MSCFNet: A Lightweight Network With Multi-Scale Context Fusion for Real-Time Semantic Segmentation

In recent years, how to strike a good trade-off between accuracy, inference speed, and model size has become the core issue for real-time semantic segmentation applications, which plays a vital role in real-world scenarios such as autonomous driving systems and drones. In this study, we devise a nov...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on intelligent transportation systems Ročník 23; číslo 12; s. 25489 - 25499
Hlavní autoři: Gao, Guangwei, Xu, Guoan, Yu, Yi, Xie, Jin, Yang, Jian, Yue, Dong
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1524-9050, 1558-0016
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In recent years, how to strike a good trade-off between accuracy, inference speed, and model size has become the core issue for real-time semantic segmentation applications, which plays a vital role in real-world scenarios such as autonomous driving systems and drones. In this study, we devise a novel lightweight network using a multi-scale context fusion (MSCFNet) scheme, which explores an asymmetric encoder-decoder architecture to alleviate these problems. More specifically, the encoder adopts some developed efficient asymmetric residual (EAR) modules, which are composed of factorization depth-wise convolution and dilation convolution. Meanwhile, instead of complicated computation, simple deconvolution is applied in the decoder to further reduce the amount of parameters while still maintaining the high segmentation accuracy. Also, MSCFNet has branches with efficient attention modules from different stages of the network to well capture multi-scale contextual information. Then we combine them before the final classification to enhance the expression of the features and improve the segmentation efficiency. Comprehensive experiments on challenging datasets have demonstrated that the proposed MSCFNet, which contains only 1.15M parameters, achieves 71.9% Mean IoU on the Cityscapes testing dataset and can run at over 50 FPS on a single Titan XP GPU configuration.
AbstractList In recent years, how to strike a good trade-off between accuracy, inference speed, and model size has become the core issue for real-time semantic segmentation applications, which plays a vital role in real-world scenarios such as autonomous driving systems and drones. In this study, we devise a novel lightweight network using a multi-scale context fusion (MSCFNet) scheme, which explores an asymmetric encoder-decoder architecture to alleviate these problems. More specifically, the encoder adopts some developed efficient asymmetric residual (EAR) modules, which are composed of factorization depth-wise convolution and dilation convolution. Meanwhile, instead of complicated computation, simple deconvolution is applied in the decoder to further reduce the amount of parameters while still maintaining the high segmentation accuracy. Also, MSCFNet has branches with efficient attention modules from different stages of the network to well capture multi-scale contextual information. Then we combine them before the final classification to enhance the expression of the features and improve the segmentation efficiency. Comprehensive experiments on challenging datasets have demonstrated that the proposed MSCFNet, which contains only 1.15M parameters, achieves 71.9% Mean IoU on the Cityscapes testing dataset and can run at over 50 FPS on a single Titan XP GPU configuration.
Author Xu, Guoan
Yue, Dong
Yu, Yi
Yang, Jian
Xie, Jin
Gao, Guangwei
Author_xml – sequence: 1
  givenname: Guangwei
  orcidid: 0000-0002-3950-1844
  surname: Gao
  fullname: Gao, Guangwei
  email: csggao@gmail.com
  organization: Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 2
  givenname: Guoan
  surname: Xu
  fullname: Xu, Guoan
  email: xga_njupt@163.com
  organization: College of Automation and College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 3
  givenname: Yi
  orcidid: 0000-0002-0294-6620
  surname: Yu
  fullname: Yu, Yi
  email: yiyu@nii.ac.jp
  organization: Digital Content and Media Sciences Research Division, National Institute of Informatics, Tokyo, Japan
– sequence: 4
  givenname: Jin
  surname: Xie
  fullname: Xie, Jin
  email: csjxie@njust.edu.cn
  organization: School of Computer Science and Technology, Nanjing University of Science and Technology, Suzhou, China
– sequence: 5
  givenname: Jian
  orcidid: 0000-0003-4800-832X
  surname: Yang
  fullname: Yang, Jian
  email: csjyang@njust.edu.cn
  organization: School of Computer Science and Technology, Nanjing University of Science and Technology, Suzhou, China
– sequence: 6
  givenname: Dong
  orcidid: 0000-0001-7810-9338
  surname: Yue
  fullname: Yue, Dong
  email: medongy@vip.163.com
  organization: College of Automation and College of Artificial Intelligence, Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing, China
BookMark eNp9UMtOwzAQtFCRKIUPQFwscU7x2nEe3KqKQqUWJFrEMXKcNbikCTiOCn9PolYcOHDZXY1mdnbnlAyqukJCLoCNAVh6vZ6vV2POOIwFSxMh5REZgpRJwBhEg37mYZAyyU7IadNsOjSUAEOSL1fT2QP6GzqhC_v65nfYV9pBu9q90xfr3-iyLb0NVlqVSKd15fHL01nb2Lqipnb0CVUZrO0W6Qq3qvJWd8PrFiuvfMc5I8dGlQ2eH_qIPM9u19P7YPF4N59OFoHmqfBBoROFoYoNcg5RLqTIjWaAQoNJAONIAMuLImShjMCkhYlyXeQhmpgLIxItRuRqv_fD1Z8tNj7b1K2rOsuMx2EcAWdJ2rFgz9KubhqHJvtwdqvcdwYs66PM-iizPsrsEGWnif9otN3_5p2y5b_Ky73SIuKvUypZ2B0kfgASJ4N7
CODEN ITISFG
CitedBy_id crossref_primary_10_1080_10298436_2025_2518488
crossref_primary_10_1109_JBHI_2024_3385098
crossref_primary_10_1007_s00371_025_04130_1
crossref_primary_10_1007_s11063_022_11107_x
crossref_primary_10_1007_s11760_025_04362_7
crossref_primary_10_3390_electronics13183699
crossref_primary_10_3390_drones8020046
crossref_primary_10_1007_s40747_023_01054_y
crossref_primary_10_1007_s40747_023_01056_w
crossref_primary_10_1016_j_engappai_2023_107736
crossref_primary_10_1007_s11554_024_01421_z
crossref_primary_10_1007_s13735_024_00321_z
crossref_primary_10_4018_IJSWIS_342087
crossref_primary_10_53941_ijndi_2025_100006
crossref_primary_10_1109_TCSII_2025_3592480
crossref_primary_10_3389_fnbot_2023_1204418
crossref_primary_10_1109_TMM_2024_3405619
crossref_primary_10_3390_electronics12153348
crossref_primary_10_1016_j_eswa_2024_124697
crossref_primary_10_1007_s42421_023_00086_7
crossref_primary_10_1038_s41598_025_92957_y
crossref_primary_10_1093_comjnl_bxac108
crossref_primary_10_1016_j_imavis_2023_104823
crossref_primary_10_1007_s12559_025_10407_3
crossref_primary_10_1002_rob_22406
crossref_primary_10_1109_TITS_2022_3141107
crossref_primary_10_1109_TII_2024_3409443
crossref_primary_10_1109_TITS_2023_3348631
crossref_primary_10_1109_TIV_2024_3363830
crossref_primary_10_1109_TITS_2025_3557558
crossref_primary_10_32604_cmc_2023_043524
crossref_primary_10_1007_s10489_024_05740_3
crossref_primary_10_1049_ipr2_12816
crossref_primary_10_1093_comjnl_bxac060
crossref_primary_10_1016_j_displa_2024_102688
crossref_primary_10_1016_j_knosys_2025_114417
crossref_primary_10_1371_journal_pone_0318979
crossref_primary_10_1007_s11760_025_04696_2
crossref_primary_10_1109_TGRS_2024_3487244
crossref_primary_10_3390_electronics13173361
crossref_primary_10_1016_j_media_2024_103330
crossref_primary_10_1007_s11760_024_03581_8
crossref_primary_10_1109_TMM_2024_3372835
crossref_primary_10_4018_IJVAR_307063
crossref_primary_10_1109_ACCESS_2025_3540454
crossref_primary_10_1109_TITS_2024_3359755
crossref_primary_10_20965_jaciii_2024_p0562
crossref_primary_10_1088_1361_6501_ad9106
crossref_primary_10_1016_j_acra_2025_06_010
crossref_primary_10_1007_s13042_023_02077_0
crossref_primary_10_3390_s25072043
crossref_primary_10_1109_TIP_2024_3425048
crossref_primary_10_1109_TPAMI_2025_3576857
crossref_primary_10_3390_s25154776
crossref_primary_10_1038_s41598_025_95465_1
crossref_primary_10_1109_TITS_2023_3313982
crossref_primary_10_3390_electronics13122406
crossref_primary_10_1007_s13177_024_00434_z
crossref_primary_10_1016_j_imavis_2024_105053
crossref_primary_10_1016_j_iswa_2025_200542
crossref_primary_10_3390_s23146382
crossref_primary_10_1109_TITS_2024_3488656
crossref_primary_10_1016_j_jvcir_2024_104188
crossref_primary_10_1109_TMM_2022_3157995
crossref_primary_10_1109_ACCESS_2025_3536286
crossref_primary_10_1109_TITS_2023_3248089
crossref_primary_10_3390_s24010095
crossref_primary_10_1007_s40747_023_01279_x
crossref_primary_10_1109_ACCESS_2024_3359425
crossref_primary_10_1016_j_cag_2024_104105
crossref_primary_10_1117_1_JEI_33_1_013008
crossref_primary_10_1093_comjnl_bxac124
crossref_primary_10_1016_j_cag_2023_07_039
crossref_primary_10_1109_TITS_2025_3538317
crossref_primary_10_1007_s10586_024_04451_1
crossref_primary_10_1016_j_neucom_2025_129489
crossref_primary_10_1016_j_eswa_2025_127680
crossref_primary_10_3390_s24041135
crossref_primary_10_1109_JSTARS_2025_3534285
crossref_primary_10_3390_s24134302
crossref_primary_10_1007_s00521_022_06932_z
Cites_doi 10.1007/978-3-7908-2604-3_16
10.1109/MNET.2019.1800339
10.1109/TMM.2017.2760100
10.1109/TITS.2019.2962094
10.1109/TIP.2020.3042065
10.1109/TITS.2017.2750080
10.1109/CVPR.2016.350
10.1007/978-3-030-01219-9_25
10.1109/CVPR.2015.7298965
10.1109/CVPR.2017.195
10.1109/TIP.2020.2976856
10.1109/CVPR42600.2020.01155
10.1145/3338533.3366558
10.1016/j.ins.2019.08.004
10.1109/CVPR.2019.00326
10.1162/neco_a_00990
10.1109/CVPR.2019.00314
10.1109/ICCV.2019.00068
10.1109/CVPR.2016.90
10.1109/CVPR.2018.00388
10.1109/TPAMI.2016.2572683
10.1016/j.patcog.2020.107539
10.1109/CVPR.2018.00745
10.1109/ICIP.2019.8803154
10.1109/TII.2018.2849348
10.1016/j.patcog.2016.12.021
10.1109/TITS.2019.2913883
10.1109/CVPR.2019.00975
10.1109/TPAMI.2017.2699184
10.1109/TCYB.2020.2970104
10.1109/TPAMI.2016.2644615
10.1109/ICCV.2019.00069
10.1109/ICCVW.2019.00246
10.1109/TIP.2019.2919937
10.1109/CVPR.2019.00941
10.1007/978-3-030-01249-6_34
10.1109/ICRA40945.2020.9196599
10.1002/cpe.3927
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2021.3098355
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 25499
ExternalDocumentID 10_1109_TITS_2021_3098355
9504476
Genre orig-research
GrantInformation_xml – fundername: Open Fund Project of Provincial Key Laboratory for Computer Information Processing Technology (Soochow University)
  grantid: KJS1840
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20190089
  funderid: 10.13039/501100004608
– fundername: National Key Research and Development Program of China
  grantid: 2018AAA0100102; 2018AAA0100100
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 61972212; 61772568; 61833011
  funderid: 10.13039/501100001809
– fundername: Six Talent Peaks Project, Jiangsu Province
  grantid: RJFW-011
  funderid: 10.13039/501100010014
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-dc8ae4a7fe2216b353bfc01e3c1f81e76310bdd404561f9df6bcdb4ef723f38c3
IEDL.DBID RIE
ISICitedReferencesCount 102
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732278400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Mon Jun 30 06:57:35 EDT 2025
Sat Nov 29 06:34:57 EST 2025
Tue Nov 18 21:57:15 EST 2025
Wed Aug 27 02:15:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-dc8ae4a7fe2216b353bfc01e3c1f81e76310bdd404561f9df6bcdb4ef723f38c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7810-9338
0000-0002-3950-1844
0000-0003-4800-832X
0000-0002-0294-6620
PQID 2747612089
PQPubID 75735
PageCount 11
ParticipantIDs crossref_primary_10_1109_TITS_2021_3098355
proquest_journals_2747612089
ieee_primary_9504476
crossref_citationtrail_10_1109_TITS_2021_3098355
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref53
chen (ref25) 2017
ref52
ref11
ref10
yu (ref26) 2015
ref17
ref19
ref18
chen (ref51) 2014
poudel (ref48) 2018
ref50
sun (ref14) 2019
gao (ref8) 2020
ref46
ref45
ref47
ref42
ref41
ref7
ref9
ref4
paszke (ref16) 2016
ref3
ref6
ref5
yang (ref30) 2020
ref40
chen (ref24) 0; 2018
ref35
ref34
ref37
ref36
howard (ref21) 2017
yu (ref38) 2018
ref31
ref33
ref32
ref2
ref1
ref39
ref23
ref20
ref28
poudel (ref49) 2019
ref27
ref29
li (ref22) 2019
woo (ref44) 2018
hu (ref43) 2018
References_xml – start-page: 9401
  year: 2018
  ident: ref43
  article-title: Gather-excite: Exploiting feature context in convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst (NeurIPS)
– ident: ref53
  doi: 10.1007/978-3-7908-2604-3_16
– year: 2020
  ident: ref8
  article-title: Hierarchical deep CNN feature set-based representation learning for robust cross-resolution face recognition
  publication-title: IEEE Trans Circuits Syst Video Technol
– ident: ref1
  doi: 10.1109/MNET.2019.1800339
– ident: ref3
  doi: 10.1109/TMM.2017.2760100
– ident: ref32
  doi: 10.1109/TITS.2019.2962094
– year: 2019
  ident: ref49
  article-title: Fast-SCNN: Fast semantic segmentation network
  publication-title: arXiv 1902 04502
– ident: ref47
  doi: 10.1109/TIP.2020.3042065
– ident: ref18
  doi: 10.1109/TITS.2017.2750080
– ident: ref52
  doi: 10.1109/CVPR.2016.350
– ident: ref37
  doi: 10.1007/978-3-030-01219-9_25
– year: 2014
  ident: ref51
  article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFs
  publication-title: arXiv 1412 7062
– ident: ref50
  doi: 10.1109/CVPR.2015.7298965
– start-page: 325
  year: 2018
  ident: ref38
  article-title: BiSeNet: Bilateral segmentation network for real-time semantic segmentation
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– year: 2019
  ident: ref22
  article-title: DABNet: Depth-wise asymmetric bottleneck for real-time semantic segmentation
  publication-title: arXiv 1907 11357
– ident: ref20
  doi: 10.1109/CVPR.2017.195
– ident: ref29
  doi: 10.1109/TIP.2020.2976856
– ident: ref46
  doi: 10.1109/CVPR42600.2020.01155
– ident: ref27
  doi: 10.1145/3338533.3366558
– ident: ref2
  doi: 10.1016/j.ins.2019.08.004
– ident: ref13
  doi: 10.1109/CVPR.2019.00326
– ident: ref7
  doi: 10.1162/neco_a_00990
– ident: ref45
  doi: 10.1109/CVPR.2019.00314
– ident: ref41
  doi: 10.1109/ICCV.2019.00068
– ident: ref6
  doi: 10.1109/CVPR.2016.90
– ident: ref12
  doi: 10.1109/CVPR.2018.00388
– year: 2019
  ident: ref14
  article-title: High-resolution representations for labeling pixels and regions
  publication-title: arXiv 1904 04514
– ident: ref9
  doi: 10.1109/TPAMI.2016.2572683
– volume: 2018
  start-page: 801
  year: 0
  ident: ref24
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref5
  doi: 10.1016/j.patcog.2020.107539
– year: 2017
  ident: ref25
  article-title: Rethinking atrous convolution for semantic image segmentation
  publication-title: arXiv 1706 05587
– ident: ref42
  doi: 10.1109/CVPR.2018.00745
– ident: ref23
  doi: 10.1109/ICIP.2019.8803154
– ident: ref33
  doi: 10.1109/TII.2018.2849348
– ident: ref4
  doi: 10.1016/j.patcog.2016.12.021
– ident: ref31
  doi: 10.1109/TITS.2019.2913883
– year: 2017
  ident: ref21
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv 1704 04861
– year: 2016
  ident: ref16
  article-title: ENet: A deep neural network architecture for real-time semantic segmentation
  publication-title: ArXiv 1606 02147
– ident: ref35
  doi: 10.1109/CVPR.2019.00975
– ident: ref11
  doi: 10.1109/TPAMI.2017.2699184
– start-page: 3
  year: 2018
  ident: ref44
  article-title: CBAM: Convolutional block attention module
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref15
  doi: 10.1109/TCYB.2020.2970104
– ident: ref17
  doi: 10.1109/TPAMI.2016.2644615
– year: 2018
  ident: ref48
  article-title: ContextNet: Exploring context and detail for semantic segmentation in real-time
  publication-title: arXiv 1805 04554
– ident: ref39
  doi: 10.1109/ICCV.2019.00069
– ident: ref40
  doi: 10.1109/ICCVW.2019.00246
– ident: ref34
  doi: 10.1109/TIP.2019.2919937
– ident: ref19
  doi: 10.1109/CVPR.2019.00941
– ident: ref36
  doi: 10.1007/978-3-030-01249-6_34
– year: 2020
  ident: ref30
  article-title: NDNet: Narrow while deep network for real-time semantic segmentation
  publication-title: IEEE Trans Intell Transp Syst
– year: 2015
  ident: ref26
  article-title: Multi-scale context aggregation by dilated convolutions
  publication-title: arXiv 1511 07122
– ident: ref28
  doi: 10.1109/ICRA40945.2020.9196599
– ident: ref10
  doi: 10.1002/cpe.3927
SSID ssj0014511
Score 2.6353674
Snippet In recent years, how to strike a good trade-off between accuracy, inference speed, and model size has become the core issue for real-time semantic segmentation...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25489
SubjectTerms Accuracy
Asymmetry
Coders
Context
context fusion
Convolution
Datasets
Ear
Encoders-Decoders
encoder–decoder architecture
Feature extraction
Image segmentation
Lightweight
lightweight network
Modules
Parameters
Real time
Real-time semantic segmentation
Real-time systems
Semantic segmentation
Semantics
Task analysis
Title MSCFNet: A Lightweight Network With Multi-Scale Context Fusion for Real-Time Semantic Segmentation
URI https://ieeexplore.ieee.org/document/9504476
https://www.proquest.com/docview/2747612089
Volume 23
WOSCitedRecordID wos000732278400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PTxQxFH4B4gEPoKJxAUkPnIyFdtpup94IcYMJboi7Rm6TmddX3EQWA7PAn0_bnd1oICbcemgzk_k6fT_6vu8B7OtaB68c8bJWnmsizV1AwxFlqFXSCrCZKHxqh8Py_NydrcCnJReGiHLxGR2kYb7L91c4S6myQ2eE1ra_CqvW2jlXa3ljkHS2sjZqEZ8mzOIGUwp3OP46HsVIsJAHSrjocZh_bFBuqvLoJM7mZbD5vBd7BRudG8mO5ri_hhWavoGXf4kLbkHzbXQ8GFL7mR2x0xSC3-UsKBvOC7_Zz0n7i2X-LR9FoIhloar7lg1mKYPGojfLvkc3kieWCBvRZcRggnFwcdnxlaZv4cfgy_j4hHcdFThGs95yj2VNuraBikL2G2VUE1BIUhGZUlI8a6RovNfJz5PB-dBv0Deagi1UUCWqd7A2vZrSe2CFd0ZbNEEa0g5VrTUagU20d6hMbXsgFt-4wk5uPHW9-F3lsEO4KsFSJViqDpYefFwu-TPX2vjf5K2Ew3JiB0EPdhdAVt3feFOlyDt6cqJ020-v2oH1ItEacpnKLqy11zP6AC_wtp3cXO_ljfYApt_Qtg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PTxQxFH5BMFEPoIJxBbQHT8ZCO213pt4IYQNxmRh3jdwmM6-vsIksBmaVP5-2O7vBaEy49dBmJvN1-n70fd8DeK9r7Z2yxItaOa6JNLceDUeUvlZRKyBPROFhXpbF2Zn9sgIfl1wYIkrFZ7QXh-ku313hLKbK9q0RWuf9R7BmtM7knK21vDOISltJHTULzxNmcYcphd0fn4xHIRbM5J4SNvgc5g8rlNqq_HUWJwMz2HjYqz2H9c6RZAdz5F_ACk1fwrN78oKb0JyODgcltZ_YARvGIPx3yoOycl76zb5P2guWGLh8FKAilqSqbls2mMUcGgv-LPsaHEkeeSJsRJcBhQmGwfllx1iabsG3wdH48Jh3PRU4BsPecodFTbrOPWWZ7DfKqMajkKQCNoWkcNpI0Tino6cnvXW-36BrNPk8U14VqF7B6vRqSq-BZc4anaPx0pC2qGqt0QhsgsVDZeq8B2LxjSvsBMdj34sfVQo8hK0iLFWEpepg6cGH5ZKfc7WN_03ejDgsJ3YQ9GBnAWTV_Y83VYy9gy8nCvvm36vewZPj8emwGp6Un7fhaRZJDqloZQdW2-sZ7cJj_NVObq7fpk13B6u50_0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSCFNet%3A+A+Lightweight+Network+With+Multi-Scale+Context+Fusion+for+Real-Time+Semantic+Segmentation&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Gao%2C+Guangwei&rft.au=Xu%2C+Guoan&rft.au=Yu%2C+Yi&rft.au=Xie%2C+Jin&rft.date=2022-12-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=23&rft.issue=12&rft.spage=25489&rft.epage=25499&rft_id=info:doi/10.1109%2FTITS.2021.3098355&rft.externalDocID=9504476
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon