Multiobjective Differential Evolution Algorithm for Solving Robotic Cell Scheduling Problem With Batch-Processing Machines

Robotic cell scheduling problem with batch-processing machines (RCSP-BMs) needs to determine the processing sequence and the transferring sequence simultaneously. The buffer size before and after the batch-processing machines has a big influence on the scheduling solution. A big amount of energy is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automation science and engineering Ročník 18; číslo 2; s. 757 - 775
Hlavní autoři: Wu, Xiuli, Yuan, Qi, Wang, Ling
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1545-5955, 1558-3783
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Robotic cell scheduling problem with batch-processing machines (RCSP-BMs) needs to determine the processing sequence and the transferring sequence simultaneously. The buffer size before and after the batch-processing machines has a big influence on the scheduling solution. A big amount of energy is always consumed by batch-processing machines. Hybrid flow shop scheduling has been proven NP-hard, and the features of the batch-processing machines in a flow shop make the hybrid flow shop scheduling more difficult. This study proposes a multiobjective differential evolution (DE) algorithm to address these issues. First, a mathematical optimization model is formulated for the RCSP-BMs to minimize makespan and energy consumption of the batch-processing machines. Second, the multiobjective DE algorithm (MODE) is developed. A green scheduling algorithm is designed to decode the individuals to balance the makespan and energy consumption. A local search method is also presented to help the searching escape from the local optimum. Finally, experiments are carried out, and the results show that the MODE can solve the robotic cell scheduling problem with batch-processing machines effectively and efficiently. Note to Practitioners -This study focuses on the robotic cell scheduling problem with batch-processing machines (RCSP-BMs) and discusses the influence of the buffer sizes and different batching methods on scheduling. In this study, we propose a green scheduling algorithm and a multiobjective differential evolution algorithm to optimize the makespan and the energy consumption of the batch-processing machines simultaneously. In future research, we will address more complicated situations, such as many-objective optimization and many-robot scheduling.
AbstractList Robotic cell scheduling problem with batch-processing machines (RCSP-BMs) needs to determine the processing sequence and the transferring sequence simultaneously. The buffer size before and after the batch-processing machines has a big influence on the scheduling solution. A big amount of energy is always consumed by batch-processing machines. Hybrid flow shop scheduling has been proven NP-hard, and the features of the batch-processing machines in a flow shop make the hybrid flow shop scheduling more difficult. This study proposes a multiobjective differential evolution (DE) algorithm to address these issues. First, a mathematical optimization model is formulated for the RCSP-BMs to minimize makespan and energy consumption of the batch-processing machines. Second, the multiobjective DE algorithm (MODE) is developed. A green scheduling algorithm is designed to decode the individuals to balance the makespan and energy consumption. A local search method is also presented to help the searching escape from the local optimum. Finally, experiments are carried out, and the results show that the MODE can solve the robotic cell scheduling problem with batch-processing machines effectively and efficiently. Note to Practitioners —This study focuses on the robotic cell scheduling problem with batch-processing machines (RCSP-BMs) and discusses the influence of the buffer sizes and different batching methods on scheduling. In this study, we propose a green scheduling algorithm and a multiobjective differential evolution algorithm to optimize the makespan and the energy consumption of the batch-processing machines simultaneously. In future research, we will address more complicated situations, such as many-objective optimization and many-robot scheduling.
Author Wu, Xiuli
Yuan, Qi
Wang, Ling
Author_xml – sequence: 1
  givenname: Xiuli
  surname: Wu
  fullname: Wu, Xiuli
  email: wuxiuli@ustb.edu.cn
  organization: School of Mechanic Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 2
  givenname: Qi
  orcidid: 0000-0003-3288-9548
  surname: Yuan
  fullname: Yuan, Qi
  email: yuanqiustb@163.com
  organization: School of Mechanic Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 3
  givenname: Ling
  orcidid: 0000-0003-1226-2801
  surname: Wang
  fullname: Wang, Ling
  email: wangling@mail.tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
BookMark eNp9kE9r3DAQxUVIIX-aD1ByEeTs7Ui2bOm42W7aQkJLN6FHI8ujrBatlUryQvvpa7Ohhxx6mmHe-80w74KcDmFAQj4wWDAG6uPjcrNecOCw4KpWVa1OyDkTQhZlI8vTua9EIZQQZ-QipR0Ar6SCc_LnYfTZhW6HJrsD0k_OWow4ZKc9XR-CHyd1oEv_HKLL2z21IdJN8Ac3PNMfoQvZGbpC7-nGbLEf_Tz_HkPncU9_TgS91dlsi2lkMKVZfdBm6wZM78k7q33Cq9d6SZ7u1o-rL8X9t89fV8v7wnBV5qI3YBFqqUFIY8FWHa9FaXuouFJYq0k3TaWUNqzroeddWdtG9k1vVAnSqvKS3Bz3vsTwa8SU210Y4zCdbLlgUDGpZDO5mqPLxJBSRNsal_X8fI7a-ZZBOwfdzkG3c9Dta9ATyd6QL9Htdfz9X-b6yDhE_OdXAIJXdfkXZJeNhw
CODEN ITASC7
CitedBy_id crossref_primary_10_3390_en13071767
crossref_primary_10_1016_j_aei_2025_103195
crossref_primary_10_1016_j_cie_2022_108236
crossref_primary_10_1109_TASE_2023_3327792
crossref_primary_10_1016_j_cie_2021_107800
crossref_primary_10_1109_TPEL_2023_3340265
crossref_primary_10_1016_j_cie_2025_111050
crossref_primary_10_1016_j_jmsy_2023_01_011
crossref_primary_10_1109_TCYB_2024_3381084
crossref_primary_10_1016_j_ejor_2022_08_009
crossref_primary_10_1109_JIOT_2024_3354251
crossref_primary_10_1016_j_ins_2021_12_122
crossref_primary_10_1088_1742_6596_2558_1_012005
crossref_primary_10_1109_TASE_2023_3236306
crossref_primary_10_1016_j_mechmachtheory_2022_104725
crossref_primary_10_1016_j_cie_2024_110813
crossref_primary_10_1016_j_ins_2023_119141
crossref_primary_10_3390_pr11030755
crossref_primary_10_1109_TASE_2023_3244331
crossref_primary_10_1016_j_cjche_2023_09_010
crossref_primary_10_1007_s40747_020_00263_z
crossref_primary_10_1016_j_jmsy_2024_11_003
crossref_primary_10_1016_j_eswa_2022_118278
crossref_primary_10_1109_JESTPE_2023_3241623
crossref_primary_10_1016_j_asoc_2024_112230
crossref_primary_10_1016_j_engappai_2022_104735
crossref_primary_10_1016_j_swevo_2025_101929
crossref_primary_10_1038_s41598_025_93582_5
crossref_primary_10_1016_j_cor_2024_106785
crossref_primary_10_3390_pr11092737
crossref_primary_10_1016_j_swevo_2025_101922
crossref_primary_10_1109_TII_2024_3413335
crossref_primary_10_1016_j_eswa_2023_120893
crossref_primary_10_1016_j_rcim_2024_102834
crossref_primary_10_1007_s11431_021_1960_7
crossref_primary_10_1007_s12206_025_0133_5
crossref_primary_10_1155_2023_6680897
crossref_primary_10_3390_a15020056
Cites_doi 10.1016/j.ijpe.2017.09.015
10.1109/TCYB.2017.2676882
10.1016/j.jclepro.2018.02.004
10.1016/j.cor.2005.10.014
10.1016/j.ins.2015.09.053
10.1016/S0377-2217(03)00264-9
10.1080/00207543.2019.1571252
10.1016/S0377-2217(96)00272-X
10.1080/00207543.2011.565813
10.1016/j.cie.2017.08.005
10.1016/j.ejor.2017.10.045
10.1016/j.cor.2016.04.023
10.1016/j.omega.2018.01.001
10.1016/j.asr.2019.01.043
10.1016/j.cie.2010.03.004
10.1109/TASE.2010.2098867
10.1109/TASE.2016.2585679
10.1016/j.ejor.2017.01.033
10.1016/j.energy.2018.09.191
10.1016/j.cor.2018.04.009
10.1016/j.cie.2017.04.010
10.1016/j.mcm.2003.10.053
10.1016/j.ejor.2010.10.033
10.1016/j.jclepro.2017.03.223
10.1016/j.jmsy.2015.03.003
10.3182/20130619-3-RU-3018.00203
10.1016/j.cie.2018.01.005
10.1016/j.cie.2016.11.031
10.1016/j.compchemeng.2018.03.010
10.1016/j.cor.2018.07.026
10.1016/j.apm.2011.10.032
10.1016/j.jclepro.2017.10.342
10.1109/TASE.2016.2545744
10.1109/4235.996017
10.1016/j.matpr.2017.02.059
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2020.2969469
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 775
ExternalDocumentID 10_1109_TASE_2020_2969469
9005246
Genre orig-research
GrantInformation_xml – fundername: Beijing Municipal Natural Science Foundation
  grantid: L191011
  funderid: 10.13039/501100004826
– fundername: National Natural Science Fund for Distinguished Young Scholars of China
  grantid: 61525304
  funderid: 10.13039/501100001809
– fundername: National Science Foundation of China
  grantid: 51305024; 61873328
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-dc0fe068a058cf0f4b2653fd04299e69dc0c7499ac1bd0d2b36f78d7dc9308f93
IEDL.DBID RIE
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000638401500032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Mon Jun 30 05:06:32 EDT 2025
Sat Nov 29 04:12:46 EST 2025
Tue Nov 18 20:48:39 EST 2025
Wed Aug 27 02:41:08 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-dc0fe068a058cf0f4b2653fd04299e69dc0c7499ac1bd0d2b36f78d7dc9308f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3288-9548
0000-0003-1226-2801
PQID 2510418987
PQPubID 27623
PageCount 19
ParticipantIDs proquest_journals_2510418987
crossref_citationtrail_10_1109_TASE_2020_2969469
ieee_primary_9005246
crossref_primary_10_1109_TASE_2020_2969469
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref36
ref14
ref31
ref33
ref11
ref32
ref10
ref2
storn (ref30) 1995
ref1
koo (ref15) 2013; 46
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref34
  doi: 10.1016/j.ijpe.2017.09.015
– ident: ref31
  doi: 10.1109/TCYB.2017.2676882
– ident: ref28
  doi: 10.1016/j.jclepro.2018.02.004
– ident: ref14
  doi: 10.1016/j.cor.2005.10.014
– ident: ref3
  doi: 10.1016/j.ins.2015.09.053
– ident: ref20
  doi: 10.1016/S0377-2217(03)00264-9
– ident: ref27
  doi: 10.1080/00207543.2019.1571252
– ident: ref29
  doi: 10.1016/S0377-2217(96)00272-X
– ident: ref21
  doi: 10.1080/00207543.2011.565813
– ident: ref5
  doi: 10.1016/j.cie.2017.08.005
– ident: ref7
  doi: 10.1016/j.ejor.2017.10.045
– ident: ref23
  doi: 10.1016/j.cor.2016.04.023
– ident: ref32
  doi: 10.1016/j.omega.2018.01.001
– ident: ref33
  doi: 10.1016/j.asr.2019.01.043
– ident: ref11
  doi: 10.1016/j.cie.2010.03.004
– ident: ref25
  doi: 10.1109/TASE.2010.2098867
– ident: ref26
  doi: 10.1109/TASE.2016.2585679
– ident: ref1
  doi: 10.1016/j.ejor.2017.01.033
– year: 1995
  ident: ref30
  article-title: Differential evolution-A simple and efficient adaptive scheme for global optimization over continuous spaces
– ident: ref22
  doi: 10.1016/j.energy.2018.09.191
– ident: ref18
  doi: 10.1016/j.cor.2018.04.009
– ident: ref9
  doi: 10.1016/j.cie.2017.04.010
– ident: ref12
  doi: 10.1016/j.mcm.2003.10.053
– ident: ref24
  doi: 10.1016/j.ejor.2010.10.033
– ident: ref17
  doi: 10.1016/j.jclepro.2017.03.223
– ident: ref6
  doi: 10.1016/j.jmsy.2015.03.003
– volume: 46
  start-page: 1690
  year: 2013
  ident: ref15
  article-title: A review on control strategies of batch processing machines in semiconductor manufacturing
  publication-title: IFAC Proc Volumes
  doi: 10.3182/20130619-3-RU-3018.00203
– ident: ref13
  doi: 10.1016/j.cie.2018.01.005
– ident: ref16
  doi: 10.1016/j.cie.2016.11.031
– ident: ref19
  doi: 10.1016/j.compchemeng.2018.03.010
– ident: ref10
  doi: 10.1016/j.cor.2018.07.026
– ident: ref2
  doi: 10.1016/j.apm.2011.10.032
– ident: ref36
  doi: 10.1016/j.jclepro.2017.10.342
– ident: ref8
  doi: 10.1109/TASE.2016.2545744
– ident: ref35
  doi: 10.1109/4235.996017
– ident: ref4
  doi: 10.1016/j.matpr.2017.02.059
SSID ssj0024890
Score 2.4607406
Snippet Robotic cell scheduling problem with batch-processing machines (RCSP-BMs) needs to determine the processing sequence and the transferring sequence...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 757
SubjectTerms Algorithms
Batch-processing scheduling
buffer size
Buffers
Collision avoidance
Energy consumption
Evolutionary algorithms
Evolutionary computation
green scheduling algorithm
hybrid flow shop scheduling
Job shop scheduling
multiobjective differential evolution (DE) algorithm
Multiple objective analysis
Optimization
robotic cell
Robotics
Robots
Scheduling
Scheduling algorithms
smart manufacturing system
Title Multiobjective Differential Evolution Algorithm for Solving Robotic Cell Scheduling Problem With Batch-Processing Machines
URI https://ieeexplore.ieee.org/document/9005246
https://www.proquest.com/docview/2510418987
Volume 18
WOSCitedRecordID wos000638401500032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Lb9MwGP_UTRzGYTwKoqMgHziheXMcJ7aPpXTiQlXRovUWJX5snUIz9bHD_npsxy2VhpC4RbK_KMrP39PfA-ATyQgtWaYwd74GZpQpXGbSYsZTpVlVKqNtGDbBx2Mxn8tJB873tTDGmJB8Zi78Y7jL143a-lDZpfRBTJYfwRHnvK3V-tNXT4R4ircIcCazLN5gJkRezgbTkfMEKbmgMpfM5zYf6KAwVOWJJA7q5erF_33YSziNZiQatLi_go5ZvobnB80Fu_AYamub6q4VaehrHIXiWLpGo4d45NCgvmlWi83tL-TMVzRtah9hQD-aqnGvRkNT12jqgNU-Y_0GTdr5M-jaUaAvTozf4lhq4Fe_h8xMs34DP69Gs-E3HCctYOXU_QZrRawhuShJJpQlllU0z1Krg7YyuXTrijvfqFRJpYmmVZpbLjTXSqZEWJm-heNlszTvAGleGmEtUyqnzDF4mVRJYqhmjFNtpeoB2f37QsU25H4aRl0Ed4TIwsNVeLiKCFcPPu9J7tseHP_a3PX47DdGaHrQ3wFcRC5dF862IywRUvCzv1O9hxPqc1hCpk4fjjerrfkAz9TDZrFefQwH8Df1gtq_
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTxQxFH9BNFEPgIJxBaQHTsZCp9NO2-MCSzDAhrhr5DaZ6Qdgxh2zu3Dwr7ftlJUEYuJtkvZNJvPr--z7ANglnNCKcY2F9zUwo0zjiiuHmci1YXWlrXFx2IQYDuXlpbpYgs-LWhhrbUw-s3vhMd7lm1bfhlDZvgpBTFY8g-ecMZp11Vp_O-vJGFEJNgHmivN0h5kRtT_ujwbeF6Rkj6pCsZDd_EALxbEqj2RxVDDHq__3aWuwkgxJ1O-QfwNLdvIWXj9oL7gOv2N1bVv_6IQaOkrDUDxTN2hwlw4d6jdX7fRmfv0TeQMWjdomxBjQ17Zu_avRoW0aNPLQmpCzfoUuugk06LunQAdekF_jVGwQVs9jbqadbcC348H48ASnWQtYe4U_x0YTZ0khK8KldsSxmhY8dybqK1sov66F944qndWGGFrnhRPSCKNVTqRT-TtYnrQT-x6QEZWVzjGtC8o8i1dZnWWWGsYENU7pHpD7f1_q1Ig8zMNoyuiQEFUGuMoAV5ng6sGnBcmvrgvHvzavB3wWGxM0Pdi6B7hMfDorvXVHWCaVFB-eptqBlyfj87Py7MvwdBNe0ZDREvN2tmB5Pr212_BC381vZtOP8TD-AXqv3gY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiobjective+Differential+Evolution+Algorithm+for+Solving+Robotic+Cell+Scheduling+Problem+With+Batch-Processing+Machines&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Wu%2C+Xiuli&rft.au=Yuan%2C+Qi&rft.au=Wang%2C+Ling&rft.date=2021-04-01&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=18&rft.issue=2&rft.spage=757&rft.epage=775&rft_id=info:doi/10.1109%2FTASE.2020.2969469&rft.externalDocID=9005246
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon