Incomplete Multiview Clustering Using Normalizing Alignment Strategy With Graph Regularization

Matrix factorization has demonstrated promising performance in the incomplete multiview clustering (IMC) tasks. However, many algorithms require feature normalization operations to ensure the stability of model results, so either the convergence is unstable, or the objective function cannot fit the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on knowledge and data engineering Ročník 35; číslo 8; s. 8126 - 8142
Hlavní autori: Cui, Guosheng, Wang, Ruxin, Wu, Dan, Li, Ye
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1041-4347, 1558-2191
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Matrix factorization has demonstrated promising performance in the incomplete multiview clustering (IMC) tasks. However, many algorithms require feature normalization operations to ensure the stability of model results, so either the convergence is unstable, or the objective function cannot fit the data well. Addressing these issues, we propose a novel IMC algorithm using a normalizing alignment strategy (IMCNAS) based on nonnegative matrix factorization. Specifically, the columns of the basis matrices are constrained into unit vector space, which integrates the feature normalization and the optimizing process, and makes the model converge fast and stable. On the other hand, this enables the model to fit the data better and produce more reasonable factorization results. Further, we develop a novel pairwise co-regularization to align incomplete multiple views more directly, without introducing a common consensus matrix like traditional centroid-based co-regularization. Graph regularization is also incorporated in the proposed model to utilize the geometrical information of data. We implement IMCNAS with a centroid-based regularization and a pairwise co-regularization respectively, and leads to two variants, i.e., IMCNAS-1 and IMCNAS-2. Both variants are optimized with multiplicative updating rules. Extensive experiments conducted on various real-world datasets comparing several state-of-the-art IMC methods verified the effectiveness of the proposed methods. The source code is available at: https://github.com/GuoshengCui/IMCNAS .
AbstractList Matrix factorization has demonstrated promising performance in the incomplete multiview clustering (IMC) tasks. However, many algorithms require feature normalization operations to ensure the stability of model results, so either the convergence is unstable, or the objective function cannot fit the data well. Addressing these issues, we propose a novel IMC algorithm using a normalizing alignment strategy (IMCNAS) based on nonnegative matrix factorization. Specifically, the columns of the basis matrices are constrained into unit vector space, which integrates the feature normalization and the optimizing process, and makes the model converge fast and stable. On the other hand, this enables the model to fit the data better and produce more reasonable factorization results. Further, we develop a novel pairwise co-regularization to align incomplete multiple views more directly, without introducing a common consensus matrix like traditional centroid-based co-regularization. Graph regularization is also incorporated in the proposed model to utilize the geometrical information of data. We implement IMCNAS with a centroid-based regularization and a pairwise co-regularization respectively, and leads to two variants, i.e., IMCNAS-1 and IMCNAS-2. Both variants are optimized with multiplicative updating rules. Extensive experiments conducted on various real-world datasets comparing several state-of-the-art IMC methods verified the effectiveness of the proposed methods. The source code is available at: https://github.com/GuoshengCui/IMCNAS .
Author Li, Ye
Cui, Guosheng
Wang, Ruxin
Wu, Dan
Author_xml – sequence: 1
  givenname: Guosheng
  surname: Cui
  fullname: Cui, Guosheng
  email: gs.cui@siat.ac.cn
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
– sequence: 2
  givenname: Ruxin
  orcidid: 0000-0003-4772-3284
  surname: Wang
  fullname: Wang, Ruxin
  email: rx.wang@siat.ac.cn
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
– sequence: 3
  givenname: Dan
  orcidid: 0000-0001-5838-0198
  surname: Wu
  fullname: Wu, Dan
  email: dan.wu@siat.ac.cn
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
– sequence: 4
  givenname: Ye
  orcidid: 0000-0002-5351-8546
  surname: Li
  fullname: Li, Ye
  email: ye.li@siat.ac.cn
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
BookMark eNp9kEtPwkAUhScGEwH9AcZNE9fFebQz7ZIgIhE1UYg7m-lwW4b05XSqgV9vK8SFCzfn3sU59_ENUK8oC0DokuARITi8WT7cTkcUUzpirfqcnKA-8f3ApSQkvbbHHnE95okzNKjrLcY4EAHpo_d5ocq8ysCC89hkVn9q-HImWVNbMLpInVXd6VNpcpnpfdePM50WORTWebVGWkh3zpu2G2dmZLVxXiBtMmn0XlpdFufoNJFZDRfHOkSru-lycu8unmfzyXjhKhoy6wLzKGfCTxIZcwEM4hALCpBIwSgECcPCi0kguVRCiiRWSq6Zx5UfhGtfCM6G6PowtzLlRwO1jbZlY4p2ZUQD5jHMPea3LnFwKVPWtYEkUtr-3Nk-orOI4KiDGXUwow5mdITZJsmfZGV0Ls3u38zVIaMB4NcfBjwUjLFvNVSDcg
CODEN ITKEEH
CitedBy_id crossref_primary_10_1016_j_engappai_2025_110387
crossref_primary_10_1007_s10618_025_01109_3
crossref_primary_10_1117_1_JEI_33_6_063016
crossref_primary_10_1016_j_inffus_2025_103137
crossref_primary_10_26599_BDMA_2023_9020004
crossref_primary_10_1016_j_ins_2024_120830
crossref_primary_10_1007_s10489_025_06767_w
Cites_doi 10.1016/j.patcog.2018.09.009
10.24963/ijcai.2019/623
10.1109/TPAMI.2020.2974828
10.1109/CVPR.2005.177
10.1016/j.inffus.2017.02.007
10.1109/TCYB.2020.2984552
10.1016/j.compbiomed.2020.103965
10.1109/ICCV.1999.790410
10.1609/aaai.v34i04.5756
10.1016/j.knosys.2020.106615
10.1109/TCYB.2020.2987164
10.1609/aaai.v28i1.8973
10.1609/aaai.v27i1.8565
10.1016/j.patcog.2017.01.035
10.1109/TKDE.2019.2903810
10.1109/TNNLS.2018.2828699
10.24963/ijcai.2018/313
10.1109/TPAMI.2019.2895608
10.1016/j.media.2020.101953
10.1016/j.patcog.2020.107676
10.1609/aaai.v29i1.9598
10.1109/TAI.2021.3065894
10.1109/ICPR.2016.7899961
10.1109/TMM.2020.3032023
10.1016/j.imavis.2021.104111
10.1109/TNNLS.2020.2979532
10.1109/DICTA.2016.7797034
10.1017/CBO9780511804441
10.1109/TCYB.2019.2918495
10.24963/ijcai.2019/546
10.1109/TPAMI.2002.1017623
10.1016/j.inffus.2018.02.005
10.1145/860435.860485
10.1109/tcyb.2021.3062830
10.1016/j.patcog.2018.09.016
10.1016/j.neunet.2020.10.014
10.1109/TCYB.2018.2884715
10.1109/TMM.2020.3013408
10.1016/j.neucom.2017.07.016
10.1016/j.ipm.2004.11.005
10.1109/TPAMI.2018.2879108
10.1109/TIP.2020.3036717
10.1109/TPAMI.2020.3037734
10.1109/TKDE.2015.2448542
10.1609/aaai.v33i01.33015393
10.1145/1143844.1143892
10.1016/j.ins.2019.04.039
10.1007/978-3-030-11018-5_47
10.1609/aaai.v34i04.5867
10.1109/TPAMI.2008.277
10.1109/tnnls.2021.3069424
10.1145/3178119
10.1109/TPAMI.2018.2847335
10.1007/978-3-319-23528-8_20
10.1109/TCYB.2019.2953564
10.1609/aaai.v33i01.33014392
10.1109/BigData.2016.7840701
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2022.3202561
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 8142
ExternalDocumentID 10_1109_TKDE_2022_3202561
9869733
Genre orig-research
GrantInformation_xml – fundername: Strategic Priority CAS
  grantid: XDB38040200
– fundername: Guangdong Provincial Science and Technology Plan
  grantid: 2022A1515011557
– fundername: National Key Research and Development Program of China
  grantid: 2021YFF0901104
– fundername: National Natural Science Foundation of China
  grantid: 62073310; 62102410
  funderid: 10.13039/501100001809
– fundername: Shenzhen Science and Technology Project
  grantid: JSGG20200225153023511; KQTD20190929172835662
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-e3426375ffab67e3eb9072eefa732e8f3074b18a6ac7a7fbccad346c589d57763
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001033571000037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Mon Jun 30 05:51:15 EDT 2025
Sat Nov 29 02:36:06 EST 2025
Tue Nov 18 22:35:39 EST 2025
Wed Aug 27 02:04:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-e3426375ffab67e3eb9072eefa732e8f3074b18a6ac7a7fbccad346c589d57763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4772-3284
0000-0001-5838-0198
0000-0002-5351-8546
PQID 2834306435
PQPubID 85438
PageCount 17
ParticipantIDs proquest_journals_2834306435
crossref_citationtrail_10_1109_TKDE_2022_3202561
ieee_primary_9869733
crossref_primary_10_1109_TKDE_2022_3202561
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref15
ref59
ref14
Cormen (ref52) 2009
ref58
ref53
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref46
ref45
ref48
ref47
ref42
ref41
Wang (ref50)
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Zhao (ref30)
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref2
ref1
ref39
ref38
Cai (ref56)
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref60
ref61
References_xml – ident: ref13
  doi: 10.1016/j.patcog.2018.09.009
– ident: ref42
  doi: 10.24963/ijcai.2019/623
– start-page: 2598
  volume-title: Proc. 23rd Int. Joint Conf. Artif. Intell.
  ident: ref56
  article-title: Multi-view K-means clustering on Big Data
– ident: ref39
  doi: 10.1109/TPAMI.2020.2974828
– ident: ref6
  doi: 10.1109/CVPR.2005.177
– ident: ref10
  doi: 10.1016/j.inffus.2017.02.007
– ident: ref17
  doi: 10.1109/TCYB.2020.2984552
– ident: ref21
  doi: 10.1016/j.compbiomed.2020.103965
– ident: ref7
  doi: 10.1109/ICCV.1999.790410
– ident: ref12
  doi: 10.1609/aaai.v34i04.5756
– ident: ref26
  doi: 10.1016/j.knosys.2020.106615
– ident: ref34
  doi: 10.1109/TCYB.2020.2987164
– ident: ref27
  doi: 10.1609/aaai.v28i1.8973
– ident: ref53
  doi: 10.1609/aaai.v27i1.8565
– ident: ref20
  doi: 10.1016/j.patcog.2017.01.035
– ident: ref61
  doi: 10.1109/TKDE.2019.2903810
– ident: ref22
  doi: 10.1109/TNNLS.2018.2828699
– ident: ref31
  doi: 10.24963/ijcai.2018/313
– ident: ref40
  doi: 10.1109/TPAMI.2019.2895608
– ident: ref8
  doi: 10.1016/j.media.2020.101953
– ident: ref14
  doi: 10.1016/j.patcog.2020.107676
– ident: ref54
  doi: 10.1609/aaai.v29i1.9598
– ident: ref1
  doi: 10.1109/TAI.2021.3065894
– ident: ref33
  doi: 10.1109/ICPR.2016.7899961
– ident: ref3
  doi: 10.1109/TMM.2020.3032023
– ident: ref9
  doi: 10.1016/j.imavis.2021.104111
– ident: ref19
  doi: 10.1109/TNNLS.2020.2979532
– start-page: 4835
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref50
  article-title: Deep multimodal fusion by channel exchanging
– volume-title: Introduction to Algorithms
  year: 2009
  ident: ref52
– ident: ref32
  doi: 10.1109/DICTA.2016.7797034
– start-page: 2392
  volume-title: Proc. 25th Int. Joint Conf. Artif. Intel.
  ident: ref30
  article-title: Incomplete multi-modal visual data grouping
– ident: ref51
  doi: 10.1017/CBO9780511804441
– ident: ref15
  doi: 10.1109/TCYB.2019.2918495
– ident: ref23
  doi: 10.24963/ijcai.2019/546
– ident: ref5
  doi: 10.1109/TPAMI.2002.1017623
– ident: ref2
  doi: 10.1016/j.inffus.2018.02.005
– ident: ref57
  doi: 10.1145/860435.860485
– ident: ref47
  doi: 10.1109/tcyb.2021.3062830
– ident: ref11
  doi: 10.1016/j.patcog.2018.09.016
– ident: ref45
  doi: 10.1016/j.neunet.2020.10.014
– ident: ref43
  doi: 10.1109/TCYB.2018.2884715
– ident: ref44
  doi: 10.1109/TMM.2020.3013408
– ident: ref29
  doi: 10.1016/j.neucom.2017.07.016
– ident: ref58
  doi: 10.1016/j.ipm.2004.11.005
– ident: ref38
  doi: 10.1109/TPAMI.2018.2879108
– ident: ref46
  doi: 10.1109/TIP.2020.3036717
– ident: ref24
  doi: 10.1109/TPAMI.2020.3037734
– ident: ref49
  doi: 10.1109/TKDE.2015.2448542
– ident: ref35
  doi: 10.1609/aaai.v33i01.33015393
– ident: ref55
  doi: 10.1145/1143844.1143892
– ident: ref37
  doi: 10.1016/j.ins.2019.04.039
– ident: ref59
  doi: 10.1007/978-3-030-11018-5_47
– ident: ref60
  doi: 10.1609/aaai.v34i04.5867
– ident: ref48
  doi: 10.1109/TPAMI.2008.277
– ident: ref18
  doi: 10.1109/tnnls.2021.3069424
– ident: ref4
  doi: 10.1145/3178119
– ident: ref16
  doi: 10.1109/TPAMI.2018.2847335
– ident: ref28
  doi: 10.1007/978-3-319-23528-8_20
– ident: ref36
  doi: 10.1109/TCYB.2019.2953564
– ident: ref41
  doi: 10.1609/aaai.v33i01.33014392
– ident: ref25
  doi: 10.1109/BigData.2016.7840701
SSID ssj0008781
Score 2.4539258
Snippet Matrix factorization has demonstrated promising performance in the incomplete multiview clustering (IMC) tasks. However, many algorithms require feature...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8126
SubjectTerms Algorithms
Alignment
Centroids
Clustering
Convergence
Factorization
Feature alignment
incomplete multiview
Linear programming
Mathematical analysis
Matrix decomposition
Microwave integrated circuits
normalizing strategy
Optimization
pairwise co-regularization
Predictive models
Regularization
Source code
Task analysis
Vector spaces
Title Incomplete Multiview Clustering Using Normalizing Alignment Strategy With Graph Regularization
URI https://ieeexplore.ieee.org/document/9869733
https://www.proquest.com/docview/2834306435
Volume 35
WOSCitedRecordID wos001033571000037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SkEN7yLOl2zzQoadQ79p6WNYxJJsEAksoG5JTjS2P2oVlEzbeQvvro5G1S0pKoDcdRmD8eUYz1sz3AXxBZXkqtU0cb1wiMRWJqbVLXEpTn9SFwesgNqFHo-L-3tyswdfVLAwihuYz7NMy3OU3D3ZBv8oGpsiNFmId1rXOu1mtVdQtdBAk9dWFr4mE1PEGM0vNYHx9PvSVIOd9EgtXefbXGRREVV5F4nC8XGz_34PtwFZMI9lph_surOFsD7aXEg0seuwevH_BN7gP3300oBZynyizMHlL9wLsbLogtgRvwUIDARtRHjud_KH16XTyIzQMsMhj-5vdTdqf7JKIrtm3oGQ_j7OcH-D2Yjg-u0qiwEJi_SnfJiiIrl0r56o61yiw9qUyR3SVFhwL5_1f1llR5ZXVlXa1R7sRMreqMI3yEIiPsDF7mOEnYFmGSqPLvQ2XTqJBqYSyxsewRnMnepAuX3lpI_s4iWBMy1CFpKYklEpCqYwo9eBkteWxo954y3ifYFkZRkR6cLjEtYzO-VT6jEpS4SXU53_vOoB3pCrf9fkdwkY7X-ARbNpf7eRpfhy-u2d7ndad
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RqFQ4FMpDbAvUB06IQOJHHB8R5VEBK4QWwalR4oxhpdWClt1K5dfj8XpXRUVIvfkwlqJ88Tzime8D2EZleSq1TRxvXCIxFYmptUtcSlOf1IXB6yA2odvt4vbWXM7A7nQWBhFD8xnu0TLc5TcPdkS_yvZNkRstxAeYU1LydDytNfW7hQ6SpL6-8FWRkDreYWap2e-c_TjytSDneyQXrvLsVRQKsir_-OIQYI4X_-_RluBzTCTZwRj5LzCD_WVYnIg0sHhml2HhL8bBFfjl_QE1kftUmYXZW7oZYIe9EfEleAsWWghYmzLZXveZ1ge97l1oGWCRyfYPu-kO79kJUV2zq6BlP4jTnKtwfXzUOTxNosRCYn2cHyYoiLBdK-eqOtcosPbFMkd0lRYcC-c9gKyzosorqyvtao93I2RuVWEapb1vWoPZ_kMf14FlGSqNLvc2XDqJBqUSyhrvxRrNnWhBOnnlpY384ySD0StDHZKaklAqCaUyotSCnemWxzH5xnvGKwTL1DAi0oKNCa5lPJ5Ppc-pJJVeQn19e9d3-HTauTgvz3-2z77BPGnMj7v-NmB2OBjhJny0v4fdp8FW-AZfAMsE2eQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incomplete+Multiview+Clustering+Using+Normalizing+Alignment+Strategy+With+Graph+Regularization&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Cui%2C+Guosheng&rft.au=Wang%2C+Ruxin&rft.au=Wu%2C+Dan&rft.au=Li%2C+Ye&rft.date=2023-08-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=35&rft.issue=8&rft.spage=8126&rft.epage=8142&rft_id=info:doi/10.1109%2FTKDE.2022.3202561&rft.externalDocID=9869733
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon