Hyperspectral Unmixing for Additive Nonlinear Models With a 3-D-CNN Autoencoder Network

Spectral unmixing is an important task in hyperspectral image processing for separating the mixed spectral data pertaining to various materials observed aiming at analyzing the material components in observed pixels. Recently, nonlinear spectral unmixing has received particular attention in hyperspe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on geoscience and remote sensing Ročník 60; s. 1 - 15
Hlavní autori: Zhao, Min, Wang, Mou, Chen, Jie, Rahardja, Susanto
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0196-2892, 1558-0644
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Spectral unmixing is an important task in hyperspectral image processing for separating the mixed spectral data pertaining to various materials observed aiming at analyzing the material components in observed pixels. Recently, nonlinear spectral unmixing has received particular attention in hyperspectral image processing, as there are many situations in which the linear mixture model may not be appropriate and could be advantageously replaced by a nonlinear one. Existing nonlinear unmixing approaches are often based on specific assumptions on the nonlinearity and can be less effective when used for scenes with unknown nonlinearity. This article presents an unsupervised nonlinear spectral unmixing method that addresses a general model that consists of a linear mixture part and an additive nonlinear mixture part. The structure of a deep autoencoder network, which has a clear physical interpretation, is specifically designed to achieve this purpose. Moreover, a convolutional neural network (CNN) is used to capture the spectral-spatial priors from hyperspectral data. Extensive experiments with synthetic and real data illustrate the generality and effectiveness of this scheme compared with state-of-the-art methods.
AbstractList Spectral unmixing is an important task in hyperspectral image processing for separating the mixed spectral data pertaining to various materials observed aiming at analyzing the material components in observed pixels. Recently, nonlinear spectral unmixing has received particular attention in hyperspectral image processing, as there are many situations in which the linear mixture model may not be appropriate and could be advantageously replaced by a nonlinear one. Existing nonlinear unmixing approaches are often based on specific assumptions on the nonlinearity and can be less effective when used for scenes with unknown nonlinearity. This article presents an unsupervised nonlinear spectral unmixing method that addresses a general model that consists of a linear mixture part and an additive nonlinear mixture part. The structure of a deep autoencoder network, which has a clear physical interpretation, is specifically designed to achieve this purpose. Moreover, a convolutional neural network (CNN) is used to capture the spectral-spatial priors from hyperspectral data. Extensive experiments with synthetic and real data illustrate the generality and effectiveness of this scheme compared with state-of-the-art methods.
Author Rahardja, Susanto
Zhao, Min
Wang, Mou
Chen, Jie
Author_xml – sequence: 1
  givenname: Min
  surname: Zhao
  fullname: Zhao, Min
  email: minzhao@mail.nwpu.edu.cn
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Mou
  orcidid: 0000-0002-6476-2501
  surname: Wang
  fullname: Wang, Mou
  email: mangmou21@mail.nwpu.edu.cn
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Jie
  orcidid: 0000-0003-2306-8860
  surname: Chen
  fullname: Chen, Jie
  email: dr.jie.chen@ieee.org
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Susanto
  orcidid: 0000-0003-0831-6934
  surname: Rahardja
  fullname: Rahardja, Susanto
  email: susantorahardja@ieee.org
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
BookMark eNp9kEFPAjEQhRuDiYj-AOOliefFTnfL7h4JKpggJorhuOm2s1pcWuwWlX_vEogHD57mMO_Nm_edko51Fgm5ANYHYPn1fPz03OeMQz9meZYm4oh0QYgsYoMk6ZAug3wQ8SznJ-S0aZaMQSIg7ZLFZLtG36xRBS9r-mJX5tvYV1o5T4dam2A-kc6crY1F6emD01g3dGHCG5U0jm6i0WxGh5vg0Kp25-kMw5fz72fkuJJ1g-eH2SPzu9v5aBJNH8f3o-E0UjyPQ6SVTqGstOQp6Byl5AJLyUqEUic8ixUXUiWMIWBV6YGQbTvByhQykSjM4x652p9de_exwSYUS7fxtk0s-IDDrnzOWxXsVcq7pvFYFWtvVtJvC2DFDl-xw1fs8BUHfK0n_eNRJshgnG1Bmfpf5-XeaRDxN6l9OwaWxj_yPX-H
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TGRS_2022_3141387
crossref_primary_10_1109_TGRS_2023_3307346
crossref_primary_10_1109_LGRS_2023_3297577
crossref_primary_10_1109_TGRS_2022_3187867
crossref_primary_10_1109_TGRS_2024_3375598
crossref_primary_10_1109_JSTARS_2025_3569856
crossref_primary_10_1109_TGRS_2024_3394435
crossref_primary_10_1109_TGRS_2023_3308211
crossref_primary_10_1109_TGRS_2021_3136336
crossref_primary_10_1109_JSTARS_2022_3188565
crossref_primary_10_1109_TGRS_2024_3422495
crossref_primary_10_1109_TCI_2023_3321985
crossref_primary_10_1109_TGRS_2024_3454818
crossref_primary_10_1109_TGRS_2025_3577325
crossref_primary_10_1109_JSTARS_2025_3542228
crossref_primary_10_1109_TGRS_2022_3202490
crossref_primary_10_1109_TGRS_2024_3381632
crossref_primary_10_1109_JSTARS_2024_3387750
crossref_primary_10_1109_TGRS_2024_3360714
crossref_primary_10_1109_TGRS_2024_3363427
crossref_primary_10_1080_01431161_2024_2408038
crossref_primary_10_1109_TGRS_2022_3223434
crossref_primary_10_1109_TGRS_2024_3393570
crossref_primary_10_1109_JSEN_2022_3143852
crossref_primary_10_1109_LGRS_2023_3308206
crossref_primary_10_1109_TGRS_2022_3168712
crossref_primary_10_1109_TGRS_2025_3544037
crossref_primary_10_1109_JSTARS_2023_3323748
crossref_primary_10_1109_JSTARS_2021_3140154
crossref_primary_10_1109_JSTARS_2024_3450856
crossref_primary_10_1109_TGRS_2023_3321839
crossref_primary_10_1109_TGRS_2024_3377472
crossref_primary_10_1109_JSTARS_2023_3308037
crossref_primary_10_1109_JSTARS_2024_3465227
crossref_primary_10_1109_TGRS_2025_3530642
crossref_primary_10_1109_TIP_2023_3266660
crossref_primary_10_1109_JSTARS_2023_3335907
crossref_primary_10_1109_TGRS_2024_3452323
Cites_doi 10.1109/ACCESS.2018.2818280
10.1109/TGRS.2019.2893489
10.1109/TCI.2016.2631979
10.1109/TGRS.2008.918089
10.1109/TGRS.2013.2264392
10.1109/TIP.2016.2627815
10.1109/TGRS.2016.2636241
10.1109/MSP.2013.2279274
10.1109/TGRS.2011.2160950
10.1109/TGRS.2019.2961947
10.1109/LGRS.2019.2900733
10.1109/LGRS.2018.2857804
10.1109/TIP.2019.2893068
10.1109/TCI.2019.2948726
10.1109/TGRS.2018.2868690
10.1109/TSP.2012.2222390
10.1109/TGRS.2015.2453915
10.1109/JSTARS.2015.2388577
10.1016/0034-4257(94)90107-4
10.1109/TIP.2018.2878958
10.1109/JSTARS.2014.2320576
10.1109/TGRS.2018.2890633
10.1080/01431160802558659
10.1109/TGRS.2018.2856929
10.1109/IGARSS.2017.8126931
10.1109/79.974727
10.1109/IGARSS.2011.6049492
10.1109/TGRS.2020.2992743
10.1109/JSTARS.2019.2905099
10.1029/jb086ib04p03039
10.1109/TIP.2015.2468177
10.1109/WHISPERS.2015.8075378
10.1109/JSTARS.2014.2329330
10.1117/12.366289
10.1117/12.919583
10.1109/TIP.2012.2187668
10.1109/IGARSS.2017.8126930
10.1109/JSTARS.2012.2194696
10.1109/JSTARS.2020.2966512
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2021.3098745
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library (LUT)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 15
ExternalDocumentID 10_1109_TGRS_2021_3098745
9503107
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018AAA0102200
  funderid: 10.13039/501100012166
– fundername: Higher Education Discipline Innovation Project; 111 Project
  grantid: B18041
  funderid: 10.13039/501100013314
– fundername: Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University
  funderid: 10.13039/501100002663
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-dcd71bfda271d9eaa25eba0be1bd4283c25ac400e1effd65a30950b71854ce93
IEDL.DBID RIE
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732789500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Mon Jun 30 08:32:38 EDT 2025
Tue Nov 18 21:34:59 EST 2025
Sat Nov 29 02:50:14 EST 2025
Wed Aug 27 03:02:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-dcd71bfda271d9eaa25eba0be1bd4283c25ac400e1effd65a30950b71854ce93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2306-8860
0000-0002-6476-2501
0000-0003-0831-6934
OpenAccessLink https://ieeexplore.ieee.org/document/9503107
PQID 2621064492
PQPubID 85465
PageCount 15
ParticipantIDs crossref_primary_10_1109_TGRS_2021_3098745
crossref_citationtrail_10_1109_TGRS_2021_3098745
proquest_journals_2621064492
ieee_primary_9503107
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Goodfellow (ref36) 2016
ref40
Zhao (ref1) 2019
References_xml – ident: ref25
  doi: 10.1109/ACCESS.2018.2818280
– ident: ref17
  doi: 10.1109/TGRS.2019.2893489
– ident: ref38
  doi: 10.1109/TCI.2016.2631979
– ident: ref35
  doi: 10.1109/TGRS.2008.918089
– ident: ref14
  doi: 10.1109/TGRS.2013.2264392
– ident: ref15
  doi: 10.1109/TIP.2016.2627815
– ident: ref19
  doi: 10.1109/TGRS.2016.2636241
– ident: ref40
  doi: 10.1109/MSP.2013.2279274
– ident: ref22
  doi: 10.1109/TGRS.2011.2160950
– ident: ref21
  doi: 10.1109/TGRS.2019.2961947
– ident: ref34
  doi: 10.1109/LGRS.2019.2900733
– ident: ref23
  doi: 10.1109/LGRS.2018.2857804
– ident: ref4
  doi: 10.1109/TIP.2019.2893068
– ident: ref31
  doi: 10.1109/TCI.2019.2948726
– ident: ref27
  doi: 10.1109/TGRS.2018.2868690
– ident: ref13
  doi: 10.1109/TSP.2012.2222390
– ident: ref16
  doi: 10.1109/TGRS.2015.2453915
– ident: ref20
  doi: 10.1109/JSTARS.2015.2388577
– ident: ref7
  doi: 10.1016/0034-4257(94)90107-4
– ident: ref5
  doi: 10.1109/TIP.2018.2878958
– ident: ref6
  doi: 10.1109/JSTARS.2014.2320576
– ident: ref29
  doi: 10.1109/TGRS.2018.2890633
– ident: ref8
  doi: 10.1080/01431160802558659
– ident: ref30
  doi: 10.1109/TGRS.2018.2856929
– volume-title: Deep Learning
  year: 2016
  ident: ref36
– year: 2019
  ident: ref1
  article-title: Hyperspectral unmixing via deep autoencoder networks for a generalized linear-mixture/nonlinear-fluctuation model
  publication-title: arXiv:1904.13017
– ident: ref26
  doi: 10.1109/IGARSS.2017.8126931
– ident: ref3
  doi: 10.1109/79.974727
– ident: ref9
  doi: 10.1109/IGARSS.2011.6049492
– ident: ref32
  doi: 10.1109/TGRS.2020.2992743
– ident: ref41
  doi: 10.1109/JSTARS.2019.2905099
– ident: ref11
  doi: 10.1029/jb086ib04p03039
– ident: ref39
  doi: 10.1109/TIP.2015.2468177
– ident: ref24
  doi: 10.1109/WHISPERS.2015.8075378
– ident: ref18
  doi: 10.1109/JSTARS.2014.2329330
– ident: ref37
  doi: 10.1117/12.366289
– ident: ref12
  doi: 10.1117/12.919583
– ident: ref10
  doi: 10.1109/TIP.2012.2187668
– ident: ref28
  doi: 10.1109/IGARSS.2017.8126930
– ident: ref2
  doi: 10.1109/JSTARS.2012.2194696
– ident: ref33
  doi: 10.1109/JSTARS.2020.2966512
SSID ssj0014517
Score 2.61584
Snippet Spectral unmixing is an important task in hyperspectral image processing for separating the mixed spectral data pertaining to various materials observed aiming...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 3-D-convolutional neural network (CNN)
Additives
Artificial neural networks
autoencoder network
Decoding
Hyperspectral imaging
Image processing
Kernel
Mixture models
Neural networks
nonlinear spectral unmixing
Nonlinear systems
Nonlinearity
Photonics
Spectra
Title Hyperspectral Unmixing for Additive Nonlinear Models With a 3-D-CNN Autoencoder Network
URI https://ieeexplore.ieee.org/document/9503107
https://www.proquest.com/docview/2621064492
Volume 60
WOSCitedRecordID wos000732789500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library (LUT)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0BAgkOLeVDbEsrHzghDLbXTtbHFe2WU1SVRXCL_DERK8EuymYRP7-2k121okLilsNYivzizDzPzBuAE6ZRS2MEDdQho1JWOTVaIo1ZQS2E1RW3adhEXhSDuzv9aw3OVr0wiJiKz_A8PqZcvp-5Rbwqu9AqClnm67Ce51nbq7XKGEjFu9bojAYSIboMJmf6Yvzz93VggoKf95mO8u7_-KA0VOXVnzi5l9HH973YLnzowkgybHH_BGs43YOdv8QF92ArFXe6-T7cXgWy2fZU1mHRzfRx8hJMSIhXydD7VD1EilYzw9Qkjkd7mJPbSXNPDOnT7_SyKMhw0cyi6KXHmhRt7fgBjEc_xpdXtBuoQF3w6g31zufcVt6InHuNASKF1jCL3PoovOaEMi4cauRYVT5TJuyXYja4LyUd6v4hbExnUzwCYlTOK6sQB1VfSq9NiCJRs0pL5qwasB6w5Q6XrhMbjzMvHspEOpguIyhlBKXsQOnB6WrJU6u08ZbxfkRhZdgB0IPjJYxldxbnpcgCrQ1hnxaf_7_qC2yL2NSQLlaOYaOpF_gVNt1zM5nX39Jn9gfLx87D
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB7xKAIOfUArwqP1oacKg-3Y2fgYQSFV6aoqQXBb-TGrRoKk2myq_nxs7xJRUVXitoextPK33pnPM_MNwEemUUtjBA3UoUelLDNqtEQas4JaCKtLbtOwiSzP-zc3-vsSHC56YRAxFZ_hUXxMuXw_dfN4VXasVRSyzJZhVUkpWNOttcgZSMXb5ugeDTRCtDlMzvTx6PzHZeCCgh91mY4C7395oTRW5cm_ODmYs1fPe7XX8LINJMmgQf4NLOFkCzYfyQtuwVoq73SzbbgeBrrZdFVWYdHV5G78J5iQELGSgfepfojkjWqGqUgckHY7I9fj-icxpEtP6Umek8G8nkbZS48VyZvq8bcwOvs8OhnSdqQCdcGv19Q7n3FbeiMy7jUGkBRawyxy66P0mhPKuHCskWNZ-p4yYb8Us8GBKelQd9_BymQ6wR0gRmW8tAqxX3al9NqEOBI1K7Vkzqo-6wB72OHCtXLjcerFbZFoB9NFBKWIoBQtKB34tFjyq9Ha-J_xdkRhYdgC0IH9BxiL9jTOCtELxDYEflrs_nvVB1gfjr5dFBdf8q97sCFii0O6ZtmHlbqa4wG8cL_r8ax6nz65e7Zb0go
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Unmixing+for+Additive+Nonlinear+Models+With+a+3-D-CNN+Autoencoder+Network&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zhao%2C+Min&rft.au=Wang%2C+Mou&rft.au=Chen%2C+Jie&rft.au=Rahardja%2C+Susanto&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTGRS.2021.3098745&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2021_3098745
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon