Robust Monitoring and Fault Isolation of Nonlinear Industrial Processes Using Denoising Autoencoder and Elastic Net

Robust process monitoring and reliable fault isolation in industrial processes usually encounter different challenges, including process nonlinearity and noise interference. In this brief, a novel method denoising autoencoder and elastic net (DAE-EN) is proposed to solve the aforementioned issues by...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on control systems technology Vol. 28; no. 3; pp. 1083 - 1091
Main Authors: Yu, Wanke, Zhao, Chunhui
Format: Journal Article
Language:English
Published: New York IEEE 01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1063-6536, 1558-0865
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Robust process monitoring and reliable fault isolation in industrial processes usually encounter different challenges, including process nonlinearity and noise interference. In this brief, a novel method denoising autoencoder and elastic net (DAE-EN) is proposed to solve the aforementioned issues by effectively integrating DAE and EN. The DAE is first trained to robustly capture the nonlinear structure of the industrial data. Then, the encoder network is updated into a sparse model using EN, so that the key variables associated with each neuron can be selected. After that two statistics are developed based on the extracted systematic structure and the retained residual information. In addition, another statistic is also constructed by combining the aforementioned two statistics to provide an overall measurement for the process sample. In this way, a robust monitoring model can be constructed to monitor the abnormal status in industrial processes. After the fault is detected, the faulty neurons are identified by the sparse exponential discriminant analysis, so that the associated faulty variables along each faulty neuron can thus be isolated. Two real industrial processes are used to validate the performance of the proposed method. Experimental results show that the proposed method can effectively detect the abnormal samples in industrial processes and accurately isolate the faulty variables from the normal ones.
AbstractList Robust process monitoring and reliable fault isolation in industrial processes usually encounter different challenges, including process nonlinearity and noise interference. In this brief, a novel method denoising autoencoder and elastic net (DAE–EN) is proposed to solve the aforementioned issues by effectively integrating DAE and EN. The DAE is first trained to robustly capture the nonlinear structure of the industrial data. Then, the encoder network is updated into a sparse model using EN, so that the key variables associated with each neuron can be selected. After that two statistics are developed based on the extracted systematic structure and the retained residual information. In addition, another statistic is also constructed by combining the aforementioned two statistics to provide an overall measurement for the process sample. In this way, a robust monitoring model can be constructed to monitor the abnormal status in industrial processes. After the fault is detected, the faulty neurons are identified by the sparse exponential discriminant analysis, so that the associated faulty variables along each faulty neuron can thus be isolated. Two real industrial processes are used to validate the performance of the proposed method. Experimental results show that the proposed method can effectively detect the abnormal samples in industrial processes and accurately isolate the faulty variables from the normal ones.
Author Yu, Wanke
Zhao, Chunhui
Author_xml – sequence: 1
  givenname: Wanke
  orcidid: 0000-0002-3927-5656
  surname: Yu
  fullname: Yu, Wanke
  email: yuwanke@zju.edu.cn
  organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Chunhui
  orcidid: 0000-0002-0254-5763
  surname: Zhao
  fullname: Zhao, Chunhui
  email: chhzhao@zju.edu.cn
  organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
BookMark eNp9kTlPxDAQhS0EEucPQDSWqLP4iJO4RMu1EpdgqaOxM0FGwQbbKfj3ZHcRBQXVvOJ9bzRv9sm2Dx4JOeZsxjnTZ8v583ImGNcz0ehal9UW2eNKNQVrKrU9aVbJolKy2iX7Kb0xxksl6j2SnoIZU6Z3wbscovOvFHxHr2AcMl2kMEB2wdPQ0_vgB-cRIl34bkKig4E-xmAxJUz0Ja3YC_TBrdX5mAN6GzqM68TLAVJ2lt5jPiQ7PQwJj37mAXm5ulzOb4rbh-vF_Py2sELLXHRYVtBpBRat1bLukBluLEBt6r7nRnamkQAN8MYIpXtTQa2UsZMPSxAgD8jpJvcjhs8RU27fwhj9tLIVUnNRccbl5Ko3LhtDShH71rq8vjpHcEPLWbtquF013K4abn8ankj-h_yI7h3i17_MyYZxiPjrn35UMiHlN-yTjHo
CODEN IETTE2
CitedBy_id crossref_primary_10_1002_acs_3888
crossref_primary_10_1109_TNNLS_2023_3291371
crossref_primary_10_1109_TIM_2023_3324003
crossref_primary_10_1016_j_conengprac_2022_105156
crossref_primary_10_3390_technologies12120237
crossref_primary_10_1016_j_engappai_2023_105838
crossref_primary_10_3390_math10224351
crossref_primary_10_1016_j_compchemeng_2021_107241
crossref_primary_10_1016_j_jprocont_2021_08_014
crossref_primary_10_1016_j_bspc_2021_103343
crossref_primary_10_1016_j_ifacol_2021_08_281
crossref_primary_10_1002_apj_70022
crossref_primary_10_1109_TII_2019_2951011
crossref_primary_10_1109_TCYB_2021_3109618
crossref_primary_10_1016_j_aei_2024_102470
crossref_primary_10_1002_cjce_25478
crossref_primary_10_1016_j_jii_2022_100410
crossref_primary_10_1016_j_jprocont_2022_06_011
crossref_primary_10_1088_1361_6501_ac145f
crossref_primary_10_1109_TASE_2022_3230687
crossref_primary_10_1109_TIE_2023_3239861
crossref_primary_10_1109_TIM_2025_3545728
crossref_primary_10_1088_1361_6501_ac4f02
crossref_primary_10_1016_j_neucom_2022_03_012
crossref_primary_10_1109_ACCESS_2020_3015783
crossref_primary_10_1016_j_jmsy_2025_07_002
crossref_primary_10_1016_j_jprocont_2020_06_013
crossref_primary_10_1016_j_asoc_2024_112051
crossref_primary_10_1109_TASE_2019_2915286
crossref_primary_10_1109_TIE_2021_3105980
crossref_primary_10_1016_j_jprocont_2022_08_004
crossref_primary_10_1016_j_jprocont_2022_11_010
crossref_primary_10_1109_ACCESS_2020_2998792
crossref_primary_10_1007_s10586_025_05375_0
crossref_primary_10_1016_j_jfranklin_2025_107899
crossref_primary_10_1109_TII_2022_3174715
crossref_primary_10_1016_j_mfglet_2023_08_045
crossref_primary_10_1177_01423312241295796
crossref_primary_10_1002_cjce_25004
crossref_primary_10_1088_1361_6501_adfcfd
crossref_primary_10_3390_pr11051486
crossref_primary_10_1016_j_ins_2021_12_106
crossref_primary_10_1109_TII_2020_2990975
crossref_primary_10_1080_00207721_2022_2093420
crossref_primary_10_1016_j_conengprac_2023_105531
crossref_primary_10_1016_j_compchemeng_2021_107587
crossref_primary_10_1016_j_chemolab_2022_104711
crossref_primary_10_1016_j_jprocont_2023_01_007
crossref_primary_10_3390_pr12040682
crossref_primary_10_1016_j_jprocont_2021_02_002
crossref_primary_10_1016_j_jprocont_2022_02_004
crossref_primary_10_1016_j_arabjc_2022_104062
crossref_primary_10_1080_10589759_2025_2491731
crossref_primary_10_1002_cjce_24689
crossref_primary_10_1016_j_conengprac_2024_106140
crossref_primary_10_1016_j_engappai_2025_111218
crossref_primary_10_1088_1361_6501_ada6ee
crossref_primary_10_1109_TII_2023_3242772
crossref_primary_10_1109_TIE_2024_3370955
crossref_primary_10_1016_j_automatica_2022_110468
crossref_primary_10_1016_j_engappai_2024_109409
crossref_primary_10_1016_j_conengprac_2020_104358
crossref_primary_10_1016_j_conengprac_2020_104633
crossref_primary_10_1002_cjce_25308
crossref_primary_10_1016_j_compchemeng_2024_108887
crossref_primary_10_1016_j_ifacol_2020_12_858
crossref_primary_10_1016_j_isatra_2021_01_002
crossref_primary_10_1109_TASE_2021_3129247
crossref_primary_10_1016_j_jprocont_2021_09_007
crossref_primary_10_1061_JLEED9_EYENG_4850
crossref_primary_10_1002_bit_29039
crossref_primary_10_1016_j_jprocont_2021_09_014
crossref_primary_10_3390_act13110440
crossref_primary_10_1016_j_ins_2021_01_036
crossref_primary_10_1016_j_ins_2020_08_025
crossref_primary_10_1016_j_asoc_2022_109889
crossref_primary_10_1016_j_jprocont_2023_102999
crossref_primary_10_1016_j_eswa_2024_123417
crossref_primary_10_1109_TNNLS_2023_3343937
crossref_primary_10_1016_j_cam_2021_113872
crossref_primary_10_1109_TII_2023_3240919
crossref_primary_10_1109_TCST_2023_3330443
crossref_primary_10_1016_j_isatra_2021_04_014
crossref_primary_10_3390_pr11020402
crossref_primary_10_3390_s24092730
crossref_primary_10_1016_j_ymssp_2024_111577
crossref_primary_10_1109_ACCESS_2020_3013957
crossref_primary_10_3390_electronics13112133
crossref_primary_10_3390_electronics13132662
crossref_primary_10_1002_cjce_25312
crossref_primary_10_1109_TII_2025_3528580
crossref_primary_10_3390_chemengineering8030045
crossref_primary_10_1002_cjce_25691
crossref_primary_10_1016_j_psep_2021_07_002
crossref_primary_10_1016_j_ifacol_2023_10_1415
crossref_primary_10_1109_JPHOT_2022_3167760
crossref_primary_10_1016_j_chemolab_2022_104528
crossref_primary_10_1109_TII_2022_3233664
crossref_primary_10_1016_j_compchemeng_2022_107694
crossref_primary_10_3390_machines9080166
crossref_primary_10_7717_peerj_cs_1501
crossref_primary_10_1016_j_psep_2025_106834
crossref_primary_10_1016_j_cjche_2022_12_013
crossref_primary_10_1016_j_compchemeng_2022_107853
crossref_primary_10_1109_TASE_2020_3013654
crossref_primary_10_1109_TIM_2022_3147887
crossref_primary_10_1016_j_jprocont_2024_103296
crossref_primary_10_1016_j_jprocont_2022_07_012
crossref_primary_10_1109_TIM_2025_3548769
crossref_primary_10_1007_s11771_023_5325_5
crossref_primary_10_1016_j_jprocont_2024_103176
crossref_primary_10_1016_j_jprocont_2021_10_003
crossref_primary_10_1016_j_conengprac_2022_105174
crossref_primary_10_1016_j_conengprac_2025_106468
crossref_primary_10_1016_j_engappai_2023_107237
crossref_primary_10_1016_j_jprocont_2021_10_008
crossref_primary_10_1109_ACCESS_2021_3132046
crossref_primary_10_1109_TNNLS_2023_3262277
crossref_primary_10_1109_TII_2019_2951622
crossref_primary_10_1109_TIM_2021_3127284
crossref_primary_10_3390_pr10020335
crossref_primary_10_1016_j_jprocont_2024_103261
crossref_primary_10_1016_j_knosys_2024_112182
crossref_primary_10_1109_TASE_2021_3132037
crossref_primary_10_1016_j_psep_2024_05_129
crossref_primary_10_1109_TASE_2020_3010536
crossref_primary_10_1002_cjce_24886
crossref_primary_10_1016_j_eswa_2024_125052
crossref_primary_10_1016_j_jfranklin_2023_03_041
crossref_primary_10_1016_j_jprocont_2021_03_001
crossref_primary_10_1016_j_psep_2022_06_003
crossref_primary_10_1016_j_jprocont_2024_103262
crossref_primary_10_1016_j_engappai_2025_110689
crossref_primary_10_1109_TCYB_2019_2948202
crossref_primary_10_1109_TNNLS_2022_3224804
crossref_primary_10_1016_j_arcontrol_2022_09_005
crossref_primary_10_1109_TCST_2020_2974147
crossref_primary_10_3390_machines12060383
crossref_primary_10_3390_s24103029
crossref_primary_10_1016_j_seta_2022_102013
crossref_primary_10_1007_s11771_022_5206_3
crossref_primary_10_1016_j_asoc_2024_111896
crossref_primary_10_1016_j_jprocont_2021_01_005
crossref_primary_10_1109_TCYB_2021_3050398
crossref_primary_10_1109_TSMC_2020_3005433
crossref_primary_10_1007_s11432_024_4273_8
crossref_primary_10_1109_TNNLS_2024_3360030
Cites_doi 10.1016/j.chemolab.2016.08.007
10.1016/S0959-1524(00)00022-6
10.1109/TIE.2017.2782232
10.1111/j.2517-6161.1996.tb02080.x
10.1109/TIE.2018.2856198
10.1016/j.jprocont.2003.09.004
10.1111/j.1467-9868.2005.00503.x
10.1002/aic.16048
10.1002/aic.690370209
10.1109/TII.2018.2878405
10.1109/TII.2017.2761852
10.1109/TCST.2015.2472999
10.1016/0967-0661(95)00014-L
10.1214/aoms/1177704472
10.1109/TIE.2015.2466557
10.1126/science.1127647
10.1109/TCST.2017.2789188
10.1016/j.ces.2003.09.012
10.1109/TCST.2013.2264723
10.1109/TCST.2010.2083664
10.1021/acs.iecr.6b03221
10.1016/j.jprocont.2014.04.002
10.1016/j.ces.2012.07.018
10.1109/TIE.2017.2745452
10.1016/j.chemolab.2015.05.019
10.1016/S0959-1524(00)00004-4
10.1007/BFb0020217
10.1109/TCST.2015.2464331
10.1145/1390156.1390294
10.1021/ie102048f
10.1016/j.jlp.2012.10.003
10.1109/TASE.2012.2230628
10.1214/009053604000000067
10.1109/TCST.2016.2576018
10.1016/j.ces.2010.05.010
10.1214/10-AOS799
10.1109/TIE.2018.2864703
10.1016/S0893-6080(00)00026-5
10.1109/72.761722
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
DOI 10.1109/TCST.2019.2897946
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Engineering Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0865
EndPage 1091
ExternalDocumentID 10_1109_TCST_2019_2897946
8654023
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U1709211
  funderid: 10.13039/501100001809
– fundername: Zhejiang Key Research and Development Project
  grantid: 2019C03100; 2019C01048
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
ID FETCH-LOGICAL-c293t-de46ad95acecc937de0b1bcaa7b7ff1b3db83aa8a18b259fb6a755bcde0e4a2a3
IEDL.DBID RIE
ISICitedReferencesCount 177
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528642200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6536
IngestDate Sun Nov 30 04:53:25 EST 2025
Sat Nov 29 03:51:39 EST 2025
Tue Nov 18 21:31:34 EST 2025
Wed Aug 27 02:35:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-de46ad95acecc937de0b1bcaa7b7ff1b3db83aa8a18b259fb6a755bcde0e4a2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3927-5656
0000-0002-0254-5763
PQID 2391261013
PQPubID 85425
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_TCST_2019_2897946
proquest_journals_2391261013
crossref_primary_10_1109_TCST_2019_2897946
ieee_primary_8654023
PublicationCentury 2000
PublicationDate 2020-May
2020-5-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-May
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on control systems technology
PublicationTitleAbbrev TCST
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
anderson (ref38) 2003
ref37
ref15
ref36
ref31
ref33
chun-chin (ref14) 2011; 19
ref10
ref2
ref1
ref39
ref17
ref16
ref19
ref18
chun-chin (ref5) 2011; 19
ref24
ref23
ref26
ref25
liu (ref11) 2013; 10
ref20
ref42
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref40
efron (ref32) 2004; 32
vincent (ref30) 2010; 11
References_xml – ident: ref27
  doi: 10.1016/j.chemolab.2016.08.007
– year: 2003
  ident: ref38
  publication-title: An Introduction to Multivariate Statistical Analysis
– ident: ref20
  doi: 10.1016/S0959-1524(00)00022-6
– ident: ref34
  doi: 10.1109/TIE.2017.2782232
– ident: ref31
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref1
  doi: 10.1109/TIE.2018.2856198
– ident: ref23
  doi: 10.1016/j.jprocont.2003.09.004
– ident: ref33
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: ref17
  doi: 10.1002/aic.16048
– ident: ref39
  doi: 10.1002/aic.690370209
– ident: ref8
  doi: 10.1109/TII.2018.2878405
– ident: ref10
  doi: 10.1109/TII.2017.2761852
– ident: ref4
  doi: 10.1109/TCST.2015.2472999
– ident: ref41
  doi: 10.1016/0967-0661(95)00014-L
– ident: ref35
  doi: 10.1214/aoms/1177704472
– ident: ref16
  doi: 10.1109/TIE.2015.2466557
– ident: ref28
  doi: 10.1126/science.1127647
– ident: ref2
  doi: 10.1109/TCST.2017.2789188
– ident: ref26
  doi: 10.1016/j.ces.2003.09.012
– ident: ref13
  doi: 10.1109/TCST.2013.2264723
– volume: 19
  start-page: 1245
  year: 2011
  ident: ref5
  article-title: An adaptive forecast-based chart for non-Gaussian processes monitoring: With application to equipment malfunctions detection in a thermal power plant
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2010.2083664
– ident: ref42
  doi: 10.1021/acs.iecr.6b03221
– ident: ref19
  doi: 10.1016/j.jprocont.2014.04.002
– ident: ref12
  doi: 10.1016/j.ces.2012.07.018
– ident: ref18
  doi: 10.1109/TIE.2017.2745452
– ident: ref15
  doi: 10.1016/j.chemolab.2015.05.019
– ident: ref40
  doi: 10.1016/S0959-1524(00)00004-4
– ident: ref25
  doi: 10.1007/BFb0020217
– volume: 19
  start-page: 1245
  year: 2011
  ident: ref14
  article-title: An adaptive forecast-based chart for non-Gaussian processes monitoring: With application to equipment malfunctions detection in a thermal power plant
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2010.2083664
– ident: ref6
  doi: 10.1109/TCST.2015.2464331
– ident: ref29
  doi: 10.1145/1390156.1390294
– ident: ref7
  doi: 10.1021/ie102048f
– ident: ref37
  doi: 10.1016/j.jlp.2012.10.003
– volume: 10
  start-page: 687
  year: 2013
  ident: ref11
  article-title: Decentralized fault diagnosis of continuous annealing processes based on multilevel PCA
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2012.2230628
– volume: 32
  start-page: 407
  year: 2004
  ident: ref32
  article-title: Least angle regression
  publication-title: Ann Statist
  doi: 10.1214/009053604000000067
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref30
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: ref3
  doi: 10.1109/TCST.2016.2576018
– ident: ref24
  doi: 10.1016/j.ces.2010.05.010
– ident: ref36
  doi: 10.1214/10-AOS799
– ident: ref9
  doi: 10.1109/TIE.2018.2864703
– ident: ref22
  doi: 10.1016/S0893-6080(00)00026-5
– ident: ref21
  doi: 10.1109/72.761722
SSID ssj0014527
Score 2.6387026
Snippet Robust process monitoring and reliable fault isolation in industrial processes usually encounter different challenges, including process nonlinearity and noise...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1083
SubjectTerms Coders
Data mining
Denoising autoencoder (DAE)
Discriminant analysis
elastic net (EN)
fault isolation
Feature extraction
Kernel
kernel density estimation (KDE)
Monitoring
Neurons
Noise reduction
Nonlinearity
Principal component analysis
process monitoring
Robustness
Statistical methods
Title Robust Monitoring and Fault Isolation of Nonlinear Industrial Processes Using Denoising Autoencoder and Elastic Net
URI https://ieeexplore.ieee.org/document/8654023
https://www.proquest.com/docview/2391261013
Volume 28
WOSCitedRecordID wos000528642200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0865
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014527
  issn: 1063-6536
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5W8aAH3-LqKjl4Eqvttmnao6iLgiyiq3greUxBWFrZtv5-J2ldFUXwUkKZlNAv6cx0Zr4BOOI6UEr63Ityjl4U-4mnNNIlECInlBFdNuHTrRiPk-fn9K4HJ_NaGER0yWd4aoculm9K3dhfZWdJTPbFMFyABSFEW6s1jxhEbXtW8nBCL3YhyX7Hp3k2uXiY2CSu9JS8C0uo_k0HuaYqP77ETr2M1v63sHVY7cxIdt7ivgE9LDZh5Qu54BZU96Vqqpq1p9beY7IwbCSbac1uaMs5TFiZs3FLlyFn7LORB-sqCLBiLquAXWJRvrjReVOXlv7S4Mw98YoMcFoGG2O9DY-jq8nFtde1WPA06fnaMxjF0qRcaoKSLBWDvgqUllIokeeBCo1KQikTGSSKHKVcxVJwrjTJYSSHMtyBxaIscBeYzpEbQeamIY2HAZdGa1vG66MJNOeiD_7HS890xz9u22BMM-eH-GlmccosTlmHUx-O51NeW_KNv4S3LDBzwQ6TPgw-kM2641llwzANyHUk83fv91n7sDy0jrXLbBzAYj1r8ACW9Fv9Us0O3c57B6tQ2Yg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS91AEB68FLQP2nrBU2_70KdiPNkkm8ujqAfF01DaU_Et7GUCgiRykvj7O7uJpy2K4EtYwmxY8u1mZjIz3wB8FZorJX3hRaVAL4r91FMa6cKTpCSUEV024e00yfP07i77sQQni1oYRHTJZ3hqhy6Wb2rd2V9l4zQm-yIIl2FVRFHA-2qtRcwg6hu0ko8TerELSo4GRs3x7PzXzKZxZafkX1hK9f-0kGur8uJb7BTMZPN9S_sEG4Mhyc565D_DElZb8PEfesFtaH7Wqmta1p9be4_JyrCJ7B5adk2bzqHC6pLlPWGGnLO_rTzYUEOADXN5BewCq_rejc66trYEmAbn7omXZILTMliO7Q78nlzOzq-8ocmCp0nTt57BKJYmE1ITmGSrGPQVV1rKRCVlyVVoVBpKmUqeKnKVShXLRAilSQ4jGchwF1aqusI9YLpEYRIyOA3pPORCGq1tIa-PhmshkhH4zy-90AMDuW2E8VA4T8TPCotTYXEqBpxG8G0x5bGn33hLeNsCsxAcMBnBwTOyxXBAmyIIM07OIxnAX16fdQxrV7Pv02J6nd_sw3pg3WyX53gAK-28w0P4oJ_a-2Z-5HbhHx9g3M8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Monitoring+and+Fault+Isolation+of+Nonlinear+Industrial+Processes+Using+Denoising+Autoencoder+and+Elastic+Net&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Wanke%2C+Yu&rft.au=Zhao%2C+Chunhui&rft.date=2020-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=28&rft.issue=3&rft.spage=1083&rft_id=info:doi/10.1109%2FTCST.2019.2897946&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon