Generalized Multitasking for Evolutionary Optimization of Expensive Problems
Conventional evolutionary algorithms (EAs) are not well suited for solving expensive optimization problems due to the fact that they often require a large number of fitness evaluations to obtain acceptable solutions. To alleviate the difficulty, this paper presents a multitasking evolutionary optimi...
Uložené v:
| Vydané v: | IEEE transactions on evolutionary computation Ročník 23; číslo 1; s. 44 - 58 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.02.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Conventional evolutionary algorithms (EAs) are not well suited for solving expensive optimization problems due to the fact that they often require a large number of fitness evaluations to obtain acceptable solutions. To alleviate the difficulty, this paper presents a multitasking evolutionary optimization framework for solving computationally expensive problems. In the framework, knowledge is transferred from a number of computationally cheap optimization problems to help the solution of the expensive problem on the basis of the recently proposed multifactorial EA (MFEA), leading to a faster convergence of the expensive problem. However, existing MFEAs do not work well in solving multitasking problems whose optimums do not lie in the same location or when the dimensions of the decision space are not the same. To address the above issues, the existing MFEA is generalized by proposing two strategies, one for decision variable translation and the other for decision variable shuffling, to facilitate knowledge transfer between optimization problems having different locations of the optimums and different numbers of decision variables. To assess the effectiveness of the generalized MFEA (G-MFEA), empirical studies have been conducted on eight multitasking instances and eight test problems for expensive optimization. The experimental results demonstrate that the proposed G-MFEA works more efficiently for multitasking optimization and successfully accelerates the convergence of expensive optimization problems compared to single-task optimization. |
|---|---|
| AbstractList | Conventional evolutionary algorithms (EAs) are not well suited for solving expensive optimization problems due to the fact that they often require a large number of fitness evaluations to obtain acceptable solutions. To alleviate the difficulty, this paper presents a multitasking evolutionary optimization framework for solving computationally expensive problems. In the framework, knowledge is transferred from a number of computationally cheap optimization problems to help the solution of the expensive problem on the basis of the recently proposed multifactorial EA (MFEA), leading to a faster convergence of the expensive problem. However, existing MFEAs do not work well in solving multitasking problems whose optimums do not lie in the same location or when the dimensions of the decision space are not the same. To address the above issues, the existing MFEA is generalized by proposing two strategies, one for decision variable translation and the other for decision variable shuffling, to facilitate knowledge transfer between optimization problems having different locations of the optimums and different numbers of decision variables. To assess the effectiveness of the generalized MFEA (G-MFEA), empirical studies have been conducted on eight multitasking instances and eight test problems for expensive optimization. The experimental results demonstrate that the proposed G-MFEA works more efficiently for multitasking optimization and successfully accelerates the convergence of expensive optimization problems compared to single-task optimization. |
| Author | Yang, Cuie Ding, Jinliang Jin, Yaochu Chai, Tianyou |
| Author_xml | – sequence: 1 givenname: Jinliang orcidid: 0000-0003-3735-0672 surname: Ding fullname: Ding, Jinliang email: jlding@mail.neu.edu.cn organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China – sequence: 2 givenname: Cuie orcidid: 0000-0003-1997-1854 surname: Yang fullname: Yang, Cuie email: cuieyang@outlook.com organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China – sequence: 3 givenname: Yaochu orcidid: 0000-0003-1100-0631 surname: Jin fullname: Jin, Yaochu email: yaochu.jin@surrey.ac.uk organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China – sequence: 4 givenname: Tianyou orcidid: 0000-0002-4623-1483 surname: Chai fullname: Chai, Tianyou email: tychai@mail.neu.edu.cn organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China |
| BookMark | eNp9kFFLwzAQx4NMcJt-APGl4HNnLkmb5lFGncJkPkzxLWRtKpldU5N26D69KRMffBDuuDv4_--43wSNGttohC4BzwCwuFnnL_MZwcBnhGcJTeAEjUEwiDEm6Sj0OBMx59nrGZp4v8UYWAJijJYL3WinanPQZfTY153plH83zVtUWRfle1v3nbGNcl_Rqu3MzhzUMEe2ivLPVjfe7HX05Oym1jt_jk4rVXt98VOn6PkuX8_v4-Vq8TC_XcYFEbSLNYaUZFhkFcUhSKWpKChVKaGUZUyVPOG8woVO2SbBsGEQBDgtC5ECUUVJp-j6uLd19qPXvpNb27smnJQEeMJCpiyo4KgqnPXe6Uq2zuzCJxKwHKDJAZocoMkfaMHD_3iKAGT4uHPK1P86r45Oo7X-vZQRCsAJ_QbMBnvW |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1007_s11227_025_07787_6 crossref_primary_10_1109_TEVC_2023_3339506 crossref_primary_10_1007_s12559_022_10012_8 crossref_primary_10_1109_TETCI_2019_2916051 crossref_primary_10_1016_j_ins_2022_08_103 crossref_primary_10_1109_TEVC_2023_3255266 crossref_primary_10_1007_s10489_022_03626_w crossref_primary_10_1080_17517575_2018_1545160 crossref_primary_10_1109_TEVC_2021_3135691 crossref_primary_10_1109_TII_2020_3005207 crossref_primary_10_1109_TEVC_2023_3259067 crossref_primary_10_1007_s12293_021_00347_4 crossref_primary_10_1016_j_asoc_2024_111883 crossref_primary_10_1109_TEVC_2023_3258491 crossref_primary_10_1109_TEVC_2023_3291874 crossref_primary_10_1007_s40747_021_00624_2 crossref_primary_10_1109_TEVC_2022_3187512 crossref_primary_10_1109_TETCI_2023_3306351 crossref_primary_10_1109_MCI_2023_3277770 crossref_primary_10_1109_TCYB_2019_2955599 crossref_primary_10_1109_TFUZZ_2020_2968863 crossref_primary_10_1016_j_asoc_2021_107154 crossref_primary_10_1016_j_swevo_2024_101754 crossref_primary_10_1007_s40747_021_00568_7 crossref_primary_10_1016_j_eswa_2024_126321 crossref_primary_10_1109_TCYB_2020_3043509 crossref_primary_10_1109_TSMC_2019_2907575 crossref_primary_10_1016_j_knosys_2020_106262 crossref_primary_10_1109_TCYB_2021_3123625 crossref_primary_10_1109_TEVC_2021_3100056 crossref_primary_10_1109_TCYB_2022_3168839 crossref_primary_10_1007_s12539_024_00621_2 crossref_primary_10_1109_TCYB_2020_2981733 crossref_primary_10_1016_j_engappai_2023_106937 crossref_primary_10_1109_TCYB_2020_2980888 crossref_primary_10_1007_s12065_022_00788_x crossref_primary_10_1016_j_ins_2021_09_021 crossref_primary_10_1145_3760534 crossref_primary_10_1109_TCBBIO_2025_3564952 crossref_primary_10_1109_TETCI_2023_3281876 crossref_primary_10_1016_j_isatra_2023_03_015 crossref_primary_10_1109_TEVC_2022_3170638 crossref_primary_10_1109_TCYB_2024_3469371 crossref_primary_10_1109_TCYB_2022_3189684 crossref_primary_10_1016_j_eswa_2023_120110 crossref_primary_10_1016_j_knosys_2025_113361 crossref_primary_10_1109_MCI_2021_3108311 crossref_primary_10_1109_TASE_2020_2992220 crossref_primary_10_1016_j_isatra_2022_09_046 crossref_primary_10_1109_TETC_2019_2945775 crossref_primary_10_1109_TAI_2022_3156952 crossref_primary_10_1109_TETCI_2023_3301794 crossref_primary_10_1016_j_ins_2025_121908 crossref_primary_10_1016_j_knosys_2025_113824 crossref_primary_10_1007_s40815_020_00954_2 crossref_primary_10_1016_j_asoc_2023_110182 crossref_primary_10_1109_MCI_2022_3155332 crossref_primary_10_1109_TEVC_2023_3250350 crossref_primary_10_1016_j_asoc_2024_111232 crossref_primary_10_1016_j_jclepro_2020_123364 crossref_primary_10_1109_TEVC_2020_2979740 crossref_primary_10_1109_TEVC_2021_3139437 crossref_primary_10_1109_TEVC_2020_2975381 crossref_primary_10_1109_TEVC_2023_3263871 crossref_primary_10_1109_ACCESS_2019_2911028 crossref_primary_10_1016_j_asoc_2019_105492 crossref_primary_10_1016_j_engappai_2023_107684 crossref_primary_10_1109_MCI_2022_3155325 crossref_primary_10_1109_TSMC_2025_3541002 crossref_primary_10_1109_TEVC_2021_3065707 crossref_primary_10_1016_j_eswa_2024_125496 crossref_primary_10_1007_s00500_021_05876_1 crossref_primary_10_1109_TEVC_2022_3227120 crossref_primary_10_1109_ACCESS_2020_3007142 crossref_primary_10_1109_TEVC_2022_3210783 crossref_primary_10_1007_s12293_022_00374_9 crossref_primary_10_1016_j_asoc_2023_110070 crossref_primary_10_1007_s12293_025_00464_4 crossref_primary_10_1109_TEVC_2021_3068157 crossref_primary_10_1016_j_knosys_2023_110906 crossref_primary_10_1016_j_asoc_2021_108071 crossref_primary_10_1109_TCYB_2021_3050516 crossref_primary_10_3390_math9080864 crossref_primary_10_1109_TEVC_2023_3348475 crossref_primary_10_1109_TCYB_2020_2974100 crossref_primary_10_1007_s40747_023_01105_4 crossref_primary_10_1016_j_ins_2021_09_007 crossref_primary_10_1007_s10489_023_04917_6 crossref_primary_10_1109_TEVC_2021_3110506 crossref_primary_10_1016_j_asoc_2020_106276 crossref_primary_10_1109_TSMC_2022_3205010 crossref_primary_10_1016_j_ins_2023_119568 crossref_primary_10_1016_j_ins_2019_10_066 crossref_primary_10_1016_j_ins_2023_119961 crossref_primary_10_1109_TEVC_2019_2962747 crossref_primary_10_1109_ACCESS_2021_3114435 crossref_primary_10_1109_TEVC_2021_3082112 crossref_primary_10_1016_j_ins_2019_09_058 crossref_primary_10_1109_TEVC_2019_2906927 crossref_primary_10_1109_JSYST_2020_3014093 crossref_primary_10_1016_j_eswa_2023_119550 crossref_primary_10_3390_app13010602 crossref_primary_10_1016_j_eswa_2025_128141 crossref_primary_10_1016_j_petrol_2021_108900 crossref_primary_10_1109_TEVC_2021_3086308 crossref_primary_10_1109_TEVC_2023_3294307 crossref_primary_10_1007_s11633_022_1317_4 crossref_primary_10_1109_TEVC_2022_3160196 crossref_primary_10_1016_j_asoc_2022_109775 crossref_primary_10_1016_j_swevo_2024_101798 crossref_primary_10_1109_TSMC_2021_3049323 crossref_primary_10_2118_219732_PA crossref_primary_10_1016_j_swevo_2025_102003 crossref_primary_10_1109_TCYB_2025_3547565 crossref_primary_10_1016_j_swevo_2023_101279 crossref_primary_10_1007_s10489_022_03537_w crossref_primary_10_3233_JIFS_222267 crossref_primary_10_1007_s11227_022_04916_3 crossref_primary_10_1007_s40747_024_01750_3 crossref_primary_10_1016_j_ins_2022_07_174 crossref_primary_10_1016_j_jmsy_2022_08_003 crossref_primary_10_1109_TCYB_2020_3036393 crossref_primary_10_1109_TCYB_2025_3561518 crossref_primary_10_1016_j_aei_2022_101756 crossref_primary_10_1109_TCYB_2024_3456471 crossref_primary_10_1016_j_eswa_2024_124618 crossref_primary_10_1109_TEVC_2022_3159253 crossref_primary_10_1007_s10845_024_02339_w crossref_primary_10_1016_j_eswa_2022_119025 crossref_primary_10_1016_j_eswa_2019_07_015 crossref_primary_10_1109_TCYB_2021_3065340 crossref_primary_10_1109_TETCI_2022_3205384 crossref_primary_10_3390_a18010004 crossref_primary_10_1109_TEVC_2019_2925959 crossref_primary_10_1016_j_swevo_2024_101823 crossref_primary_10_1109_TCYB_2019_2962865 crossref_primary_10_1109_TCYB_2020_2969025 crossref_primary_10_1109_TEVC_2022_3141819 crossref_primary_10_1007_s40747_025_01908_7 crossref_primary_10_1109_TCDS_2022_3221805 crossref_primary_10_1109_TEVC_2020_3023480 crossref_primary_10_1007_s10462_020_09882_x crossref_primary_10_1016_j_asoc_2022_109827 crossref_primary_10_1007_s12293_024_00431_5 crossref_primary_10_1109_TEVC_2021_3101697 crossref_primary_10_1016_j_eswa_2022_119495 crossref_primary_10_1109_MCI_2022_3222050 crossref_primary_10_1109_TEVC_2021_3107435 crossref_primary_10_1109_TEVC_2022_3231493 crossref_primary_10_1177_1687814019898347 crossref_primary_10_1109_ACCESS_2019_2954542 crossref_primary_10_1109_TEVC_2020_2991717 crossref_primary_10_1109_TEVC_2023_3272663 crossref_primary_10_1016_j_asoc_2023_110780 crossref_primary_10_1109_TEVC_2023_3349250 crossref_primary_10_1016_j_eswa_2023_120529 crossref_primary_10_1109_TEVC_2021_3098523 crossref_primary_10_1109_TEVC_2021_3131236 crossref_primary_10_1007_s12559_024_10386_x crossref_primary_10_1016_j_eswa_2023_122025 crossref_primary_10_1109_TETCI_2024_3354101 crossref_primary_10_1016_j_eswa_2025_127599 crossref_primary_10_1109_TCYB_2021_3090769 crossref_primary_10_1109_TEVC_2022_3154416 crossref_primary_10_1109_TETC_2023_3268182 crossref_primary_10_1109_MCI_2020_3039066 crossref_primary_10_1109_TEVC_2022_3199783 crossref_primary_10_1109_TSMC_2024_3520322 crossref_primary_10_1016_j_rcim_2022_102472 crossref_primary_10_1109_MCI_2020_3039067 crossref_primary_10_1109_TEVC_2023_3291697 crossref_primary_10_1016_j_ast_2024_108999 crossref_primary_10_1109_TETCI_2021_3115518 crossref_primary_10_1016_j_asoc_2023_110385 crossref_primary_10_1016_j_swevo_2024_101768 crossref_primary_10_1109_TEVC_2024_3398436 crossref_primary_10_1016_j_eswa_2023_119668 crossref_primary_10_1016_j_asoc_2023_110545 crossref_primary_10_1109_TCYB_2022_3232113 crossref_primary_10_1109_TEVC_2021_3097043 crossref_primary_10_1016_j_swevo_2021_101021 crossref_primary_10_1109_TSMC_2021_3096220 crossref_primary_10_1109_TCYB_2020_3008280 crossref_primary_10_1016_j_swevo_2025_102115 crossref_primary_10_1016_j_ins_2021_12_014 |
| Cites_doi | 10.1023/A:1023283917997 10.1109/TEVC.2009.2027359 10.2514/2.1999 10.1080/01621459.1972.10481251 10.1109/TEVC.2003.819944 10.1109/TEVC.2005.851274 10.1109/ICEC.1995.489178 10.1007/s40747-016-0011-y 10.1109/TEVC.2002.800884 10.1109/TEVC.2010.2073472 10.1109/SSCI.2016.7850038 10.1109/TEVC.2017.2675628 10.1109/TEVC.2015.2458037 10.1109/TEVC.2016.2555315 10.1016/S0376-0421(01)00019-7 10.1109/TEVC.2013.2262111 10.1109/CEC.2017.7969454 10.1109/TETCI.2017.2769104 10.1007/s12293-009-0011-1 10.1109/TEVC.2015.2449293 10.1007/s12293-008-0004-5 10.1109/TCYB.2016.2554622 10.1109/TSMCC.2005.855506 10.1162/106365601750190398 10.1109/TENCON.2016.7848632 10.1109/TEVC.2008.919004 10.1109/TEVC.2016.2569018 10.1007/s00500-014-1283-z 10.1093/oso/9780195099713.001.0001 10.1007/s00500-003-0328-5 10.1109/TEVC.2016.2622301 10.1017/S0890060401151024 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2017.2785351 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Computer Science |
| EISSN | 1941-0026 |
| EndPage | 58 |
| ExternalDocumentID | 10_1109_TEVC_2017_2785351 8231172 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61525302; 61590922; 61621004 funderid: 10.13039/501100001809 – fundername: Projects of Liaoning Province grantid: 2014020021; LR2015021 – fundername: Fundamental Research Funds for the Central Universities grantid: N160801001; N161608001 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-e01628098f30f302fe39c33a6233484ad7577f0ce64b501b41e3906dc9612acd3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 214 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457825100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Mon Jun 30 05:44:58 EDT 2025 Sat Nov 29 03:13:47 EST 2025 Tue Nov 18 21:32:25 EST 2025 Wed Aug 27 03:06:24 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-e01628098f30f302fe39c33a6233484ad7577f0ce64b501b41e3906dc9612acd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1100-0631 0000-0003-1997-1854 0000-0002-4623-1483 0000-0003-3735-0672 |
| PQID | 2175417564 |
| PQPubID | 85418 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2175417564 crossref_citationtrail_10_1109_TEVC_2017_2785351 crossref_primary_10_1109_TEVC_2017_2785351 ieee_primary_8231172 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-02-01 |
| PublicationDateYYYYMMDD | 2019-02-01 |
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref37 zhou (ref12) 2016 ref36 ref14 ref30 bäck (ref1) 1996 ref11 ref32 ref10 deb (ref15) 1995; 9 da (ref33) 2016 ref2 ref39 ref17 ref38 ref19 ref18 hansen (ref16) 2009 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 de grave (ref31) 2008 martínez (ref29) 2013 |
| References_xml | – year: 2009 ident: ref16 article-title: Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions – ident: ref34 doi: 10.1023/A:1023283917997 – ident: ref5 doi: 10.1109/TEVC.2009.2027359 – ident: ref22 doi: 10.2514/2.1999 – ident: ref37 doi: 10.1080/01621459.1972.10481251 – ident: ref19 doi: 10.1109/TEVC.2003.819944 – ident: ref6 doi: 10.1109/TEVC.2005.851274 – ident: ref17 doi: 10.1109/ICEC.1995.489178 – start-page: 1 year: 2016 ident: ref12 article-title: Evolutionary multitasking in combinatorial search spaces: A case study in capacitated vehicle routing problem publication-title: Proc IEEE Symp Series Comput Intell – ident: ref14 doi: 10.1007/s40747-016-0011-y – ident: ref9 doi: 10.1109/TEVC.2002.800884 – ident: ref2 doi: 10.1109/TEVC.2010.2073472 – start-page: 1405 year: 2013 ident: ref29 article-title: MOEA/D assisted by RBF networks for expensive multi-objective optimization problems publication-title: Proc 15th Annu Conf Genet Evol Comput – ident: ref20 doi: 10.1109/SSCI.2016.7850038 – ident: ref25 doi: 10.1109/TEVC.2017.2675628 – ident: ref10 doi: 10.1109/TEVC.2015.2458037 – ident: ref7 doi: 10.1109/TEVC.2016.2555315 – ident: ref30 doi: 10.1016/S0376-0421(01)00019-7 – ident: ref8 doi: 10.1109/TEVC.2013.2262111 – ident: ref24 doi: 10.1109/TEVC.2005.851274 – ident: ref38 doi: 10.1109/CEC.2017.7969454 – ident: ref39 doi: 10.1109/TETCI.2017.2769104 – start-page: 185 year: 2008 ident: ref31 article-title: Active learning for high throughput screening publication-title: Proc 12th Int Conf Disc Sci – ident: ref18 doi: 10.1007/s12293-009-0011-1 – volume: 9 start-page: 115 year: 1995 ident: ref15 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst – ident: ref23 doi: 10.1109/TEVC.2015.2449293 – ident: ref3 doi: 10.1007/s12293-008-0004-5 – year: 2016 ident: ref33 article-title: Evolutionary multitasking for single-objective continuous optimization: Benchmark problems, performance metric, and baseline results – ident: ref11 doi: 10.1109/TCYB.2016.2554622 – ident: ref28 doi: 10.1109/TSMCC.2005.855506 – ident: ref36 doi: 10.1162/106365601750190398 – ident: ref13 doi: 10.1109/TENCON.2016.7848632 – ident: ref4 doi: 10.1109/TEVC.2008.919004 – ident: ref35 doi: 10.1109/TEVC.2016.2569018 – ident: ref32 doi: 10.1007/s00500-014-1283-z – year: 1996 ident: ref1 publication-title: Evolutionary Algorithms in Theory and Practice Evolution Strategies Evolutionary Programming Genetic Algorithms doi: 10.1093/oso/9780195099713.001.0001 – ident: ref21 doi: 10.1007/s00500-003-0328-5 – ident: ref26 doi: 10.1109/TEVC.2016.2622301 – ident: ref27 doi: 10.1017/S0890060401151024 |
| SSID | ssj0014519 |
| Score | 2.653969 |
| Snippet | Conventional evolutionary algorithms (EAs) are not well suited for solving expensive optimization problems due to the fact that they often require a large... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 44 |
| SubjectTerms | Convergence Evolutionary algorithms Evolutionary algorithms (EAs) Evolutionary computation evolutionary multitasking optimization expensive optimization Fitness Knowledge management Knowledge transfer Multitasking Optimization Sociology Statistics |
| Title | Generalized Multitasking for Evolutionary Optimization of Expensive Problems |
| URI | https://ieeexplore.ieee.org/document/8231172 https://www.proquest.com/docview/2175417564 |
| Volume | 23 |
| WOSCitedRecordID | wos000457825100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB20eKgHq61itUoOnsRts5vsJjmKtHgQ9aDS25JmExC0lX6B_nonu2lRFEHYhT0kYclLMjOZmTcAZ1SglE1SGTGdMjRQMh1pauOIyYwZxpw2tqTMvxG3t3I4VPcbcLHOhbHWlsFntus_S19-MTELf1XW8y4rFLibsCmEqHK11h4DT5NSBdMr1BjlMHgwY6p6D_2nKx_EJbqJQOmUxt9kUFlU5cdJXIqXQeN_P7YLO0GNJJcV7nuwYcdNaKxKNJCwY5uw_YVvsAl1r1pWzMwtuAmM088ftiBVHq6e-Ytzgnos6S_DmtTTd3KH58prSNgkE0c8P3IZ907uq3o0s314HPQfrq6jUFshMijg55FFVS-RVEnHKD6Js0whNhq1IcYl14VIhXDU2IyPUhqPeIwNaFYYhSqRNgU7gNp4MraHQJyzDkcaWcZG3KFFzbMkUSZNC6mzzMg20NVs5yYQj_v6Fy95aYBQlXuAcg9QHgBqw_m6y1vFuvFX45ZHZN0wgNGGzgrSPOzLWY4GWMrxzfjR772OoY5jqyouuwO1-XRhT2DLLBGd6Wm55D4BgVbSrQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90CuqDH1NxfubBJ7GaNkmbPIpMFOf0YcreSpYmIOgmmw70r_fSZkNRBKGFPiRt6C_J3eXufgdwSDOUsomQEdOCoYGS6khTG0dMpsww5rSxJWV-K2u3Zber7mbgeJoLY60tg8_siX8sffnFwLz5o7JT77JCgTsLc4LzJK6ytaY-A0-UUoXTK9QZZTf4MGOqTjvNh3MfxpWdJBnKJxF_k0JlWZUfe3EpYC5W_je0VVgOiiQ5q5Bfgxnbr8PKpEgDCWu2DktfGAfrsOiVy4qbeR1agXP68cMWpMrE1SN_dE5QkyXNcZiVevhObnFneQ4pm2TgiGdILiPfyV1VkWa0AfcXzc75ZRSqK0QGRfxrZFHZSyRV0jGKV-IsU4iORn2Iccl1kYksc9TYlPcEjXs8xgY0LYxCpUibgm1CrT_o2y0gzlmHb-pZxnrcoU3N0yRRRohC6jQ1sgF08rdzE6jHfQWMp7w0QajKPUC5BygPADXgaNrlpeLd-Kvxukdk2jCA0YDdCaR5WJmjHE0wwfFO-fbvvQ5g4bJz08pbV-3rHVjE76gqSnsXaq_DN7sH82aMSA33y-n3CZ6y1fQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Multitasking+for+Evolutionary+Optimization+of+Expensive+Problems&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Ding%2C+Jinliang&rft.au=Yang%2C+Cuie&rft.au=Jin%2C+Yaochu&rft.au=Chai%2C+Tianyou&rft.date=2019-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=23&rft.issue=1&rft.spage=44&rft_id=info:doi/10.1109%2FTEVC.2017.2785351&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |