Differentiator-Based Incremental Three-Dimensional Terminal Angle Guidance With Enhanced Robustness

In this article, an incremental guidancelaw with terminal angle constraint is proposed against maneuvering targets in the 3-D space. First, a sliding surface is constructed such that its first-order dynamics excludes the relative range and line-of-sight angles in the perturbation. This manipulation...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on aerospace and electronic systems Vol. 58; no. 5; pp. 4020 - 4032
Main Authors: Han, Tuo, Shin, Hyo-Sang, Hu, Qinglei, Tsourdos, Antonios, Xin, Ming
Format: Journal Article
Language:English
Published: New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9251, 1557-9603
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article, an incremental guidancelaw with terminal angle constraint is proposed against maneuvering targets in the 3-D space. First, a sliding surface is constructed such that its first-order dynamics excludes the relative range and line-of-sight angles in the perturbation. This manipulation avoids unboundedperturbations induced by target maneuvers near collision. Then, a benchmark guidance law is derived via the nonlinear dynamic inversion (NDI) based sliding mode control (NDI-SMC). To further enhance guidance system robustness, an incremental nonlinear dynamic inversion (INDI) based SMC (INDI-SMC) 3-D guidance law is developed. The INDI-SMC guidance law exploits the first-order derivative of the sliding variable and guidance command output at the latest step, which leads to reduced perturbation and thus requires smaller gains than the NDI-SMC guidance law. A multivariable continuous differentiator is employed to estimate the sliding variable's first-order derivative for guidance law implementation. Moreover, the stability of the differentiator is analyzed and the guidance robustness under uncertainties is compared. Extensive numerical simulations and a Monte Carlo test are conducted to verify effectiveness and robustness of the proposed method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2022.3158639