Generalized Multitasking for Evolutionary Optimization of Expensive Problems

Conventional evolutionary algorithms (EAs) are not well suited for solving expensive optimization problems due to the fact that they often require a large number of fitness evaluations to obtain acceptable solutions. To alleviate the difficulty, this paper presents a multitasking evolutionary optimi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on evolutionary computation Ročník 23; číslo 1; s. 44 - 58
Hlavní autori: Ding, Jinliang, Yang, Cuie, Jin, Yaochu, Chai, Tianyou
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.02.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1089-778X, 1941-0026
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Conventional evolutionary algorithms (EAs) are not well suited for solving expensive optimization problems due to the fact that they often require a large number of fitness evaluations to obtain acceptable solutions. To alleviate the difficulty, this paper presents a multitasking evolutionary optimization framework for solving computationally expensive problems. In the framework, knowledge is transferred from a number of computationally cheap optimization problems to help the solution of the expensive problem on the basis of the recently proposed multifactorial EA (MFEA), leading to a faster convergence of the expensive problem. However, existing MFEAs do not work well in solving multitasking problems whose optimums do not lie in the same location or when the dimensions of the decision space are not the same. To address the above issues, the existing MFEA is generalized by proposing two strategies, one for decision variable translation and the other for decision variable shuffling, to facilitate knowledge transfer between optimization problems having different locations of the optimums and different numbers of decision variables. To assess the effectiveness of the generalized MFEA (G-MFEA), empirical studies have been conducted on eight multitasking instances and eight test problems for expensive optimization. The experimental results demonstrate that the proposed G-MFEA works more efficiently for multitasking optimization and successfully accelerates the convergence of expensive optimization problems compared to single-task optimization.
AbstractList Conventional evolutionary algorithms (EAs) are not well suited for solving expensive optimization problems due to the fact that they often require a large number of fitness evaluations to obtain acceptable solutions. To alleviate the difficulty, this paper presents a multitasking evolutionary optimization framework for solving computationally expensive problems. In the framework, knowledge is transferred from a number of computationally cheap optimization problems to help the solution of the expensive problem on the basis of the recently proposed multifactorial EA (MFEA), leading to a faster convergence of the expensive problem. However, existing MFEAs do not work well in solving multitasking problems whose optimums do not lie in the same location or when the dimensions of the decision space are not the same. To address the above issues, the existing MFEA is generalized by proposing two strategies, one for decision variable translation and the other for decision variable shuffling, to facilitate knowledge transfer between optimization problems having different locations of the optimums and different numbers of decision variables. To assess the effectiveness of the generalized MFEA (G-MFEA), empirical studies have been conducted on eight multitasking instances and eight test problems for expensive optimization. The experimental results demonstrate that the proposed G-MFEA works more efficiently for multitasking optimization and successfully accelerates the convergence of expensive optimization problems compared to single-task optimization.
Author Yang, Cuie
Ding, Jinliang
Jin, Yaochu
Chai, Tianyou
Author_xml – sequence: 1
  givenname: Jinliang
  orcidid: 0000-0003-3735-0672
  surname: Ding
  fullname: Ding, Jinliang
  email: jlding@mail.neu.edu.cn
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
– sequence: 2
  givenname: Cuie
  orcidid: 0000-0003-1997-1854
  surname: Yang
  fullname: Yang, Cuie
  email: cuieyang@outlook.com
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
– sequence: 3
  givenname: Yaochu
  orcidid: 0000-0003-1100-0631
  surname: Jin
  fullname: Jin, Yaochu
  email: yaochu.jin@surrey.ac.uk
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
– sequence: 4
  givenname: Tianyou
  orcidid: 0000-0002-4623-1483
  surname: Chai
  fullname: Chai, Tianyou
  email: tychai@mail.neu.edu.cn
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
BookMark eNp9kFFLwzAQx4NMcJt-APGl4HNnLkmb5lFGncJkPkzxLWRtKpldU5N26D69KRMffBDuuDv4_--43wSNGttohC4BzwCwuFnnL_MZwcBnhGcJTeAEjUEwiDEm6Sj0OBMx59nrGZp4v8UYWAJijJYL3WinanPQZfTY153plH83zVtUWRfle1v3nbGNcl_Rqu3MzhzUMEe2ivLPVjfe7HX05Oym1jt_jk4rVXt98VOn6PkuX8_v4-Vq8TC_XcYFEbSLNYaUZFhkFcUhSKWpKChVKaGUZUyVPOG8woVO2SbBsGEQBDgtC5ECUUVJp-j6uLd19qPXvpNb27smnJQEeMJCpiyo4KgqnPXe6Uq2zuzCJxKwHKDJAZocoMkfaMHD_3iKAGT4uHPK1P86r45Oo7X-vZQRCsAJ_QbMBnvW
CODEN ITEVF5
CitedBy_id crossref_primary_10_1007_s11227_025_07787_6
crossref_primary_10_1109_TEVC_2023_3339506
crossref_primary_10_1007_s12559_022_10012_8
crossref_primary_10_1109_TETCI_2019_2916051
crossref_primary_10_1016_j_ins_2022_08_103
crossref_primary_10_1109_TEVC_2023_3255266
crossref_primary_10_1007_s10489_022_03626_w
crossref_primary_10_1080_17517575_2018_1545160
crossref_primary_10_1109_TEVC_2021_3135691
crossref_primary_10_1109_TII_2020_3005207
crossref_primary_10_1109_TEVC_2023_3259067
crossref_primary_10_1007_s12293_021_00347_4
crossref_primary_10_1016_j_asoc_2024_111883
crossref_primary_10_1109_TEVC_2023_3258491
crossref_primary_10_1109_TEVC_2023_3291874
crossref_primary_10_1007_s40747_021_00624_2
crossref_primary_10_1109_TEVC_2022_3187512
crossref_primary_10_1109_TETCI_2023_3306351
crossref_primary_10_1109_MCI_2023_3277770
crossref_primary_10_1109_TCYB_2019_2955599
crossref_primary_10_1109_TFUZZ_2020_2968863
crossref_primary_10_1016_j_asoc_2021_107154
crossref_primary_10_1016_j_swevo_2024_101754
crossref_primary_10_1007_s40747_021_00568_7
crossref_primary_10_1016_j_eswa_2024_126321
crossref_primary_10_1109_TCYB_2020_3043509
crossref_primary_10_1109_TSMC_2019_2907575
crossref_primary_10_1016_j_knosys_2020_106262
crossref_primary_10_1109_TCYB_2021_3123625
crossref_primary_10_1109_TEVC_2021_3100056
crossref_primary_10_1109_TCYB_2022_3168839
crossref_primary_10_1007_s12539_024_00621_2
crossref_primary_10_1109_TCYB_2020_2981733
crossref_primary_10_1016_j_engappai_2023_106937
crossref_primary_10_1109_TCYB_2020_2980888
crossref_primary_10_1007_s12065_022_00788_x
crossref_primary_10_1016_j_ins_2021_09_021
crossref_primary_10_1145_3760534
crossref_primary_10_1109_TCBBIO_2025_3564952
crossref_primary_10_1109_TETCI_2023_3281876
crossref_primary_10_1016_j_isatra_2023_03_015
crossref_primary_10_1109_TEVC_2022_3170638
crossref_primary_10_1109_TCYB_2024_3469371
crossref_primary_10_1109_TCYB_2022_3189684
crossref_primary_10_1016_j_eswa_2023_120110
crossref_primary_10_1016_j_knosys_2025_113361
crossref_primary_10_1109_MCI_2021_3108311
crossref_primary_10_1109_TASE_2020_2992220
crossref_primary_10_1016_j_isatra_2022_09_046
crossref_primary_10_1109_TETC_2019_2945775
crossref_primary_10_1109_TAI_2022_3156952
crossref_primary_10_1109_TETCI_2023_3301794
crossref_primary_10_1016_j_ins_2025_121908
crossref_primary_10_1016_j_knosys_2025_113824
crossref_primary_10_1007_s40815_020_00954_2
crossref_primary_10_1016_j_asoc_2023_110182
crossref_primary_10_1109_MCI_2022_3155332
crossref_primary_10_1109_TEVC_2023_3250350
crossref_primary_10_1016_j_asoc_2024_111232
crossref_primary_10_1016_j_jclepro_2020_123364
crossref_primary_10_1109_TEVC_2020_2979740
crossref_primary_10_1109_TEVC_2021_3139437
crossref_primary_10_1109_TEVC_2020_2975381
crossref_primary_10_1109_TEVC_2023_3263871
crossref_primary_10_1109_ACCESS_2019_2911028
crossref_primary_10_1016_j_asoc_2019_105492
crossref_primary_10_1016_j_engappai_2023_107684
crossref_primary_10_1109_MCI_2022_3155325
crossref_primary_10_1109_TSMC_2025_3541002
crossref_primary_10_1109_TEVC_2021_3065707
crossref_primary_10_1016_j_eswa_2024_125496
crossref_primary_10_1007_s00500_021_05876_1
crossref_primary_10_1109_TEVC_2022_3227120
crossref_primary_10_1109_ACCESS_2020_3007142
crossref_primary_10_1109_TEVC_2022_3210783
crossref_primary_10_1007_s12293_022_00374_9
crossref_primary_10_1016_j_asoc_2023_110070
crossref_primary_10_1007_s12293_025_00464_4
crossref_primary_10_1109_TEVC_2021_3068157
crossref_primary_10_1016_j_knosys_2023_110906
crossref_primary_10_1016_j_asoc_2021_108071
crossref_primary_10_1109_TCYB_2021_3050516
crossref_primary_10_3390_math9080864
crossref_primary_10_1109_TEVC_2023_3348475
crossref_primary_10_1109_TCYB_2020_2974100
crossref_primary_10_1007_s40747_023_01105_4
crossref_primary_10_1016_j_ins_2021_09_007
crossref_primary_10_1007_s10489_023_04917_6
crossref_primary_10_1109_TEVC_2021_3110506
crossref_primary_10_1016_j_asoc_2020_106276
crossref_primary_10_1109_TSMC_2022_3205010
crossref_primary_10_1016_j_ins_2023_119568
crossref_primary_10_1016_j_ins_2019_10_066
crossref_primary_10_1016_j_ins_2023_119961
crossref_primary_10_1109_TEVC_2019_2962747
crossref_primary_10_1109_ACCESS_2021_3114435
crossref_primary_10_1109_TEVC_2021_3082112
crossref_primary_10_1016_j_ins_2019_09_058
crossref_primary_10_1109_TEVC_2019_2906927
crossref_primary_10_1109_JSYST_2020_3014093
crossref_primary_10_1016_j_eswa_2023_119550
crossref_primary_10_3390_app13010602
crossref_primary_10_1016_j_eswa_2025_128141
crossref_primary_10_1016_j_petrol_2021_108900
crossref_primary_10_1109_TEVC_2021_3086308
crossref_primary_10_1109_TEVC_2023_3294307
crossref_primary_10_1007_s11633_022_1317_4
crossref_primary_10_1109_TEVC_2022_3160196
crossref_primary_10_1016_j_asoc_2022_109775
crossref_primary_10_1016_j_swevo_2024_101798
crossref_primary_10_1109_TSMC_2021_3049323
crossref_primary_10_2118_219732_PA
crossref_primary_10_1016_j_swevo_2025_102003
crossref_primary_10_1109_TCYB_2025_3547565
crossref_primary_10_1016_j_swevo_2023_101279
crossref_primary_10_1007_s10489_022_03537_w
crossref_primary_10_3233_JIFS_222267
crossref_primary_10_1007_s11227_022_04916_3
crossref_primary_10_1007_s40747_024_01750_3
crossref_primary_10_1016_j_ins_2022_07_174
crossref_primary_10_1016_j_jmsy_2022_08_003
crossref_primary_10_1109_TCYB_2020_3036393
crossref_primary_10_1109_TCYB_2025_3561518
crossref_primary_10_1016_j_aei_2022_101756
crossref_primary_10_1109_TCYB_2024_3456471
crossref_primary_10_1016_j_eswa_2024_124618
crossref_primary_10_1109_TEVC_2022_3159253
crossref_primary_10_1007_s10845_024_02339_w
crossref_primary_10_1016_j_eswa_2022_119025
crossref_primary_10_1016_j_eswa_2019_07_015
crossref_primary_10_1109_TCYB_2021_3065340
crossref_primary_10_1109_TETCI_2022_3205384
crossref_primary_10_3390_a18010004
crossref_primary_10_1109_TEVC_2019_2925959
crossref_primary_10_1016_j_swevo_2024_101823
crossref_primary_10_1109_TCYB_2019_2962865
crossref_primary_10_1109_TCYB_2020_2969025
crossref_primary_10_1109_TEVC_2022_3141819
crossref_primary_10_1007_s40747_025_01908_7
crossref_primary_10_1109_TCDS_2022_3221805
crossref_primary_10_1109_TEVC_2020_3023480
crossref_primary_10_1007_s10462_020_09882_x
crossref_primary_10_1016_j_asoc_2022_109827
crossref_primary_10_1007_s12293_024_00431_5
crossref_primary_10_1109_TEVC_2021_3101697
crossref_primary_10_1016_j_eswa_2022_119495
crossref_primary_10_1109_MCI_2022_3222050
crossref_primary_10_1109_TEVC_2021_3107435
crossref_primary_10_1109_TEVC_2022_3231493
crossref_primary_10_1177_1687814019898347
crossref_primary_10_1109_ACCESS_2019_2954542
crossref_primary_10_1109_TEVC_2020_2991717
crossref_primary_10_1109_TEVC_2023_3272663
crossref_primary_10_1016_j_asoc_2023_110780
crossref_primary_10_1109_TEVC_2023_3349250
crossref_primary_10_1016_j_eswa_2023_120529
crossref_primary_10_1109_TEVC_2021_3098523
crossref_primary_10_1109_TEVC_2021_3131236
crossref_primary_10_1007_s12559_024_10386_x
crossref_primary_10_1016_j_eswa_2023_122025
crossref_primary_10_1109_TETCI_2024_3354101
crossref_primary_10_1016_j_eswa_2025_127599
crossref_primary_10_1109_TCYB_2021_3090769
crossref_primary_10_1109_TEVC_2022_3154416
crossref_primary_10_1109_TETC_2023_3268182
crossref_primary_10_1109_MCI_2020_3039066
crossref_primary_10_1109_TEVC_2022_3199783
crossref_primary_10_1109_TSMC_2024_3520322
crossref_primary_10_1016_j_rcim_2022_102472
crossref_primary_10_1109_MCI_2020_3039067
crossref_primary_10_1109_TEVC_2023_3291697
crossref_primary_10_1016_j_ast_2024_108999
crossref_primary_10_1109_TETCI_2021_3115518
crossref_primary_10_1016_j_asoc_2023_110385
crossref_primary_10_1016_j_swevo_2024_101768
crossref_primary_10_1109_TEVC_2024_3398436
crossref_primary_10_1016_j_eswa_2023_119668
crossref_primary_10_1016_j_asoc_2023_110545
crossref_primary_10_1109_TCYB_2022_3232113
crossref_primary_10_1109_TEVC_2021_3097043
crossref_primary_10_1016_j_swevo_2021_101021
crossref_primary_10_1109_TSMC_2021_3096220
crossref_primary_10_1109_TCYB_2020_3008280
crossref_primary_10_1016_j_swevo_2025_102115
crossref_primary_10_1016_j_ins_2021_12_014
Cites_doi 10.1023/A:1023283917997
10.1109/TEVC.2009.2027359
10.2514/2.1999
10.1080/01621459.1972.10481251
10.1109/TEVC.2003.819944
10.1109/TEVC.2005.851274
10.1109/ICEC.1995.489178
10.1007/s40747-016-0011-y
10.1109/TEVC.2002.800884
10.1109/TEVC.2010.2073472
10.1109/SSCI.2016.7850038
10.1109/TEVC.2017.2675628
10.1109/TEVC.2015.2458037
10.1109/TEVC.2016.2555315
10.1016/S0376-0421(01)00019-7
10.1109/TEVC.2013.2262111
10.1109/CEC.2017.7969454
10.1109/TETCI.2017.2769104
10.1007/s12293-009-0011-1
10.1109/TEVC.2015.2449293
10.1007/s12293-008-0004-5
10.1109/TCYB.2016.2554622
10.1109/TSMCC.2005.855506
10.1162/106365601750190398
10.1109/TENCON.2016.7848632
10.1109/TEVC.2008.919004
10.1109/TEVC.2016.2569018
10.1007/s00500-014-1283-z
10.1093/oso/9780195099713.001.0001
10.1007/s00500-003-0328-5
10.1109/TEVC.2016.2622301
10.1017/S0890060401151024
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2017.2785351
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 58
ExternalDocumentID 10_1109_TEVC_2017_2785351
8231172
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61525302; 61590922; 61621004
  funderid: 10.13039/501100001809
– fundername: Projects of Liaoning Province
  grantid: 2014020021; LR2015021
– fundername: Fundamental Research Funds for the Central Universities
  grantid: N160801001; N161608001
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-e01628098f30f302fe39c33a6233484ad7577f0ce64b501b41e3906dc9612acd3
IEDL.DBID RIE
ISICitedReferencesCount 214
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457825100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Mon Jun 30 05:44:58 EDT 2025
Sat Nov 29 03:13:47 EST 2025
Tue Nov 18 21:32:25 EST 2025
Wed Aug 27 03:06:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-e01628098f30f302fe39c33a6233484ad7577f0ce64b501b41e3906dc9612acd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1100-0631
0000-0003-1997-1854
0000-0002-4623-1483
0000-0003-3735-0672
PQID 2175417564
PQPubID 85418
PageCount 15
ParticipantIDs proquest_journals_2175417564
crossref_citationtrail_10_1109_TEVC_2017_2785351
crossref_primary_10_1109_TEVC_2017_2785351
ieee_primary_8231172
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref37
zhou (ref12) 2016
ref36
ref14
ref30
bäck (ref1) 1996
ref11
ref32
ref10
deb (ref15) 1995; 9
da (ref33) 2016
ref2
ref39
ref17
ref38
ref19
ref18
hansen (ref16) 2009
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
de grave (ref31) 2008
martínez (ref29) 2013
References_xml – year: 2009
  ident: ref16
  article-title: Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions
– ident: ref34
  doi: 10.1023/A:1023283917997
– ident: ref5
  doi: 10.1109/TEVC.2009.2027359
– ident: ref22
  doi: 10.2514/2.1999
– ident: ref37
  doi: 10.1080/01621459.1972.10481251
– ident: ref19
  doi: 10.1109/TEVC.2003.819944
– ident: ref6
  doi: 10.1109/TEVC.2005.851274
– ident: ref17
  doi: 10.1109/ICEC.1995.489178
– start-page: 1
  year: 2016
  ident: ref12
  article-title: Evolutionary multitasking in combinatorial search spaces: A case study in capacitated vehicle routing problem
  publication-title: Proc IEEE Symp Series Comput Intell
– ident: ref14
  doi: 10.1007/s40747-016-0011-y
– ident: ref9
  doi: 10.1109/TEVC.2002.800884
– ident: ref2
  doi: 10.1109/TEVC.2010.2073472
– start-page: 1405
  year: 2013
  ident: ref29
  article-title: MOEA/D assisted by RBF networks for expensive multi-objective optimization problems
  publication-title: Proc 15th Annu Conf Genet Evol Comput
– ident: ref20
  doi: 10.1109/SSCI.2016.7850038
– ident: ref25
  doi: 10.1109/TEVC.2017.2675628
– ident: ref10
  doi: 10.1109/TEVC.2015.2458037
– ident: ref7
  doi: 10.1109/TEVC.2016.2555315
– ident: ref30
  doi: 10.1016/S0376-0421(01)00019-7
– ident: ref8
  doi: 10.1109/TEVC.2013.2262111
– ident: ref24
  doi: 10.1109/TEVC.2005.851274
– ident: ref38
  doi: 10.1109/CEC.2017.7969454
– ident: ref39
  doi: 10.1109/TETCI.2017.2769104
– start-page: 185
  year: 2008
  ident: ref31
  article-title: Active learning for high throughput screening
  publication-title: Proc 12th Int Conf Disc Sci
– ident: ref18
  doi: 10.1007/s12293-009-0011-1
– volume: 9
  start-page: 115
  year: 1995
  ident: ref15
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst
– ident: ref23
  doi: 10.1109/TEVC.2015.2449293
– ident: ref3
  doi: 10.1007/s12293-008-0004-5
– year: 2016
  ident: ref33
  article-title: Evolutionary multitasking for single-objective continuous optimization: Benchmark problems, performance metric, and baseline results
– ident: ref11
  doi: 10.1109/TCYB.2016.2554622
– ident: ref28
  doi: 10.1109/TSMCC.2005.855506
– ident: ref36
  doi: 10.1162/106365601750190398
– ident: ref13
  doi: 10.1109/TENCON.2016.7848632
– ident: ref4
  doi: 10.1109/TEVC.2008.919004
– ident: ref35
  doi: 10.1109/TEVC.2016.2569018
– ident: ref32
  doi: 10.1007/s00500-014-1283-z
– year: 1996
  ident: ref1
  publication-title: Evolutionary Algorithms in Theory and Practice Evolution Strategies Evolutionary Programming Genetic Algorithms
  doi: 10.1093/oso/9780195099713.001.0001
– ident: ref21
  doi: 10.1007/s00500-003-0328-5
– ident: ref26
  doi: 10.1109/TEVC.2016.2622301
– ident: ref27
  doi: 10.1017/S0890060401151024
SSID ssj0014519
Score 2.653969
Snippet Conventional evolutionary algorithms (EAs) are not well suited for solving expensive optimization problems due to the fact that they often require a large...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 44
SubjectTerms Convergence
Evolutionary algorithms
Evolutionary algorithms (EAs)
Evolutionary computation
evolutionary multitasking optimization
expensive optimization
Fitness
Knowledge management
Knowledge transfer
Multitasking
Optimization
Sociology
Statistics
Title Generalized Multitasking for Evolutionary Optimization of Expensive Problems
URI https://ieeexplore.ieee.org/document/8231172
https://www.proquest.com/docview/2175417564
Volume 23
WOSCitedRecordID wos000457825100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB20eKgHq61itUoOnsRts5vsJjmKtHgQ9aDS25JmExC0lX6B_nonu2lRFEHYhT0kYclLMjOZmTcAZ1SglE1SGTGdMjRQMh1pauOIyYwZxpw2tqTMvxG3t3I4VPcbcLHOhbHWlsFntus_S19-MTELf1XW8y4rFLibsCmEqHK11h4DT5NSBdMr1BjlMHgwY6p6D_2nKx_EJbqJQOmUxt9kUFlU5cdJXIqXQeN_P7YLO0GNJJcV7nuwYcdNaKxKNJCwY5uw_YVvsAl1r1pWzMwtuAmM088ftiBVHq6e-Ytzgnos6S_DmtTTd3KH58prSNgkE0c8P3IZ907uq3o0s314HPQfrq6jUFshMijg55FFVS-RVEnHKD6Js0whNhq1IcYl14VIhXDU2IyPUhqPeIwNaFYYhSqRNgU7gNp4MraHQJyzDkcaWcZG3KFFzbMkUSZNC6mzzMg20NVs5yYQj_v6Fy95aYBQlXuAcg9QHgBqw_m6y1vFuvFX45ZHZN0wgNGGzgrSPOzLWY4GWMrxzfjR772OoY5jqyouuwO1-XRhT2DLLBGd6Wm55D4BgVbSrQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90CuqDH1NxfubBJ7GaNkmbPIpMFOf0YcreSpYmIOgmmw70r_fSZkNRBKGFPiRt6C_J3eXufgdwSDOUsomQEdOCoYGS6khTG0dMpsww5rSxJWV-K2u3Zber7mbgeJoLY60tg8_siX8sffnFwLz5o7JT77JCgTsLc4LzJK6ytaY-A0-UUoXTK9QZZTf4MGOqTjvNh3MfxpWdJBnKJxF_k0JlWZUfe3EpYC5W_je0VVgOiiQ5q5Bfgxnbr8PKpEgDCWu2DktfGAfrsOiVy4qbeR1agXP68cMWpMrE1SN_dE5QkyXNcZiVevhObnFneQ4pm2TgiGdILiPfyV1VkWa0AfcXzc75ZRSqK0QGRfxrZFHZSyRV0jGKV-IsU4iORn2Iccl1kYksc9TYlPcEjXs8xgY0LYxCpUibgm1CrT_o2y0gzlmHb-pZxnrcoU3N0yRRRohC6jQ1sgF08rdzE6jHfQWMp7w0QajKPUC5BygPADXgaNrlpeLd-Kvxukdk2jCA0YDdCaR5WJmjHE0wwfFO-fbvvQ5g4bJz08pbV-3rHVjE76gqSnsXaq_DN7sH82aMSA33y-n3CZ6y1fQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Multitasking+for+Evolutionary+Optimization+of+Expensive+Problems&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Ding%2C+Jinliang&rft.au=Yang%2C+Cuie&rft.au=Jin%2C+Yaochu&rft.au=Chai%2C+Tianyou&rft.date=2019-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=23&rft.issue=1&rft.spage=44&rft_id=info:doi/10.1109%2FTEVC.2017.2785351&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon