Multiobjective Differential Evolution Algorithm for Solving Robotic Cell Scheduling Problem With Batch-Processing Machines
Robotic cell scheduling problem with batch-processing machines (RCSP-BMs) needs to determine the processing sequence and the transferring sequence simultaneously. The buffer size before and after the batch-processing machines has a big influence on the scheduling solution. A big amount of energy is...
Uloženo v:
| Vydáno v: | IEEE transactions on automation science and engineering Ročník 18; číslo 2; s. 757 - 775 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1545-5955, 1558-3783 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Robotic cell scheduling problem with batch-processing machines (RCSP-BMs) needs to determine the processing sequence and the transferring sequence simultaneously. The buffer size before and after the batch-processing machines has a big influence on the scheduling solution. A big amount of energy is always consumed by batch-processing machines. Hybrid flow shop scheduling has been proven NP-hard, and the features of the batch-processing machines in a flow shop make the hybrid flow shop scheduling more difficult. This study proposes a multiobjective differential evolution (DE) algorithm to address these issues. First, a mathematical optimization model is formulated for the RCSP-BMs to minimize makespan and energy consumption of the batch-processing machines. Second, the multiobjective DE algorithm (MODE) is developed. A green scheduling algorithm is designed to decode the individuals to balance the makespan and energy consumption. A local search method is also presented to help the searching escape from the local optimum. Finally, experiments are carried out, and the results show that the MODE can solve the robotic cell scheduling problem with batch-processing machines effectively and efficiently. Note to Practitioners -This study focuses on the robotic cell scheduling problem with batch-processing machines (RCSP-BMs) and discusses the influence of the buffer sizes and different batching methods on scheduling. In this study, we propose a green scheduling algorithm and a multiobjective differential evolution algorithm to optimize the makespan and the energy consumption of the batch-processing machines simultaneously. In future research, we will address more complicated situations, such as many-objective optimization and many-robot scheduling. |
|---|---|
| AbstractList | Robotic cell scheduling problem with batch-processing machines (RCSP-BMs) needs to determine the processing sequence and the transferring sequence simultaneously. The buffer size before and after the batch-processing machines has a big influence on the scheduling solution. A big amount of energy is always consumed by batch-processing machines. Hybrid flow shop scheduling has been proven NP-hard, and the features of the batch-processing machines in a flow shop make the hybrid flow shop scheduling more difficult. This study proposes a multiobjective differential evolution (DE) algorithm to address these issues. First, a mathematical optimization model is formulated for the RCSP-BMs to minimize makespan and energy consumption of the batch-processing machines. Second, the multiobjective DE algorithm (MODE) is developed. A green scheduling algorithm is designed to decode the individuals to balance the makespan and energy consumption. A local search method is also presented to help the searching escape from the local optimum. Finally, experiments are carried out, and the results show that the MODE can solve the robotic cell scheduling problem with batch-processing machines effectively and efficiently. Note to Practitioners —This study focuses on the robotic cell scheduling problem with batch-processing machines (RCSP-BMs) and discusses the influence of the buffer sizes and different batching methods on scheduling. In this study, we propose a green scheduling algorithm and a multiobjective differential evolution algorithm to optimize the makespan and the energy consumption of the batch-processing machines simultaneously. In future research, we will address more complicated situations, such as many-objective optimization and many-robot scheduling. |
| Author | Wu, Xiuli Yuan, Qi Wang, Ling |
| Author_xml | – sequence: 1 givenname: Xiuli surname: Wu fullname: Wu, Xiuli email: wuxiuli@ustb.edu.cn organization: School of Mechanic Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 2 givenname: Qi orcidid: 0000-0003-3288-9548 surname: Yuan fullname: Yuan, Qi email: yuanqiustb@163.com organization: School of Mechanic Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 3 givenname: Ling orcidid: 0000-0003-1226-2801 surname: Wang fullname: Wang, Ling email: wangling@mail.tsinghua.edu.cn organization: Department of Automation, Tsinghua University, Beijing, China |
| BookMark | eNp9kE9r3DAQxUVIIX-aD1ByEeTs7Ui2bOm42W7aQkJLN6FHI8ujrBatlUryQvvpa7Ohhxx6mmHe-80w74KcDmFAQj4wWDAG6uPjcrNecOCw4KpWVa1OyDkTQhZlI8vTua9EIZQQZ-QipR0Ar6SCc_LnYfTZhW6HJrsD0k_OWow4ZKc9XR-CHyd1oEv_HKLL2z21IdJN8Ac3PNMfoQvZGbpC7-nGbLEf_Tz_HkPncU9_TgS91dlsi2lkMKVZfdBm6wZM78k7q33Cq9d6SZ7u1o-rL8X9t89fV8v7wnBV5qI3YBFqqUFIY8FWHa9FaXuouFJYq0k3TaWUNqzroeddWdtG9k1vVAnSqvKS3Bz3vsTwa8SU210Y4zCdbLlgUDGpZDO5mqPLxJBSRNsal_X8fI7a-ZZBOwfdzkG3c9Dta9ATyd6QL9Htdfz9X-b6yDhE_OdXAIJXdfkXZJeNhw |
| CODEN | ITASC7 |
| CitedBy_id | crossref_primary_10_3390_en13071767 crossref_primary_10_1016_j_aei_2025_103195 crossref_primary_10_1016_j_cie_2022_108236 crossref_primary_10_1109_TASE_2023_3327792 crossref_primary_10_1016_j_cie_2021_107800 crossref_primary_10_1109_TPEL_2023_3340265 crossref_primary_10_1016_j_cie_2025_111050 crossref_primary_10_1016_j_jmsy_2023_01_011 crossref_primary_10_1109_TCYB_2024_3381084 crossref_primary_10_1016_j_ejor_2022_08_009 crossref_primary_10_1109_JIOT_2024_3354251 crossref_primary_10_1016_j_ins_2021_12_122 crossref_primary_10_1088_1742_6596_2558_1_012005 crossref_primary_10_1109_TASE_2023_3236306 crossref_primary_10_1016_j_mechmachtheory_2022_104725 crossref_primary_10_1016_j_cie_2024_110813 crossref_primary_10_1016_j_ins_2023_119141 crossref_primary_10_3390_pr11030755 crossref_primary_10_1109_TASE_2023_3244331 crossref_primary_10_1016_j_cjche_2023_09_010 crossref_primary_10_1007_s40747_020_00263_z crossref_primary_10_1016_j_jmsy_2024_11_003 crossref_primary_10_1016_j_eswa_2022_118278 crossref_primary_10_1109_JESTPE_2023_3241623 crossref_primary_10_1016_j_asoc_2024_112230 crossref_primary_10_1016_j_engappai_2022_104735 crossref_primary_10_1016_j_swevo_2025_101929 crossref_primary_10_1038_s41598_025_93582_5 crossref_primary_10_1016_j_cor_2024_106785 crossref_primary_10_3390_pr11092737 crossref_primary_10_1016_j_swevo_2025_101922 crossref_primary_10_1109_TII_2024_3413335 crossref_primary_10_1016_j_eswa_2023_120893 crossref_primary_10_1016_j_rcim_2024_102834 crossref_primary_10_1007_s11431_021_1960_7 crossref_primary_10_1007_s12206_025_0133_5 crossref_primary_10_1155_2023_6680897 crossref_primary_10_3390_a15020056 |
| Cites_doi | 10.1016/j.ijpe.2017.09.015 10.1109/TCYB.2017.2676882 10.1016/j.jclepro.2018.02.004 10.1016/j.cor.2005.10.014 10.1016/j.ins.2015.09.053 10.1016/S0377-2217(03)00264-9 10.1080/00207543.2019.1571252 10.1016/S0377-2217(96)00272-X 10.1080/00207543.2011.565813 10.1016/j.cie.2017.08.005 10.1016/j.ejor.2017.10.045 10.1016/j.cor.2016.04.023 10.1016/j.omega.2018.01.001 10.1016/j.asr.2019.01.043 10.1016/j.cie.2010.03.004 10.1109/TASE.2010.2098867 10.1109/TASE.2016.2585679 10.1016/j.ejor.2017.01.033 10.1016/j.energy.2018.09.191 10.1016/j.cor.2018.04.009 10.1016/j.cie.2017.04.010 10.1016/j.mcm.2003.10.053 10.1016/j.ejor.2010.10.033 10.1016/j.jclepro.2017.03.223 10.1016/j.jmsy.2015.03.003 10.3182/20130619-3-RU-3018.00203 10.1016/j.cie.2018.01.005 10.1016/j.cie.2016.11.031 10.1016/j.compchemeng.2018.03.010 10.1016/j.cor.2018.07.026 10.1016/j.apm.2011.10.032 10.1016/j.jclepro.2017.10.342 10.1109/TASE.2016.2545744 10.1109/4235.996017 10.1016/j.matpr.2017.02.059 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TASE.2020.2969469 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3783 |
| EndPage | 775 |
| ExternalDocumentID | 10_1109_TASE_2020_2969469 9005246 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Beijing Municipal Natural Science Foundation grantid: L191011 funderid: 10.13039/501100004826 – fundername: National Natural Science Fund for Distinguished Young Scholars of China grantid: 61525304 funderid: 10.13039/501100001809 – fundername: National Science Foundation of China grantid: 51305024; 61873328 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-dc0fe068a058cf0f4b2653fd04299e69dc0c7499ac1bd0d2b36f78d7dc9308f93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000638401500032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5955 |
| IngestDate | Mon Jun 30 05:06:32 EDT 2025 Sat Nov 29 04:12:46 EST 2025 Tue Nov 18 20:48:39 EST 2025 Wed Aug 27 02:41:08 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-dc0fe068a058cf0f4b2653fd04299e69dc0c7499ac1bd0d2b36f78d7dc9308f93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3288-9548 0000-0003-1226-2801 |
| PQID | 2510418987 |
| PQPubID | 27623 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2510418987 crossref_citationtrail_10_1109_TASE_2020_2969469 ieee_primary_9005246 crossref_primary_10_1109_TASE_2020_2969469 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-01 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on automation science and engineering |
| PublicationTitleAbbrev | TASE |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref36 ref14 ref31 ref33 ref11 ref32 ref10 ref2 storn (ref30) 1995 ref1 koo (ref15) 2013; 46 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref34 doi: 10.1016/j.ijpe.2017.09.015 – ident: ref31 doi: 10.1109/TCYB.2017.2676882 – ident: ref28 doi: 10.1016/j.jclepro.2018.02.004 – ident: ref14 doi: 10.1016/j.cor.2005.10.014 – ident: ref3 doi: 10.1016/j.ins.2015.09.053 – ident: ref20 doi: 10.1016/S0377-2217(03)00264-9 – ident: ref27 doi: 10.1080/00207543.2019.1571252 – ident: ref29 doi: 10.1016/S0377-2217(96)00272-X – ident: ref21 doi: 10.1080/00207543.2011.565813 – ident: ref5 doi: 10.1016/j.cie.2017.08.005 – ident: ref7 doi: 10.1016/j.ejor.2017.10.045 – ident: ref23 doi: 10.1016/j.cor.2016.04.023 – ident: ref32 doi: 10.1016/j.omega.2018.01.001 – ident: ref33 doi: 10.1016/j.asr.2019.01.043 – ident: ref11 doi: 10.1016/j.cie.2010.03.004 – ident: ref25 doi: 10.1109/TASE.2010.2098867 – ident: ref26 doi: 10.1109/TASE.2016.2585679 – ident: ref1 doi: 10.1016/j.ejor.2017.01.033 – year: 1995 ident: ref30 article-title: Differential evolution-A simple and efficient adaptive scheme for global optimization over continuous spaces – ident: ref22 doi: 10.1016/j.energy.2018.09.191 – ident: ref18 doi: 10.1016/j.cor.2018.04.009 – ident: ref9 doi: 10.1016/j.cie.2017.04.010 – ident: ref12 doi: 10.1016/j.mcm.2003.10.053 – ident: ref24 doi: 10.1016/j.ejor.2010.10.033 – ident: ref17 doi: 10.1016/j.jclepro.2017.03.223 – ident: ref6 doi: 10.1016/j.jmsy.2015.03.003 – volume: 46 start-page: 1690 year: 2013 ident: ref15 article-title: A review on control strategies of batch processing machines in semiconductor manufacturing publication-title: IFAC Proc Volumes doi: 10.3182/20130619-3-RU-3018.00203 – ident: ref13 doi: 10.1016/j.cie.2018.01.005 – ident: ref16 doi: 10.1016/j.cie.2016.11.031 – ident: ref19 doi: 10.1016/j.compchemeng.2018.03.010 – ident: ref10 doi: 10.1016/j.cor.2018.07.026 – ident: ref2 doi: 10.1016/j.apm.2011.10.032 – ident: ref36 doi: 10.1016/j.jclepro.2017.10.342 – ident: ref8 doi: 10.1109/TASE.2016.2545744 – ident: ref35 doi: 10.1109/4235.996017 – ident: ref4 doi: 10.1016/j.matpr.2017.02.059 |
| SSID | ssj0024890 |
| Score | 2.4607406 |
| Snippet | Robotic cell scheduling problem with batch-processing machines (RCSP-BMs) needs to determine the processing sequence and the transferring sequence... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 757 |
| SubjectTerms | Algorithms Batch-processing scheduling buffer size Buffers Collision avoidance Energy consumption Evolutionary algorithms Evolutionary computation green scheduling algorithm hybrid flow shop scheduling Job shop scheduling multiobjective differential evolution (DE) algorithm Multiple objective analysis Optimization robotic cell Robotics Robots Scheduling Scheduling algorithms smart manufacturing system |
| Title | Multiobjective Differential Evolution Algorithm for Solving Robotic Cell Scheduling Problem With Batch-Processing Machines |
| URI | https://ieeexplore.ieee.org/document/9005246 https://www.proquest.com/docview/2510418987 |
| Volume | 18 |
| WOSCitedRecordID | wos000638401500032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-3783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024890 issn: 1545-5955 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-yMGTWJ3tMzmuuuJFEVfRW2kedZW6ld3Vg7_eSRpXQRG8FZIppV-Sb2YyD4A92nttYhYZxCUaMlAQgwK1CTSRMUriSxSlazaRXV7y-3txNQUHk1wYY4wLPjOH9tHd5etavVpX2ZGwTsw4nYbpLMuaXK2vunrc-VOsRhAkIkn8DWYbxdFNp9clSzDEw1CkIraxzd84yDVV-XESO3o5W_zfhy3BglcjWafBfRmmzGAF5r8VF1yFd5dbW8un5khjp74VCm3pinXf_JJjneqhHj6O-8-M1FfWqyvrYWDXtazp1ezEVBXrEbDaRqw_sKum_wy7Iwl2TMd4P_CpBnb0wkVmmtEa3J51b07OA99pIVBE9-NAKywNprzAhKsSy1iGaRKV2rGVSQWNq4xso0K1pUYdyigtM64zrUSEvBTROswM6oHZAEbaeiF1IkmTimNXHS8qFIrQiDQ0MTctwM9_nytfhtx2w6hyZ46gyC1cuYUr93C1YH8i8tLU4Phr8qrFZzLRQ9OC7U-Ac79LRznpdhi3ueDZ5u9SWzAX2hgWF6mzDTPj4avZgVn1Nn4cDXfdAvwA-CbZEg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xqAQcaMtDXaCtDz0hApO3fVxgEVVhhbqL4BbFjwBVuql2Fw78esaO2SK1QuIWyZ4oymf7mxnPA-Ab7b2QmEUGSYWGDBTEoERtAk1kjJL4EkXlmk3k_T6_vhYXc7A3y4UxxrjgM7NvH91dvm7UvXWVHQjrxEyyeVhMkyQK22ytv5X1uPOoWJ0gSEWa-jvMEMXBsDvokS0Y4X4kMpHY6OYXLOTaqvxzFjuCOXn_tk_7AKtekWTdFvmPMGdGa7DyorzgOjy67NpG_moPNXbsm6HQpq5Z78EvOtatb5rx3fT2NyMFlg2a2voY2M9GNvRqdmTqmg0IWm1j1m_YRduBhl2RBDukg_w28MkGdvTcxWaayQZcnvSGR6eB77UQKCL8aaAVVgYzXmLKVYVVIqMsjSvt-MpkgsZVTtZRqUKpUUcyzqqc61wrESOvRLwJC6NmZD4BI329lDqVpEsRSrY-XlwqFJERWWQSbjqAz_--UL4Que2HURfOIEFRWLgKC1fh4erA7kzkT1uF47XJ6xaf2UQPTQd2ngEu_D6dFKTdYRJywfOt_0t9haXT4flZcfa9_2MbliMb0eLidnZgYTq-N5_hnXqY3k3GX9xifAJnpdxZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiobjective+Differential+Evolution+Algorithm+for+Solving+Robotic+Cell+Scheduling+Problem+With+Batch-Processing+Machines&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Wu%2C+Xiuli&rft.au=Yuan%2C+Qi&rft.au=Wang%2C+Ling&rft.date=2021-04-01&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=18&rft.issue=2&rft.spage=757&rft.epage=775&rft_id=info:doi/10.1109%2FTASE.2020.2969469&rft.externalDocID=9005246 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |