Numerically Stable Recurrence Relations for the Communication Hiding Pipelined Conjugate Gradient Method

Pipelined Krylov subspace methods (also referred to as communication-hiding methods) have been proposed in the literature as a scalable alternative to classic Krylov subspace algorithms for iteratively computing the solution to a large linear system in parallel. For symmetric and positive definite s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems Jg. 30; H. 11; S. 2507 - 2522
Hauptverfasser: Cools, Siegfried, Cornelis, Jeffrey, Vanroose, Wim
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1045-9219, 1558-2183
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Pipelined Krylov subspace methods (also referred to as communication-hiding methods) have been proposed in the literature as a scalable alternative to classic Krylov subspace algorithms for iteratively computing the solution to a large linear system in parallel. For symmetric and positive definite system matrices the pipelined Conjugate Gradient method, p(ll)-CG, outperforms its classic Conjugate Gradient counterpart on large scale distributed memory hardware by overlapping global communication with essential computations like the matrix-vector product, thus "hiding" global communication. A well-known drawback of the pipelining technique is the (possibly significant) loss of numerical stability. In this work a numerically stable variant of the pipelined Conjugate Gradient algorithm is presented that avoids the propagation of local rounding errors in the finite precision recurrence relations that construct the Krylov subspace basis. The multi-term recurrence relation for the basis vector is replaced by ℓ three-term recurrences, improving stability without increasing the overall computational cost of the algorithm. The proposed modification ensures that the pipelined Conjugate Gradient method is able to attain a highly accurate solution independently of the pipeline length. Numerical experiments demonstrate a combination of excellent parallel performance and improved maximal attainable accuracy for the new pipelined Conjugate Gradient algorithm. This work thus resolves one of the major practical restrictions for the useability of pipelined Krylov subspace methods.
AbstractList Pipelined Krylov subspace methods (also referred to as communication-hiding methods) have been proposed in the literature as a scalable alternative to classic Krylov subspace algorithms for iteratively computing the solution to a large linear system in parallel. For symmetric and positive definite system matrices the pipelined Conjugate Gradient method, p(ll)-CG, outperforms its classic Conjugate Gradient counterpart on large scale distributed memory hardware by overlapping global communication with essential computations like the matrix-vector product, thus "hiding" global communication. A well-known drawback of the pipelining technique is the (possibly significant) loss of numerical stability. In this work a numerically stable variant of the pipelined Conjugate Gradient algorithm is presented that avoids the propagation of local rounding errors in the finite precision recurrence relations that construct the Krylov subspace basis. The multi-term recurrence relation for the basis vector is replaced by ℓ three-term recurrences, improving stability without increasing the overall computational cost of the algorithm. The proposed modification ensures that the pipelined Conjugate Gradient method is able to attain a highly accurate solution independently of the pipeline length. Numerical experiments demonstrate a combination of excellent parallel performance and improved maximal attainable accuracy for the new pipelined Conjugate Gradient algorithm. This work thus resolves one of the major practical restrictions for the useability of pipelined Krylov subspace methods.
Pipelined Krylov subspace methods (also referred to as communication-hiding methods) have been proposed in the literature as a scalable alternative to classic Krylov subspace algorithms for iteratively computing the solution to a large linear system in parallel. For symmetric and positive definite system matrices the pipelined Conjugate Gradient method, p($l$l)-CG, outperforms its classic Conjugate Gradient counterpart on large scale distributed memory hardware by overlapping global communication with essential computations like the matrix-vector product, thus “hiding” global communication. A well-known drawback of the pipelining technique is the (possibly significant) loss of numerical stability. In this work a numerically stable variant of the pipelined Conjugate Gradient algorithm is presented that avoids the propagation of local rounding errors in the finite precision recurrence relations that construct the Krylov subspace basis. The multi-term recurrence relation for the basis vector is replaced by $\ell$ℓ three-term recurrences, improving stability without increasing the overall computational cost of the algorithm. The proposed modification ensures that the pipelined Conjugate Gradient method is able to attain a highly accurate solution independently of the pipeline length. Numerical experiments demonstrate a combination of excellent parallel performance and improved maximal attainable accuracy for the new pipelined Conjugate Gradient algorithm. This work thus resolves one of the major practical restrictions for the useability of pipelined Krylov subspace methods.
Author Cools, Siegfried
Vanroose, Wim
Cornelis, Jeffrey
Author_xml – sequence: 1
  givenname: Siegfried
  orcidid: 0000-0001-7065-4729
  surname: Cools
  fullname: Cools, Siegfried
  email: siegfried.cools@uantwerp.be
  organization: Department of Mathematics and Computer Science, Applied Mathematics Group, University of Antwerp, Antwerp, Belgium
– sequence: 2
  givenname: Jeffrey
  surname: Cornelis
  fullname: Cornelis, Jeffrey
  email: jeffrey.cornelis@uantwerp.be
  organization: Department of Mathematics and Computer Science, Applied Mathematics Group, University of Antwerp, Antwerp, Belgium
– sequence: 3
  givenname: Wim
  surname: Vanroose
  fullname: Vanroose, Wim
  email: wim.vanroose@uantwerp.be
  organization: Department of Mathematics and Computer Science, Applied Mathematics Group, University of Antwerp, Antwerp, Belgium
BookMark eNp9kU1PwzAMhiMEEp8_AHGJxLkjbpq2OaIBGxJfYuNcJanHMrXJSNMD_56WIQ4cONmy38eWXx-TfecdEnIObALA5NXy5WYxSRnISSqhyHO-R45AiDJJoeT7Q84ykcgU5CE57roNY5AJlh2R9VPfYrBGNc0nXUSlG6SvaPoQ0JkxbVS03nV05QONa6RT37a9G4CxTOe2tu6dvtgtNtZhPbTdpn9XEeksqNqii_QR49rXp-RgpZoOz37iCXm7u11O58nD8-x-ev2QmFTymNQGGIAuMuRCS61qlgpUtRa1yfNcap2KrESTSSNKw4qMaWOKnCnNGZdcCn5CLndzt8F_9NjFauP74IaVVTpqCikBBlWxU5nguy7gqjI2fp8Ug7JNBawaba1GW6vR1urH1oGEP-Q22FaFz3-Zix1jEfFXXxbDa4DzL3ZEhmY
CODEN ITDSEO
CitedBy_id crossref_primary_10_1137_19M1276856
crossref_primary_10_1016_j_laa_2022_01_004
crossref_primary_10_3390_su13147933
crossref_primary_10_1016_j_cie_2022_108656
crossref_primary_10_1007_s40314_025_03243_6
crossref_primary_10_1109_TPDS_2021_3084104
crossref_primary_10_1007_s40314_024_02867_4
crossref_primary_10_1007_s40314_025_03390_w
crossref_primary_10_1016_j_jfranklin_2025_107870
crossref_primary_10_3390_app112110102
crossref_primary_10_1137_20M1346249
Cites_doi 10.1137/120893057
10.1137/S1064827599353865
10.1177/1094342010391989
10.1137/12086563X
10.1137/17M1117872
10.1016/0024-3795(80)90167-6
10.1016/0167-8191(87)90037-8
10.1137/1.9780898718027
10.1109/SC.2016.17
10.1016/0377-0427(89)90045-9
10.1137/16M1103361
10.1137/S0895479897323087
10.2172/7172467
10.1002/nla.643
10.1137/15M1049130
10.1093/imamat/18.3.341
10.1137/1.9780898718003
10.1017/S096249290626001X
10.1137/S0895479895284944
10.1093/acprof:oso/9780199655410.001.0001
10.1137/110834512
10.6028/jres.049.044
10.1137/S0895479897331862
10.1016/j.parco.2017.04.005
10.1016/j.parco.2013.06.001
10.1137/0613011
10.1137/140989492
10.1088/1742-6596/78/1/012066
10.1137/120881191
10.1007/s10543-005-0032-1
10.1017/S096249290000235X
10.1016/j.parco.2019.05.002
10.1145/3079079.3079091
10.1016/0024-3795(89)90285-1
10.1007/BF02309342
10.1016/j.parco.2013.10.001
10.1016/0167-8191(87)90051-2
10.1109/IPDPSW.2017.65
10.1017/CBO9780511615115
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TPDS.2019.2917663
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2183
EndPage 2522
ExternalDocumentID 10_1109_TPDS_2019_2917663
8718313
Genre orig-research
GrantInformation_xml – fundername: University of Antwerp Research Council
– fundername: Flemish Research Foundation (FWO Flanders)
  grantid: 12H4617N
– fundername: University Research Fund
GroupedDBID --Z
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
TWZ
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-dc1011b74e35b9bad025eadb5dc6669bb2548ec49c58c0740bcc760ab30393953
IEDL.DBID RIE
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000492450900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1045-9219
IngestDate Sun Nov 30 05:23:52 EST 2025
Tue Nov 18 21:52:23 EST 2025
Sat Nov 29 06:06:47 EST 2025
Wed Aug 27 02:44:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-dc1011b74e35b9bad025eadb5dc6669bb2548ec49c58c0740bcc760ab30393953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7065-4729
PQID 2303979911
PQPubID 85437
PageCount 16
ParticipantIDs ieee_primary_8718313
crossref_primary_10_1109_TPDS_2019_2917663
crossref_citationtrail_10_1109_TPDS_2019_2917663
proquest_journals_2303979911
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on parallel and distributed systems
PublicationTitleAbbrev TPDS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref36
ref14
ref31
ref30
ref33
ref32
ref10
cornelis (ref11) 2018
ref2
ref39
ref38
ref16
ref19
ref18
erhel (ref17) 1995; 3
balay (ref1) 2015
wilkinson (ref45) 1994
ref46
ref24
ref23
ref26
ref47
ref25
ref20
ref41
ref22
ref44
ref21
ref43
hoemmen (ref27) 2010
ref29
ref8
ref7
ref9
ref4
dongarra (ref15) 2015
ref3
ref6
ref5
ref40
imberti (ref28) 2017; 47
swirydowicz (ref42) 2018
References_xml – ident: ref3
  doi: 10.1137/120893057
– ident: ref44
  doi: 10.1137/S1064827599353865
– ident: ref14
  doi: 10.1177/1094342010391989
– ident: ref18
  doi: 10.1137/12086563X
– ident: ref10
  doi: 10.1137/17M1117872
– year: 2018
  ident: ref11
  article-title: The communication-hiding conjugate gradient method with deep pipelines
  publication-title: Submitted to SIAM J Sci Comput
– ident: ref34
  doi: 10.1016/0024-3795(80)90167-6
– ident: ref31
  doi: 10.1016/0167-8191(87)90037-8
– ident: ref26
  doi: 10.1137/1.9780898718027
– ident: ref16
  doi: 10.1109/SC.2016.17
– year: 1994
  ident: ref45
  publication-title: Rounding Errors in Algebraic Processes
– ident: ref6
  doi: 10.1016/0377-0427(89)90045-9
– ident: ref5
  doi: 10.1137/16M1103361
– ident: ref39
  doi: 10.1137/S0895479897323087
– ident: ref12
  doi: 10.2172/7172467
– ident: ref7
  doi: 10.1002/nla.643
– ident: ref36
  doi: 10.1137/15M1049130
– year: 2015
  ident: ref1
  article-title: PETSc Web page
– ident: ref33
  doi: 10.1093/imamat/18.3.341
– ident: ref35
  doi: 10.1137/1.9780898718003
– ident: ref32
  doi: 10.1017/S096249290626001X
– ident: ref21
  doi: 10.1137/S0895479895284944
– ident: ref29
  doi: 10.1093/acprof:oso/9780199655410.001.0001
– ident: ref2
  doi: 10.1137/110834512
– ident: ref25
  doi: 10.6028/jres.049.044
– year: 2018
  ident: ref42
  article-title: Low synchronization GMRES algorithms
  publication-title: Proceedings of the Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems
– volume: 47
  start-page: 206
  year: 2017
  ident: ref28
  article-title: Varying the s in your s-step GMRES
  publication-title: Electron Trans Numerical Anal
– ident: ref24
  doi: 10.1137/S0895479897331862
– ident: ref9
  doi: 10.1016/j.parco.2017.04.005
– ident: ref19
  doi: 10.1016/j.parco.2013.06.001
– ident: ref22
  doi: 10.1137/0613011
– ident: ref23
  doi: 10.1137/140989492
– year: 2015
  ident: ref15
  article-title: HPCG benchmark: A new metric for ranking high performance computing systems
– volume: 3
  start-page: 160
  year: 1995
  ident: ref17
  article-title: A parallel GMRES version for general sparse matrices
  publication-title: Electron Trans Numerical Anal
– ident: ref37
  doi: 10.1088/1742-6596/78/1/012066
– ident: ref4
  doi: 10.1137/120881191
– ident: ref41
  doi: 10.1007/s10543-005-0032-1
– ident: ref13
  doi: 10.1017/S096249290000235X
– ident: ref8
  doi: 10.1016/j.parco.2019.05.002
– ident: ref47
  doi: 10.1145/3079079.3079091
– year: 2010
  ident: ref27
  article-title: Communication-avoiding Krylov subspace methods
– ident: ref20
  doi: 10.1016/0024-3795(89)90285-1
– ident: ref38
  doi: 10.1007/BF02309342
– ident: ref30
  doi: 10.1016/j.parco.2013.10.001
– ident: ref40
  doi: 10.1016/0167-8191(87)90051-2
– ident: ref46
  doi: 10.1109/IPDPSW.2017.65
– ident: ref43
  doi: 10.1017/CBO9780511615115
SSID ssj0014504
Score 2.39489
Snippet Pipelined Krylov subspace methods (also referred to as communication-hiding methods) have been proposed in the literature as a scalable alternative to classic...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2507
SubjectTerms Algorithms
attainable accuracy
Communication
Conjugate gradient method
conjugate gradients
Conjugates
Distributed memory
Distributed processing
Global communication
Gradient methods
Hardware
inexact computations
Krylov subspace methods
latency hiding
Mathematical analysis
Matrix algebra
Matrix methods
Methods
Numerical stability
parallel performance
Pipeline processing
pipelining
Pipelining (computers)
Rounding
Stability
Subspace methods
Subspaces
Symmetric matrices
Title Numerically Stable Recurrence Relations for the Communication Hiding Pipelined Conjugate Gradient Method
URI https://ieeexplore.ieee.org/document/8718313
https://www.proquest.com/docview/2303979911
Volume 30
WOSCitedRecordID wos000492450900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2183
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014504
  issn: 1045-9219
  databaseCode: RIE
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5q8aAHq61itcoePIlp0zya7FF89aClaIXeQnazwUpIS5sI_ntnNmmwKIK3QHaTJd9O5pudF8CFROnjoa5wGaOBgozDEMh0jUjZrrBi6YVF15JHbzTyp1M-rsFVlQujlNLBZ6pLl9qXH81lTkdlPST3vk0tarc8zytytSqPAb7GKSoPuAZHMSw9mH2T9ybj2xcK4uJdi1M9RHtDB-mmKj_-xFq93Df-t7B92CtpJLsucD-Amkqb0Fi3aGClxDZh91u9wRa8jfLCQZMknwxppkgUe6YDd53yx6rAOIZMliEzZBvpI2w4I0XHxrMFJbGrCG-n7zmdw7GHpQ4dy9iT7kh9CK_3d5OboVG2WjAk6vvMiCSKZl94DkHERRghFcI9JtxIon3DhUA70lfS4dL1JbIOU0jpDcxQ2JTby137COrpPFXHwAahq0wzDp2-iB0RxwIpo6NExAfcl64VtsFcf_xAlnXIqR1GEmh7xOQB4RUQXkGJVxsuqymLogjHX4NbBFA1sMSmDZ01wkEppqvAouV7SJH7J7_POoUdenaRfNiBerbM1Rlsy49stlqe6x34BXUO2Z0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6KCurBaqtYrboHT2LaPJvsUdRasS1FK_QWspsNVkpb-hD8985s0mBRBG-B7LJLvp3MNzsvgEuJ0scjXeEyQQMFGYchkOkasXI8YSfSj9KuJW2_2w0GA94rwHWeC6OU0sFnqkaP2pcfT-SSrsrqSO4Dh1rUbnqua1tptlbuM8CF3LT2gGdwFMTMh2mZvN7v3b1QGBev2ZwqIjprWki3VfnxL9YKpln839b2YS8jkuwmRf4ACmpcguKqSQPLZLYEu98qDpbhrbtMXTSj0SdDoilGij3TlbtO-mN5aBxDLsuQG7K1BBLWGpKqY73hlNLYVYyvx-9LuoljDzMdPLZgHd2T-hBem_f925aRNVswJGr8hRFLFE5L-C6BxEUUIxnCUya8WKKFw4VASzJQ0uXSCyTyDlNI6TfMSDiU3cs95wg2xpOxOgbWiDxlmknkWiJxRZIIJI2uEjFv8EB6dlQBc_XxQ5lVIqeGGKNQWyQmDwmvkPAKM7wqcJVPmaZlOP4aXCaA8oEZNhWorhAOM0GdhzZt30eSbJ38PusCtlv9TjtsP3afTmGH1klTEauwsZgt1RlsyY_FcD4716fxC-uB3OQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerically+Stable+Recurrence+Relations+for+the+Communication+Hiding+Pipelined+Conjugate+Gradient+Method&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Cools%2C+Siegfried&rft.au=Cornelis%2C+Jeffrey&rft.au=Vanroose%2C+Wim&rft.date=2019-11-01&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=30&rft.issue=11&rft.spage=2507&rft.epage=2522&rft_id=info:doi/10.1109%2FTPDS.2019.2917663&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPDS_2019_2917663
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon