1748-9326/ab7130 10.5194/gmd-9-1937-2016 10.1029/2006GL026689 10.1175/JCLI-D-16-0088.1 10.1175/JCLI3990.1 10.1175/2009JCLI3049.1 10.1038/ngeo1799 10.1175/2010MWR3366.1 10.1038/ngeo779 10.1029/2020JD034202 10.1175/1520-0450(1984)023<0416:SDOTRB>2.0.CO;2 10.1175/MWR-D-20-0027.1 10.1002/2016WR019033 10.1175/2009BAMS2755.1 10.1175/1520-0426(2000)017<1296:AIAFGG>2.0.CO;2 10.1175/2009JCLI3303.1 10.1029/2019MS001829 10.1175/JCLI-D-11-00050.1 10.1175/JAS-D-11-0238.1 10.1029/2019MS002015 10.1175/BAMS-D-18-0194.1 10.1073/pnas.1922500117 10.1029/2019MS001895 10.1002/2017MS001208 10.1175/JCLI-D-20-0241.1 10.1175/1520-0450(1983)022<1416:AEOATF>2.0.CO;2 10.1175/JCLI-D-11-00736.1 10.1175/BAMS-D-18-0189.1 10.1175/BAMS-D-18-0023.1 10.1016/j.jhydrol.2014.12.010 10.1002/2014MS000372 10.1038/ncomms13429 10.1175/JCLI-D-14-00200.1 10.1175/BAMS-D-17-0138.1 10.1175/JHM-D-13-02.1 10.5194/gmd-9-4185-2016 10.1002/grl.50636 10.5194/gmd-11-2455-2018 10.1002/2017MS001209 10.1175/JCLI-D-11-00313.1 10.1175/JHM-D-20-0039.1 |
| ContentType | Journal Article |
| Copyright | 2021 American Meteorological Society Copyright American Meteorological Society Jan 2022 |
| Copyright_xml | – notice: 2021 American Meteorological Society – notice: Copyright American Meteorological Society Jan 2022 |
| DBID | AAYXX CITATION 7QH 7TG 7UA C1K F1W H96 KL. L.G |
| DOI | 10.1175/JCLI-D-21-0145.1 |
| DatabaseName | CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1520-0442 |
| EndPage | 497 |
| ExternalDocumentID | 10_1175_JCLI_D_21_0145_1 27244041 |
| GroupedDBID | -~X 29K 4.4 5GY 7X2 7XC 85S 88I 8AF 8FE 8FG 8FH 8G5 8R4 8R5 AAEFR AAFWJ ABBHK ABDBF ABDNZ ABUWG ACGFO ACGOD ACIHN ACUHS AEAQA AEKFB AENEX AEUPB AEUYN AFKRA AFRAH AGFAN AIFVT ALMA_UNASSIGNED_HOLDINGS ALQLQ APEBS ARAPS ATCPS AZQEC BCU BEC BENPR BES BGLVJ BHPHI BKSAR BLC BPHCQ CCPQU CS3 D-I D1K DU5 DWQXO E3Z EAD EAP EAS EAU EBS EDH EMK EPL EST ESX F5P F8P FRP GNUQQ GUQSH H13 HCIFZ H~9 I-F IZHOT JAAYA JENOY JKQEH JLEZI JLXEF JPL JST K6- LK5 M0K M1Q M2O M2P M2Q M7R MV1 OK1 P2P P62 PATMY PCBAR PHGZM PHGZT PQQKQ PROAC PYCSY Q2X QF4 QM9 QN7 QO4 RWA RWE RWL RXW S0X SA0 SJFOW SWMRO TAE TN5 TR2 TUS U5U UNMZH ~02 AAYXX ABUFD AFFHD BANNL CITATION PQGLB 7QH 7TG 7UA C1K F1W H96 KL. L.G PUEGO |
| ID | FETCH-LOGICAL-c293t-e4c23a93f53232c52e537fa2678d9eb6ad3b6458201323e037856e975d545ddb3 |
| ISICitedReferencesCount | 49 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000799188000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0894-8755 |
| IngestDate | Sat Aug 23 12:43:34 EDT 2025 Sat Nov 29 04:58:09 EST 2025 Tue Nov 18 22:18:07 EST 2025 Thu Jun 19 20:12:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | http://www.ametsoc.org/PUBSReuseLicenses |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c293t-e4c23a93f53232c52e537fa2678d9eb6ad3b6458201323e037856e975d545ddb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4996-7821 |
| PQID | 2675693173 |
| PQPubID | 32902 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2675693173 crossref_primary_10_1175_JCLI_D_21_0145_1 crossref_citationtrail_10_1175_JCLI_D_21_0145_1 jstor_primary_27244041 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-15 |
| PublicationDateYYYYMMDD | 2022-01-15 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Boston |
| PublicationPlace_xml | – name: Boston |
| PublicationTitle | Journal of climate |
| PublicationYear | 2022 |
| Publisher | American Meteorological Society |
| Publisher_xml | – name: American Meteorological Society |
| References | Dong (ref601) 2021; 34 Huang (ref791) 2018; 51 Horn (ref211) 2014; 27 Scoccimarro (ref961) 2014; 27 Ellingson (ref71) 1983; 22 Bony (ref561) 2013; 6 Houze (ref771) 2004; 42 Prat (ref371) 2013; 26 Jiang (ref801) 2010; 23 Held (ref181) 2011; 24 Murakami (ref341) 2020; 117 Zhao (ref531) 2012; 69 Shields (ref981) 2016; 43 Lavers (ref851) 2013; 40 Zhao (ref1041) 2020; 33 Knutson (ref271) 2010; 3 Guan (ref141) 2015; 120 Feng (ref661) 2016; 7 Guan (ref691) 2015; 120 Held (ref721) 2006; 19 Dong (ref51) 2021; 34 Espinoza (ref91) 2018; 45 Zhao (ref1071) 2010; 138 Ralph (ref941) 2006; 33 Zhao (ref511) 2009; 22 Knapp (ref811) 2010; 91 Espinoza (ref641) 2018; 45 Held (ref741) 2019; 11 Ellingson (ref621) 1983; 22 Emanuel (ref81) 2018 Cheeks (ref21) 2020; 148 Shields (ref991) 2018; 11 Zhao (ref471) 2018a; 10 Liu (ref871) 2019; 2 Ralph (ref951) 2019; 100 Zhao (ref1081) 2012; 69 Hagos (ref161) 2016; 43 Hodges (ref751) 2000; 17 Eyring (ref651) 2016; 9 Dunne (ref611) 2020; 12 Houze (ref781) 2018 Knutson (ref821) 2010; 3 Zhao (ref1031) 2018b; 10 Held (ref191) 2019; 11 Zhao (ref491) 2020; 33 Zhao (ref1061) 2009; 22 Delworth (ref31) 2020; 12 Dettinger (ref41) 2013; 14 Knutson (ref291) 2020; 101 Muller (ref881) 2020; 15 Zhu (ref541) 1994; 21 Lavers (ref861) 2015; 522 Ralph (ref391) 2006; 33 Beck (ref551) 2019; 100 Dettinger (ref591) 2013; 14 Shaevitz (ref421) 2014; 6 Feng (ref671) 2021; 126 Eyring (ref101) 2016; 9 Held (ref171) 2006; 19 Muller (ref331) 2020; 15 Slinskey (ref1001) 2020; 21 Knutson (ref841) 2020; 101 Held (ref731) 2011; 24 Dunne (ref61) 2020; 12 Delworth (ref581) 2020; 12 Shields (ref431) 2016; 43 Huang (ref241) 2018; 51 Gao (ref131) 2016; 29 Zhao (ref501) 2012; 25 Haarsma (ref151) 2016; 9 Houze (ref231) 2018 Feng (ref111) 2016; 7 Houze (ref221) 2004; 42 Knutson (ref281) 2019; 100 Murakami (ref891) 2020; 117 Villarini (ref461) 2012; 2 Gao (ref681) 2016; 29 Bony (ref11) 2013; 6 Beck (ref01) 2019; 100 Haarsma (ref701) 2016; 9 Feng (ref121) 2021; 126 Ohring (ref911) 1984; 23 Zhu (ref1091) 1994; 21 Ohring (ref361) 1984; 23 Zhao (ref521) 2010; 138 Zhao (ref1051) 2012; 25 Nayak (ref351) 2017; 53 Jiang (ref251) 2010; 23 Zhao (ref481) 2018b; 10 Cheeks (ref571) 2020; 148 Hagos (ref711) 2016; 43 Nayak (ref901) 2017; 53 Knutson (ref831) 2019; 100 Prat (ref921) 2013; 26 Prat (ref931) 2016; 29 Liu (ref321) 2019; 2 Prat (ref381) 2016; 29 Shields (ref441) 2018; 11 Lavers (ref311) 2015; 522 Scoccimarro (ref411) 2014; 27 Ralph (ref401) 2019; 100 Slinskey (ref451) 2020; 21 Knapp (ref261) 2010; 91 Hodges (ref201) 2000; 17 Shaevitz (ref971) 2014; 6 Lavers (ref301) 2013; 40 Emanuel (ref631) 2018 Zhao (ref1021) 2018a; 10 Villarini (ref1011) 2012; 2 Horn (ref761) 2014; 27 |
| References_xml | – volume: 43 start-page: 8775 year: 2016 ident: ref981 article-title: Atmospheric river landfall-latitude changes in future climate simulations publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL070470 – volume: 21 start-page: 1999 year: 1994 ident: ref541 article-title: Atmospheric rivers and bombs publication-title: Geophys. Res. Lett. doi: 10.1029/94GL01710 – volume: 2 start-page: 604 year: 2012 ident: ref1011 article-title: Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models publication-title: Nat. Climate Change doi: 10.1038/nclimate1530 – volume: 27 start-page: 4642 year: 2014 ident: ref411 article-title: Intense precipitation events associated with landfalling tropical cyclones in response to a warmer climate and increased CO2 publication-title: J. Climate doi: 10.1175/JCLI-D-14-00065.1 – volume: 51 start-page: 3145 year: 2018 ident: ref241 article-title: A long-term tropical mesoscale convective systems dataset based on a novel objective automatic tracking algorithm publication-title: Climate Dyn. doi: 10.1007/s00382-018-4071-0 – volume: 2 start-page: 38 year: 2019 ident: ref871 article-title: Causes of large projected increases in hurricane precipitation rates with global warming publication-title: npj Climate Atmos. Sci. doi: 10.1038/s41612-019-0095-3 – volume: 45 start-page: 4299 year: 2018 ident: ref91 article-title: Global analysis of climate change projection effects on atmospheric rivers publication-title: Geophys. Res. Lett. doi: 10.1029/2017GL076968 – volume: 29 start-page: 6127 year: 2016 ident: ref931 article-title: On the link between tropical cyclones and daily rainfall extremes derived from global satellite observations publication-title: J. Climate doi: 10.1175/JCLI-D-16-0289.1 – volume: 43 start-page: 1357 year: 2016 ident: ref161 article-title: A projection of changes in landfalling atmospheric river frequency and extreme precipitation over western North America from the large ensemble CESM simulations publication-title: Geophys. Res. Lett. doi: 10.1002/2015GL067392 – volume: 2 start-page: 604 year: 2012 ident: ref461 article-title: Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models publication-title: Nat. Climate Change doi: 10.1038/nclimate1530 – volume: 42 start-page: 1 year: 2004 ident: ref221 article-title: Mesoscale convective systems publication-title: Rev. Geophys. doi: 10.1029/2004RG000150 – volume: 27 start-page: 4642 year: 2014 ident: ref961 article-title: Intense precipitation events associated with landfalling tropical cyclones in response to a warmer climate and increased CO2 publication-title: J. Climate doi: 10.1175/JCLI-D-14-00065.1 – volume: 15 start-page: 035001 year: 2020 ident: ref331 article-title: Response of precipitation extremes to warming: What have we learned from theory and idealized cloud-resolving simulations, and what remains to be learned? publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab7130 – volume: 9 start-page: 1937 year: 2016 ident: ref101 article-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization publication-title: Geosci. Model Dev. doi: 10.5194/gmd-9-1937-2016 – volume: 33 start-page: L13801 year: 2006 ident: ref941 article-title: Flooding on California’s Russian River: Role of atmospheric rivers publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL026689 – volume: 29 start-page: 6711 year: 2016 ident: ref681 article-title: Uncertainties in projecting future changes in atmospheric rivers and their impacts on heavy precipitation over Europe publication-title: J. Climate doi: 10.1175/JCLI-D-16-0088.1 – volume: 19 start-page: 5686 year: 2006 ident: ref721 article-title: Robust responses of the hydrological cycle to global warming publication-title: J. Climate doi: 10.1175/JCLI3990.1 – volume: 29 start-page: 6127 year: 2016 ident: ref381 article-title: On the link between tropical cyclones and daily rainfall extremes derived from global satellite observations publication-title: J. Climate doi: 10.1175/JCLI-D-16-0289.1 – volume: 22 start-page: 6653 year: 2009 ident: ref1061 article-title: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM publication-title: J. Climate doi: 10.1175/2009JCLI3049.1 – volume: 6 start-page: 447 year: 2013 ident: ref561 article-title: Robust direct effect of carbon dioxide on tropical circulation and regional precipitation publication-title: Nat. Geosci. doi: 10.1038/ngeo1799 – volume: 138 start-page: 3858 year: 2010 ident: ref1071 article-title: Retrospective forecasts of the hurricane season using a global atmospheric model assuming persistence of SST anomalies publication-title: Mon. Wea. Rev. doi: 10.1175/2010MWR3366.1 – volume: 3 start-page: 157 year: 2010 ident: ref821 article-title: Tropical cyclones and climate change publication-title: Nat. Geosci. doi: 10.1038/ngeo779 – volume: 43 start-page: 1357 year: 2016 ident: ref711 article-title: A projection of changes in landfalling atmospheric river frequency and extreme precipitation over western North America from the large ensemble CESM simulations publication-title: Geophys. Res. Lett. doi: 10.1002/2015GL067392 – volume: 126 start-page: e2020JD034202 year: 2021 ident: ref121 article-title: A global high-resolution mesoscale convective system database using satellite-derived cloud tops, surface precipitation, and tracking publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2020JD034202 – volume: 23 start-page: 416 year: 1984 ident: ref911 article-title: Satellite determinations of the relationship between total longwave radiation flux and infrared window radiance publication-title: J. Climate Appl. Meteor. doi: 10.1175/1520-0450(1984)023<0416:SDOTRB>2.0.CO;2 – volume: 51 start-page: 3145 year: 2018 ident: ref791 article-title: A long-term tropical mesoscale convective systems dataset based on a novel objective automatic tracking algorithm publication-title: Climate Dyn. doi: 10.1007/s00382-018-4071-0 – volume: 148 start-page: 2607 year: 2020 ident: ref571 article-title: A satellite-based climatology of central and southeastern U.S. mesoscale convective systems publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-20-0027.1 – volume: 53 start-page: 1144 year: 2017 ident: ref351 article-title: A long-term perspective of the hydroclimatological impacts of atmospheric rivers over the central United States publication-title: Water Resour. Res. doi: 10.1002/2016WR019033 – volume: 91 start-page: 363 year: 2010 ident: ref261 article-title: The International Best Track Archive for Climate Stewardship (IBTrACS) publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/2009BAMS2755.1 – volume: 17 start-page: 1296 year: 2000 ident: ref751 article-title: An improved algorithm for generating global window brightness temperatures from multiple satellite infrared imagery publication-title: J. Atmos. Oceanic Technol. doi: 10.1175/1520-0426(2000)017<1296:AIAFGG>2.0.CO;2 – volume: 23 start-page: 1526 year: 2010 ident: ref251 article-title: Contribution of tropical cyclones to the global precipitation from eight seasons of TRMM data: Regional, seasonal, and interannual variations publication-title: J. Climate doi: 10.1175/2009JCLI3303.1 – volume: 11 start-page: 3691 year: 2019 ident: ref191 article-title: Structure and performance of GFDL’s CM4.0 climate model publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2019MS001829 – volume: 2 start-page: 38 year: 2019 ident: ref321 article-title: Causes of large projected increases in hurricane precipitation rates with global warming publication-title: npj Climate Atmos. Sci. doi: 10.1038/s41612-019-0095-3 – volume: 24 start-page: 5353 year: 2011 ident: ref181 article-title: The response of tropical cyclone statistics to an increase in CO2 with fixed sea surface temperatures publication-title: J. Climate doi: 10.1175/JCLI-D-11-00050.1 – volume: 126 start-page: e2020JD034202 year: 2021 ident: ref671 article-title: A global high-resolution mesoscale convective system database using satellite-derived cloud tops, surface precipitation, and tracking publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2020JD034202 – volume: 33 start-page: L13801 year: 2006 ident: ref391 article-title: Flooding on California’s Russian River: Role of atmospheric rivers publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL026689 – volume: 69 start-page: 2272 year: 2012 ident: ref531 article-title: Some counterintuitive dependencies of tropical cyclone frequency on parameters in a GCM publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-11-0238.1 – volume: 17 start-page: 1296 year: 2000 ident: ref201 article-title: An improved algorithm for generating global window brightness temperatures from multiple satellite infrared imagery publication-title: J. Atmos. Oceanic Technol. doi: 10.1175/1520-0426(2000)017<1296:AIAFGG>2.0.CO;2 – volume: 42 start-page: 1 year: 2004 ident: ref771 article-title: Mesoscale convective systems publication-title: Rev. Geophys. doi: 10.1029/2004RG000150 – volume: 12 start-page: e2019MS002015 year: 2020 ident: ref61 article-title: The GFDL Earth System Model version 4.1 (GFDL-ESM4.1): Model description and simulation characteristics publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2019MS002015 – volume: 101 start-page: E303 year: 2020 ident: ref291 article-title: Tropical cyclones and climate change assessment: Part II. Projected response to anthropogenic warming publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-18-0194.1 – volume: 22 start-page: 6653 year: 2009 ident: ref511 article-title: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM publication-title: J. Climate doi: 10.1175/2009JCLI3049.1 – volume: 117 start-page: 10706 year: 2020 ident: ref341 article-title: Detected climatic change in global distribution of tropical cyclones publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1922500117 – volume: 101 start-page: E303 year: 2020 ident: ref841 article-title: Tropical cyclones and climate change assessment: Part II. Projected response to anthropogenic warming publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-18-0194.1 – volume: 120 start-page: 12514 year: 2015 ident: ref141 article-title: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies publication-title: J. Adv. Model. Earth Syst. – volume: 12 start-page: e2019MS001895 year: 2020 ident: ref31 article-title: SPEAR: The next generation GFDL modeling system for seasonal to multidecadal prediction and projection publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2019MS001895 – volume: 91 start-page: 363 year: 2010 ident: ref811 article-title: The International Best Track Archive for Climate Stewardship (IBTrACS) publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/2009BAMS2755.1 – volume: 10 start-page: 691 year: 2018a ident: ref1021 article-title: The GFDL global atmosphere and land model AM4.0/LM4.0: 1. Simulation characteristics with prescribed SSTs publication-title: J. Adv. Model. Earth Syst. doi: 10.1002/2017MS001208 – volume: 33 start-page: 10287 year: 2020 ident: ref491 article-title: Simulations of atmospheric rivers, their variability, and response to global warming using GFDL’s new high-resolution general circulation model publication-title: J. Climate doi: 10.1175/JCLI-D-20-0241.1 – volume: 138 start-page: 3858 year: 2010 ident: ref521 article-title: Retrospective forecasts of the hurricane season using a global atmospheric model assuming persistence of SST anomalies publication-title: Mon. Wea. Rev. doi: 10.1175/2010MWR3366.1 – volume: 22 start-page: 1416 year: 1983 ident: ref621 article-title: An examination of a technique for estimating the longwave radiation budget from satellite radiance observations publication-title: J. Climate Appl. Meteor. doi: 10.1175/1520-0450(1983)022<1416:AEOATF>2.0.CO;2 – volume: 23 start-page: 416 year: 1984 ident: ref361 article-title: Satellite determinations of the relationship between total longwave radiation flux and infrared window radiance publication-title: J. Climate Appl. Meteor. doi: 10.1175/1520-0450(1984)023<0416:SDOTRB>2.0.CO;2 – volume: 10 start-page: 691 year: 2018a ident: ref471 article-title: The GFDL global atmosphere and land model AM4.0/LM4.0: 1. Simulation characteristics with prescribed SSTs publication-title: J. Adv. Model. Earth Syst. doi: 10.1002/2017MS001208 – volume: 26 start-page: 1047 year: 2013 ident: ref371 article-title: Precipitation contribution of tropical cyclones in the southeastern United States from 1998 to 2009 using TRMM satellite data publication-title: J. Climate doi: 10.1175/JCLI-D-11-00736.1 – volume: 11 start-page: 3691 year: 2019 ident: ref741 article-title: Structure and performance of GFDL’s CM4.0 climate model publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2019MS001829 – volume: 6 start-page: 447 year: 2013 ident: ref11 article-title: Robust direct effect of carbon dioxide on tropical circulation and regional precipitation publication-title: Nat. Geosci. doi: 10.1038/ngeo1799 – volume: 12 start-page: e2019MS002015 year: 2020 ident: ref611 article-title: The GFDL Earth System Model version 4.1 (GFDL-ESM4.1): Model description and simulation characteristics publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2019MS002015 – volume: 19 start-page: 5686 year: 2006 ident: ref171 article-title: Robust responses of the hydrological cycle to global warming publication-title: J. Climate doi: 10.1175/JCLI3990.1 – volume: 45 start-page: 4299 year: 2018 ident: ref641 article-title: Global analysis of climate change projection effects on atmospheric rivers publication-title: Geophys. Res. Lett. doi: 10.1029/2017GL076968 – volume: 100 start-page: 1987 year: 2019 ident: ref281 article-title: Tropical cyclones and climate change assessment: Part I. Detection and attribution publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-18-0189.1 – start-page: 15.1 volume-title: A Century of Progress in Atmospheric and Related Sciences, Meteor. Monogr. year: 2018 ident: ref631 article-title: 100 years of progress in tropical cyclone – volume: 100 start-page: 269 year: 2019 ident: ref951 article-title: A scale to characterize the strength and impacts of atmospheric rivers publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-18-0023.1 – volume: 117 start-page: 10706 year: 2020 ident: ref891 article-title: Detected climatic change in global distribution of tropical cyclones publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1922500117 – start-page: 17.1 volume-title: A Century of Progress in Atmospheric and Related Sciences, Meteor. Monogr. year: 2018 ident: ref781 article-title: 100 years of research on mesoscale convective systems – volume: 522 start-page: 382 year: 2015 ident: ref311 article-title: The contribution of atmospheric rivers to precipitation in Europe and the United States publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.12.010 – volume: 522 start-page: 382 year: 2015 ident: ref861 article-title: The contribution of atmospheric rivers to precipitation in Europe and the United States publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.12.010 – volume: 6 start-page: 1154 year: 2014 ident: ref421 article-title: Characteristics of tropical cyclones in high-resolution models in the present climate publication-title: J. Adv. Model. Earth Syst. doi: 10.1002/2014MS000372 – volume: 23 start-page: 1526 year: 2010 ident: ref801 article-title: Contribution of tropical cyclones to the global precipitation from eight seasons of TRMM data: Regional, seasonal, and interannual variations publication-title: J. Climate doi: 10.1175/2009JCLI3303.1 – volume: 7 start-page: 13429 year: 2016 ident: ref661 article-title: More frequent intense and long-lived storms dominate the springtime trend in central US rainfall publication-title: Nat. Commun. doi: 10.1038/ncomms13429 – volume: 27 start-page: 9197 year: 2014 ident: ref761 article-title: Tracking scheme dependence of simulated tropical cyclone response to idealized climate simulations publication-title: J. Climate doi: 10.1175/JCLI-D-14-00200.1 – volume: 100 start-page: 473 year: 2019 ident: ref551 article-title: MSWEP V2 global 3-hourly 0.1° precipitation: Methodology and quantitative assessment publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-17-0138.1 – volume: 148 start-page: 2607 year: 2020 ident: ref21 article-title: A satellite-based climatology of central and southeastern U.S. mesoscale convective systems publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-20-0027.1 – volume: 14 start-page: 1721 year: 2013 ident: ref591 article-title: Atmospheric rivers as drought busters on the U.S. West Coast publication-title: J. Hydrometeor. doi: 10.1175/JHM-D-13-02.1 – start-page: 15.1 volume-title: A Century of Progress in Atmospheric and Related Sciences, Meteor. Monogr. year: 2018 ident: ref81 article-title: 100 years of progress in tropical cyclone – volume: 15 start-page: 035001 year: 2020 ident: ref881 article-title: Response of precipitation extremes to warming: What have we learned from theory and idealized cloud-resolving simulations, and what remains to be learned? publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab7130 – volume: 7 start-page: 13429 year: 2016 ident: ref111 article-title: More frequent intense and long-lived storms dominate the springtime trend in central US rainfall publication-title: Nat. Commun. doi: 10.1038/ncomms13429 – volume: 9 start-page: 4185 year: 2016 ident: ref701 article-title: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-9-4185-2016 – volume: 43 start-page: 8775 year: 2016 ident: ref431 article-title: Atmospheric river landfall-latitude changes in future climate simulations publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL070470 – volume: 100 start-page: 1987 year: 2019 ident: ref831 article-title: Tropical cyclones and climate change assessment: Part I. Detection and attribution publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-18-0189.1 – volume: 53 start-page: 1144 year: 2017 ident: ref901 article-title: A long-term perspective of the hydroclimatological impacts of atmospheric rivers over the central United States publication-title: Water Resour. Res. doi: 10.1002/2016WR019033 – volume: 40 start-page: 3259 year: 2013 ident: ref851 article-title: The nexus between atmospheric rivers and extreme precipitation across Europe publication-title: Geophys. Res. Lett. doi: 10.1002/grl.50636 – volume: 26 start-page: 1047 year: 2013 ident: ref921 article-title: Precipitation contribution of tropical cyclones in the southeastern United States from 1998 to 2009 using TRMM satellite data publication-title: J. Climate doi: 10.1175/JCLI-D-11-00736.1 – volume: 21 start-page: 1999 year: 1994 ident: ref1091 article-title: Atmospheric rivers and bombs publication-title: Geophys. Res. Lett. doi: 10.1029/94GL01710 – volume: 120 start-page: 12514 year: 2015 ident: ref691 article-title: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies publication-title: J. Adv. Model. Earth Syst. – volume: 100 start-page: 269 year: 2019 ident: ref401 article-title: A scale to characterize the strength and impacts of atmospheric rivers publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-18-0023.1 – volume: 11 start-page: 2455 year: 2018 ident: ref441 article-title: Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Project goals and experimental design publication-title: Geosci. Model Dev. doi: 10.5194/gmd-11-2455-2018 – volume: 9 start-page: 1937 year: 2016 ident: ref651 article-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization publication-title: Geosci. Model Dev. doi: 10.5194/gmd-9-1937-2016 – volume: 10 start-page: 735 year: 2018b ident: ref1031 article-title: The GFDL global atmosphere and land model AM4.0/LM4.0: 2. Model description, sensitivity studies, and tuning strategies publication-title: J. Adv. Model. Earth Syst. doi: 10.1002/2017MS001209 – volume: 25 start-page: 2995 year: 2012 ident: ref1051 article-title: TC-permitting GCM simulations of hurricane frequency response to sea surface temperature anomalies projected for the late 21st century publication-title: J. Climate doi: 10.1175/JCLI-D-11-00313.1 – volume: 27 start-page: 9197 year: 2014 ident: ref211 article-title: Tracking scheme dependence of simulated tropical cyclone response to idealized climate simulations publication-title: J. Climate doi: 10.1175/JCLI-D-14-00200.1 – volume: 12 start-page: e2019MS001895 year: 2020 ident: ref581 article-title: SPEAR: The next generation GFDL modeling system for seasonal to multidecadal prediction and projection publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2019MS001895 – volume: 25 start-page: 2995 year: 2012 ident: ref501 article-title: TC-permitting GCM simulations of hurricane frequency response to sea surface temperature anomalies projected for the late 21st century publication-title: J. Climate doi: 10.1175/JCLI-D-11-00313.1 – volume: 69 start-page: 2272 year: 2012 ident: ref1081 article-title: Some counterintuitive dependencies of tropical cyclone frequency on parameters in a GCM publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-11-0238.1 – volume: 14 start-page: 1721 year: 2013 ident: ref41 article-title: Atmospheric rivers as drought busters on the U.S. West Coast publication-title: J. Hydrometeor. doi: 10.1175/JHM-D-13-02.1 – volume: 34 start-page: 5657 year: 2021 ident: ref51 article-title: Representation of tropical mesoscale convective systems in a general circulation model: Climatology and response to global warming publication-title: J. Climate – volume: 40 start-page: 3259 year: 2013 ident: ref301 article-title: The nexus between atmospheric rivers and extreme precipitation across Europe publication-title: Geophys. Res. Lett. doi: 10.1002/grl.50636 – volume: 100 start-page: 473 year: 2019 ident: ref01 article-title: MSWEP V2 global 3-hourly 0.1° precipitation: Methodology and quantitative assessment publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-17-0138.1 – volume: 21 start-page: 2439 year: 2020 ident: ref1001 article-title: A climatology of atmospheric rivers and associated precipitation for the seven U.S. National Climate Assessment regions publication-title: J. Hydrometeor. doi: 10.1175/JHM-D-20-0039.1 – volume: 3 start-page: 157 year: 2010 ident: ref271 article-title: Tropical cyclones and climate change publication-title: Nat. Geosci. doi: 10.1038/ngeo779 – volume: 22 start-page: 1416 year: 1983 ident: ref71 article-title: An examination of a technique for estimating the longwave radiation budget from satellite radiance observations publication-title: J. Climate Appl. Meteor. doi: 10.1175/1520-0450(1983)022<1416:AEOATF>2.0.CO;2 – volume: 10 start-page: 735 year: 2018b ident: ref481 article-title: The GFDL global atmosphere and land model AM4.0/LM4.0: 2. Model description, sensitivity studies, and tuning strategies publication-title: J. Adv. Model. Earth Syst. doi: 10.1002/2017MS001209 – volume: 6 start-page: 1154 year: 2014 ident: ref971 article-title: Characteristics of tropical cyclones in high-resolution models in the present climate publication-title: J. Adv. Model. Earth Syst. doi: 10.1002/2014MS000372 – volume: 11 start-page: 2455 year: 2018 ident: ref991 article-title: Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Project goals and experimental design publication-title: Geosci. Model Dev. doi: 10.5194/gmd-11-2455-2018 – volume: 34 start-page: 5657 year: 2021 ident: ref601 article-title: Representation of tropical mesoscale convective systems in a general circulation model: Climatology and response to global warming publication-title: J. Climate – volume: 33 start-page: 10287 year: 2020 ident: ref1041 article-title: Simulations of atmospheric rivers, their variability, and response to global warming using GFDL’s new high-resolution general circulation model publication-title: J. Climate doi: 10.1175/JCLI-D-20-0241.1 – volume: 21 start-page: 2439 year: 2020 ident: ref451 article-title: A climatology of atmospheric rivers and associated precipitation for the seven U.S. National Climate Assessment regions publication-title: J. Hydrometeor. doi: 10.1175/JHM-D-20-0039.1 – start-page: 17.1 volume-title: A Century of Progress in Atmospheric and Related Sciences, Meteor. Monogr. year: 2018 ident: ref231 article-title: 100 years of research on mesoscale convective systems – volume: 24 start-page: 5353 year: 2011 ident: ref731 article-title: The response of tropical cyclone statistics to an increase in CO2 with fixed sea surface temperatures publication-title: J. Climate doi: 10.1175/JCLI-D-11-00050.1 – volume: 29 start-page: 6711 year: 2016 ident: ref131 article-title: Uncertainties in projecting future changes in atmospheric rivers and their impacts on heavy precipitation over Europe publication-title: J. Climate doi: 10.1175/JCLI-D-16-0088.1 – volume: 9 start-page: 4185 year: 2016 ident: ref151 article-title: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-9-4185-2016 |
| SSID | ssj0012600 |
| Score | 2.5614185 |
| Snippet | Atmospheric rivers (ARs), tropical storms (TSs), and mesoscale convective systems (MCSs) are important weather phenomena that often threaten society through... |
| SourceID | proquest crossref jstor |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 479 |
| SubjectTerms | Climate change Climate models Extreme weather Fluid dynamics Geophysical fluids Global climate Global climate models Global warming Heavy precipitation Hydrodynamics Hydrologic cycle Hydrological cycle Hydrology Latitude Mean precipitation Mesoscale convective systems Precipitation Rainfall intensity Rivers Sea surface Storms Strong winds Tropical atmosphere Tropical climate Tropical climates Tropical depressions Tropical environments Tropical storms Winds |
| Title | Study of AR-, TS-, and MCS-Associated Precipitation and Extreme Precipitation in Present and Warmer Climates |
| URI | https://www.jstor.org/stable/27244041 https://www.proquest.com/docview/2675693173 |
| Volume | 35 |
| WOSCitedRecordID | wos000799188000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1520-0442 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0012600 issn: 0894-8755 databaseCode: P5Z dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1520-0442 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0012600 issn: 0894-8755 databaseCode: M0K dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1520-0442 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0012600 issn: 0894-8755 databaseCode: PCBAR dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1520-0442 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0012600 issn: 0894-8755 databaseCode: PATMY dateStart: 20050101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Military Database customDbUrl: eissn: 1520-0442 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0012600 issn: 0894-8755 databaseCode: M1Q dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.proquest.com/military providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1520-0442 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0012600 issn: 0894-8755 databaseCode: BENPR dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Research Library customDbUrl: eissn: 1520-0442 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0012600 issn: 0894-8755 databaseCode: M2O dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1520-0442 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0012600 issn: 0894-8755 databaseCode: M2P dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfYxoEL4muiMCof0CTEvDVOHCfH0Hba2FbKOsTExUocR6q0pSUtqPz3PH8k_ZiY4MDFamMnTf37-fnZ7_k9hN56jEuYN2EgZV5AAuqFJC0ySYo0ioIi16vszCSb4INBdH0dD53r0MykE-BlGS0W8fS_Qg3XAGx9dPYf4G4eChfgM4AOJcAO5V8BnxjfQGM4Ty6JwWNEaifNi-6I1IgofUxAyfHUhek2DfqLud4x3KgZl8ZXo_ZH_5pWt6p6370Z32pV9Q8KrrTVK1vTE-uo7yZLt9dAtdMGsactV9z7jRFpriZVI52dg-mq6IoDkLM2AO-hcqKVakfSYE322lAljmN0RZAGNsXMXQHPdSyMj93zU9IjVO-EBOzQW05mtQH_JBmJYe9YnJ8Ozvan34lOM6bN8S7nyhbaoZzFWgwO2bfG7KSj9Ztlh3v9xq7NjjZ_ck2Psa6sd6Zzo6NcPUGPXd_jxJLiKXqgymeotezGX3gfW9DMt-eoTLAhC54UGMhygIEqBxggxutEwWt0MA0cUTZqxiV2RDGNLFFwTZQX6Mtx_6p7QlwGDiJBDZwTFUjqp7FfMB80b8moYj4vUgoaTh6rLExzPwu15VVb7HzV8XnEQhVzloNinueZv4u2y0mpXiLckaGiNEojVsjAz2DeoAXnXsGyTgZ3pi10VPenkO6ldZaUG2GWqZwJjYDoCeoJjYDwWuhdc8fUhma5p-2ugahpSDnVkTGhYq_GTLhBPBPw_1gYg2btv7q_-jV6tBwme2h7Xv1Qb9BD-XM-nlVttPOhPxhettHWRedMl95nXdJPphy2Dfd-A-OTl6M |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Study+of+AR-%2C+TS-%2C+and+MCS-Associated+Precipitation+and+Extreme+Precipitation+in+Present+and+Warmer+Climates&rft.jtitle=Journal+of+climate&rft.au=Zhao%2C+Ming&rft.date=2022-01-15&rft.pub=American+Meteorological+Society&rft.issn=0894-8755&rft.eissn=1520-0442&rft.volume=35&rft.issue=2&rft.spage=479&rft_id=info:doi/10.1175%2FJCLI-D-21-0145.1&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-8755&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-8755&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-8755&client=summon |