Incomplete Multiview Clustering Using Normalizing Alignment Strategy With Graph Regularization
Matrix factorization has demonstrated promising performance in the incomplete multiview clustering (IMC) tasks. However, many algorithms require feature normalization operations to ensure the stability of model results, so either the convergence is unstable, or the objective function cannot fit the...
Uložené v:
| Vydané v: | IEEE transactions on knowledge and data engineering Ročník 35; číslo 8; s. 8126 - 8142 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1041-4347, 1558-2191 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Matrix factorization has demonstrated promising performance in the incomplete multiview clustering (IMC) tasks. However, many algorithms require feature normalization operations to ensure the stability of model results, so either the convergence is unstable, or the objective function cannot fit the data well. Addressing these issues, we propose a novel IMC algorithm using a normalizing alignment strategy (IMCNAS) based on nonnegative matrix factorization. Specifically, the columns of the basis matrices are constrained into unit vector space, which integrates the feature normalization and the optimizing process, and makes the model converge fast and stable. On the other hand, this enables the model to fit the data better and produce more reasonable factorization results. Further, we develop a novel pairwise co-regularization to align incomplete multiple views more directly, without introducing a common consensus matrix like traditional centroid-based co-regularization. Graph regularization is also incorporated in the proposed model to utilize the geometrical information of data. We implement IMCNAS with a centroid-based regularization and a pairwise co-regularization respectively, and leads to two variants, i.e., IMCNAS-1 and IMCNAS-2. Both variants are optimized with multiplicative updating rules. Extensive experiments conducted on various real-world datasets comparing several state-of-the-art IMC methods verified the effectiveness of the proposed methods. The source code is available at: https://github.com/GuoshengCui/IMCNAS . |
|---|---|
| AbstractList | Matrix factorization has demonstrated promising performance in the incomplete multiview clustering (IMC) tasks. However, many algorithms require feature normalization operations to ensure the stability of model results, so either the convergence is unstable, or the objective function cannot fit the data well. Addressing these issues, we propose a novel IMC algorithm using a normalizing alignment strategy (IMCNAS) based on nonnegative matrix factorization. Specifically, the columns of the basis matrices are constrained into unit vector space, which integrates the feature normalization and the optimizing process, and makes the model converge fast and stable. On the other hand, this enables the model to fit the data better and produce more reasonable factorization results. Further, we develop a novel pairwise co-regularization to align incomplete multiple views more directly, without introducing a common consensus matrix like traditional centroid-based co-regularization. Graph regularization is also incorporated in the proposed model to utilize the geometrical information of data. We implement IMCNAS with a centroid-based regularization and a pairwise co-regularization respectively, and leads to two variants, i.e., IMCNAS-1 and IMCNAS-2. Both variants are optimized with multiplicative updating rules. Extensive experiments conducted on various real-world datasets comparing several state-of-the-art IMC methods verified the effectiveness of the proposed methods. The source code is available at: https://github.com/GuoshengCui/IMCNAS . |
| Author | Li, Ye Cui, Guosheng Wang, Ruxin Wu, Dan |
| Author_xml | – sequence: 1 givenname: Guosheng surname: Cui fullname: Cui, Guosheng email: gs.cui@siat.ac.cn organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China – sequence: 2 givenname: Ruxin orcidid: 0000-0003-4772-3284 surname: Wang fullname: Wang, Ruxin email: rx.wang@siat.ac.cn organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China – sequence: 3 givenname: Dan orcidid: 0000-0001-5838-0198 surname: Wu fullname: Wu, Dan email: dan.wu@siat.ac.cn organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China – sequence: 4 givenname: Ye orcidid: 0000-0002-5351-8546 surname: Li fullname: Li, Ye email: ye.li@siat.ac.cn organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China |
| BookMark | eNp9kEtPwkAUhScGEwH9AcZNE9fFebQz7ZIgIhE1UYg7m-lwW4b05XSqgV9vK8SFCzfn3sU59_ENUK8oC0DokuARITi8WT7cTkcUUzpirfqcnKA-8f3ApSQkvbbHHnE95okzNKjrLcY4EAHpo_d5ocq8ysCC89hkVn9q-HImWVNbMLpInVXd6VNpcpnpfdePM50WORTWebVGWkh3zpu2G2dmZLVxXiBtMmn0XlpdFufoNJFZDRfHOkSru-lycu8unmfzyXjhKhoy6wLzKGfCTxIZcwEM4hALCpBIwSgECcPCi0kguVRCiiRWSq6Zx5UfhGtfCM6G6PowtzLlRwO1jbZlY4p2ZUQD5jHMPea3LnFwKVPWtYEkUtr-3Nk-orOI4KiDGXUwow5mdITZJsmfZGV0Ls3u38zVIaMB4NcfBjwUjLFvNVSDcg |
| CODEN | ITKEEH |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2025_110387 crossref_primary_10_1007_s10618_025_01109_3 crossref_primary_10_1117_1_JEI_33_6_063016 crossref_primary_10_1016_j_inffus_2025_103137 crossref_primary_10_26599_BDMA_2023_9020004 crossref_primary_10_1016_j_ins_2024_120830 crossref_primary_10_1007_s10489_025_06767_w |
| Cites_doi | 10.1016/j.patcog.2018.09.009 10.24963/ijcai.2019/623 10.1109/TPAMI.2020.2974828 10.1109/CVPR.2005.177 10.1016/j.inffus.2017.02.007 10.1109/TCYB.2020.2984552 10.1016/j.compbiomed.2020.103965 10.1109/ICCV.1999.790410 10.1609/aaai.v34i04.5756 10.1016/j.knosys.2020.106615 10.1109/TCYB.2020.2987164 10.1609/aaai.v28i1.8973 10.1609/aaai.v27i1.8565 10.1016/j.patcog.2017.01.035 10.1109/TKDE.2019.2903810 10.1109/TNNLS.2018.2828699 10.24963/ijcai.2018/313 10.1109/TPAMI.2019.2895608 10.1016/j.media.2020.101953 10.1016/j.patcog.2020.107676 10.1609/aaai.v29i1.9598 10.1109/TAI.2021.3065894 10.1109/ICPR.2016.7899961 10.1109/TMM.2020.3032023 10.1016/j.imavis.2021.104111 10.1109/TNNLS.2020.2979532 10.1109/DICTA.2016.7797034 10.1017/CBO9780511804441 10.1109/TCYB.2019.2918495 10.24963/ijcai.2019/546 10.1109/TPAMI.2002.1017623 10.1016/j.inffus.2018.02.005 10.1145/860435.860485 10.1109/tcyb.2021.3062830 10.1016/j.patcog.2018.09.016 10.1016/j.neunet.2020.10.014 10.1109/TCYB.2018.2884715 10.1109/TMM.2020.3013408 10.1016/j.neucom.2017.07.016 10.1016/j.ipm.2004.11.005 10.1109/TPAMI.2018.2879108 10.1109/TIP.2020.3036717 10.1109/TPAMI.2020.3037734 10.1109/TKDE.2015.2448542 10.1609/aaai.v33i01.33015393 10.1145/1143844.1143892 10.1016/j.ins.2019.04.039 10.1007/978-3-030-11018-5_47 10.1609/aaai.v34i04.5867 10.1109/TPAMI.2008.277 10.1109/tnnls.2021.3069424 10.1145/3178119 10.1109/TPAMI.2018.2847335 10.1007/978-3-319-23528-8_20 10.1109/TCYB.2019.2953564 10.1609/aaai.v33i01.33014392 10.1109/BigData.2016.7840701 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TKDE.2022.3202561 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 8142 |
| ExternalDocumentID | 10_1109_TKDE_2022_3202561 9869733 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Strategic Priority CAS grantid: XDB38040200 – fundername: Guangdong Provincial Science and Technology Plan grantid: 2022A1515011557 – fundername: National Key Research and Development Program of China grantid: 2021YFF0901104 – fundername: National Natural Science Foundation of China grantid: 62073310; 62102410 funderid: 10.13039/501100001809 – fundername: Shenzhen Science and Technology Project grantid: JSGG20200225153023511; KQTD20190929172835662 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-e3426375ffab67e3eb9072eefa732e8f3074b18a6ac7a7fbccad346c589d57763 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001033571000037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1041-4347 |
| IngestDate | Mon Jun 30 05:51:15 EDT 2025 Sat Nov 29 02:36:06 EST 2025 Tue Nov 18 22:35:39 EST 2025 Wed Aug 27 02:04:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-e3426375ffab67e3eb9072eefa732e8f3074b18a6ac7a7fbccad346c589d57763 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4772-3284 0000-0001-5838-0198 0000-0002-5351-8546 |
| PQID | 2834306435 |
| PQPubID | 85438 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2834306435 crossref_citationtrail_10_1109_TKDE_2022_3202561 ieee_primary_9869733 crossref_primary_10_1109_TKDE_2022_3202561 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref15 ref59 ref14 Cormen (ref52) 2009 ref58 ref53 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref46 ref45 ref48 ref47 ref42 ref41 Wang (ref50) ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Zhao (ref30) ref35 ref34 ref37 ref36 ref31 ref33 ref32 ref2 ref1 ref39 ref38 Cai (ref56) ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref60 ref61 |
| References_xml | – ident: ref13 doi: 10.1016/j.patcog.2018.09.009 – ident: ref42 doi: 10.24963/ijcai.2019/623 – start-page: 2598 volume-title: Proc. 23rd Int. Joint Conf. Artif. Intell. ident: ref56 article-title: Multi-view K-means clustering on Big Data – ident: ref39 doi: 10.1109/TPAMI.2020.2974828 – ident: ref6 doi: 10.1109/CVPR.2005.177 – ident: ref10 doi: 10.1016/j.inffus.2017.02.007 – ident: ref17 doi: 10.1109/TCYB.2020.2984552 – ident: ref21 doi: 10.1016/j.compbiomed.2020.103965 – ident: ref7 doi: 10.1109/ICCV.1999.790410 – ident: ref12 doi: 10.1609/aaai.v34i04.5756 – ident: ref26 doi: 10.1016/j.knosys.2020.106615 – ident: ref34 doi: 10.1109/TCYB.2020.2987164 – ident: ref27 doi: 10.1609/aaai.v28i1.8973 – ident: ref53 doi: 10.1609/aaai.v27i1.8565 – ident: ref20 doi: 10.1016/j.patcog.2017.01.035 – ident: ref61 doi: 10.1109/TKDE.2019.2903810 – ident: ref22 doi: 10.1109/TNNLS.2018.2828699 – ident: ref31 doi: 10.24963/ijcai.2018/313 – ident: ref40 doi: 10.1109/TPAMI.2019.2895608 – ident: ref8 doi: 10.1016/j.media.2020.101953 – ident: ref14 doi: 10.1016/j.patcog.2020.107676 – ident: ref54 doi: 10.1609/aaai.v29i1.9598 – ident: ref1 doi: 10.1109/TAI.2021.3065894 – ident: ref33 doi: 10.1109/ICPR.2016.7899961 – ident: ref3 doi: 10.1109/TMM.2020.3032023 – ident: ref9 doi: 10.1016/j.imavis.2021.104111 – ident: ref19 doi: 10.1109/TNNLS.2020.2979532 – start-page: 4835 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref50 article-title: Deep multimodal fusion by channel exchanging – volume-title: Introduction to Algorithms year: 2009 ident: ref52 – ident: ref32 doi: 10.1109/DICTA.2016.7797034 – start-page: 2392 volume-title: Proc. 25th Int. Joint Conf. Artif. Intel. ident: ref30 article-title: Incomplete multi-modal visual data grouping – ident: ref51 doi: 10.1017/CBO9780511804441 – ident: ref15 doi: 10.1109/TCYB.2019.2918495 – ident: ref23 doi: 10.24963/ijcai.2019/546 – ident: ref5 doi: 10.1109/TPAMI.2002.1017623 – ident: ref2 doi: 10.1016/j.inffus.2018.02.005 – ident: ref57 doi: 10.1145/860435.860485 – ident: ref47 doi: 10.1109/tcyb.2021.3062830 – ident: ref11 doi: 10.1016/j.patcog.2018.09.016 – ident: ref45 doi: 10.1016/j.neunet.2020.10.014 – ident: ref43 doi: 10.1109/TCYB.2018.2884715 – ident: ref44 doi: 10.1109/TMM.2020.3013408 – ident: ref29 doi: 10.1016/j.neucom.2017.07.016 – ident: ref58 doi: 10.1016/j.ipm.2004.11.005 – ident: ref38 doi: 10.1109/TPAMI.2018.2879108 – ident: ref46 doi: 10.1109/TIP.2020.3036717 – ident: ref24 doi: 10.1109/TPAMI.2020.3037734 – ident: ref49 doi: 10.1109/TKDE.2015.2448542 – ident: ref35 doi: 10.1609/aaai.v33i01.33015393 – ident: ref55 doi: 10.1145/1143844.1143892 – ident: ref37 doi: 10.1016/j.ins.2019.04.039 – ident: ref59 doi: 10.1007/978-3-030-11018-5_47 – ident: ref60 doi: 10.1609/aaai.v34i04.5867 – ident: ref48 doi: 10.1109/TPAMI.2008.277 – ident: ref18 doi: 10.1109/tnnls.2021.3069424 – ident: ref4 doi: 10.1145/3178119 – ident: ref16 doi: 10.1109/TPAMI.2018.2847335 – ident: ref28 doi: 10.1007/978-3-319-23528-8_20 – ident: ref36 doi: 10.1109/TCYB.2019.2953564 – ident: ref41 doi: 10.1609/aaai.v33i01.33014392 – ident: ref25 doi: 10.1109/BigData.2016.7840701 |
| SSID | ssj0008781 |
| Score | 2.4539258 |
| Snippet | Matrix factorization has demonstrated promising performance in the incomplete multiview clustering (IMC) tasks. However, many algorithms require feature... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 8126 |
| SubjectTerms | Algorithms Alignment Centroids Clustering Convergence Factorization Feature alignment incomplete multiview Linear programming Mathematical analysis Matrix decomposition Microwave integrated circuits normalizing strategy Optimization pairwise co-regularization Predictive models Regularization Source code Task analysis Vector spaces |
| Title | Incomplete Multiview Clustering Using Normalizing Alignment Strategy With Graph Regularization |
| URI | https://ieeexplore.ieee.org/document/9869733 https://www.proquest.com/docview/2834306435 |
| Volume | 35 |
| WOSCitedRecordID | wos001033571000037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SkEN7yLOl2zzQoadQ79p6WNYxJJsEAksoG5JTjS2P2oVlEzbeQvvro5G1S0pKoDcdRmD8eUYz1sz3AXxBZXkqtU0cb1wiMRWJqbVLXEpTn9SFwesgNqFHo-L-3tyswdfVLAwihuYz7NMy3OU3D3ZBv8oGpsiNFmId1rXOu1mtVdQtdBAk9dWFr4mE1PEGM0vNYHx9PvSVIOd9EgtXefbXGRREVV5F4nC8XGz_34PtwFZMI9lph_surOFsD7aXEg0seuwevH_BN7gP3300oBZynyizMHlL9wLsbLogtgRvwUIDARtRHjud_KH16XTyIzQMsMhj-5vdTdqf7JKIrtm3oGQ_j7OcH-D2Yjg-u0qiwEJi_SnfJiiIrl0r56o61yiw9qUyR3SVFhwL5_1f1llR5ZXVlXa1R7sRMreqMI3yEIiPsDF7mOEnYFmGSqPLvQ2XTqJBqYSyxsewRnMnepAuX3lpI_s4iWBMy1CFpKYklEpCqYwo9eBkteWxo954y3ifYFkZRkR6cLjEtYzO-VT6jEpS4SXU53_vOoB3pCrf9fkdwkY7X-ARbNpf7eRpfhy-u2d7ndad |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RqFQ4FMpDbAvUB06IQOJHHB8R5VEBK4QWwalR4oxhpdWClt1K5dfj8XpXRUVIvfkwlqJ88Tzime8D2EZleSq1TRxvXCIxFYmptUtcSlOf1IXB6yA2odvt4vbWXM7A7nQWBhFD8xnu0TLc5TcPdkS_yvZNkRstxAeYU1LydDytNfW7hQ6SpL6-8FWRkDreYWap2e-c_TjytSDneyQXrvLsVRQKsir_-OIQYI4X_-_RluBzTCTZwRj5LzCD_WVYnIg0sHhml2HhL8bBFfjl_QE1kftUmYXZW7oZYIe9EfEleAsWWghYmzLZXveZ1ge97l1oGWCRyfYPu-kO79kJUV2zq6BlP4jTnKtwfXzUOTxNosRCYn2cHyYoiLBdK-eqOtcosPbFMkd0lRYcC-c9gKyzosorqyvtao93I2RuVWEapb1vWoPZ_kMf14FlGSqNLvc2XDqJBqUSyhrvxRrNnWhBOnnlpY384ySD0StDHZKaklAqCaUyotSCnemWxzH5xnvGKwTL1DAi0oKNCa5lPJ5Ppc-pJJVeQn19e9d3-HTauTgvz3-2z77BPGnMj7v-NmB2OBjhJny0v4fdp8FW-AZfAMsE2eQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incomplete+Multiview+Clustering+Using+Normalizing+Alignment+Strategy+With+Graph+Regularization&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Cui%2C+Guosheng&rft.au=Wang%2C+Ruxin&rft.au=Wu%2C+Dan&rft.au=Li%2C+Ye&rft.date=2023-08-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=35&rft.issue=8&rft.spage=8126&rft.epage=8142&rft_id=info:doi/10.1109%2FTKDE.2022.3202561&rft.externalDocID=9869733 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |