Enumerating Maximum Cliques in Massive Graphs

Cliques refer to subgraphs in an undirected graph such that vertices in each subgraph are pairwise adjacent. The maximum clique problem, to find the clique with most vertices in a given graph, has been extensively studied. Besides its theoretical value as an NP-hard problem, the maximum clique probl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering Vol. 34; no. 9; pp. 4215 - 4230
Main Authors: Lu, Can, Yu, Jeffrey Xu, Wei, Hao, Zhang, Yikai
Format: Journal Article
Language:English
Published: New York IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1041-4347, 1558-2191
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Cliques refer to subgraphs in an undirected graph such that vertices in each subgraph are pairwise adjacent. The maximum clique problem, to find the clique with most vertices in a given graph, has been extensively studied. Besides its theoretical value as an NP-hard problem, the maximum clique problem is known to have direct applications in various fields, such as community search in social networks and social media, team formation in expert networks, gene expression and motif discovery in bioinformatics and anomaly detection in complex networks, revealing the structure and function of networks. However, algorithms designed for the maximum clique problem are expensive to deal with real-world networks. In this paper, we first devise a randomized algorithm for the maximum clique problem. Different from previous algorithms that search from each vertex one after another, our approach RMC , for the randomized maximum clique problem, employs a binary search while maintaining a lower bound <inline-formula><tex-math notation="LaTeX">\underline{\omega _c}</tex-math> <mml:math><mml:munder><mml:msub><mml:mi>ω</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>̲</mml:mo></mml:munder></mml:math><inline-graphic xlink:href="lu-ieq1-3036013.gif"/> </inline-formula> and an upper bound <inline-formula><tex-math notation="LaTeX">\overline{\omega _c}</tex-math> <mml:math><mml:mover><mml:msub><mml:mi>ω</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>¯</mml:mo></mml:mover></mml:math><inline-graphic xlink:href="lu-ieq2-3036013.gif"/> </inline-formula> of <inline-formula><tex-math notation="LaTeX">\omega (G)</tex-math> <mml:math><mml:mrow><mml:mi>ω</mml:mi><mml:mo>(</mml:mo><mml:mi>G</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="lu-ieq3-3036013.gif"/> </inline-formula>. In each iteration, RMC attempts to find a <inline-formula><tex-math notation="LaTeX">\omega _t</tex-math> <mml:math><mml:msub><mml:mi>ω</mml:mi><mml:mi>t</mml:mi></mml:msub></mml:math><inline-graphic xlink:href="lu-ieq4-3036013.gif"/> </inline-formula>-clique where <inline-formula><tex-math notation="LaTeX">\omega _t=\lfloor (\underline{\omega _c}+\overline{\omega _c})/2\rfloor</tex-math> <mml:math><mml:mrow><mml:msub><mml:mi>ω</mml:mi><mml:mi>t</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mo>⌊</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:munder><mml:msub><mml:mi>ω</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>̲</mml:mo></mml:munder><mml:mo>+</mml:mo><mml:mover><mml:msub><mml:mi>ω</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>¯</mml:mo></mml:mover><mml:mo>)</mml:mo></mml:mrow><mml:mo>/</mml:mo><mml:mn>2</mml:mn><mml:mo>⌋</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="lu-ieq5-3036013.gif"/> </inline-formula>. As finding <inline-formula><tex-math notation="LaTeX">\omega _t</tex-math> <mml:math><mml:msub><mml:mi>ω</mml:mi><mml:mi>t</mml:mi></mml:msub></mml:math><inline-graphic xlink:href="lu-ieq6-3036013.gif"/> </inline-formula> in each iteration is NP-complete, we extract a seed set <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq7-3036013.gif"/> </inline-formula> such that the problem of finding a <inline-formula><tex-math notation="LaTeX">\omega _t</tex-math> <mml:math><mml:msub><mml:mi>ω</mml:mi><mml:mi>t</mml:mi></mml:msub></mml:math><inline-graphic xlink:href="lu-ieq8-3036013.gif"/> </inline-formula>-clique in <inline-formula><tex-math notation="LaTeX">G</tex-math> <mml:math><mml:mi>G</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq9-3036013.gif"/> </inline-formula> is equivalent to finding a <inline-formula><tex-math notation="LaTeX">\omega _t</tex-math> <mml:math><mml:msub><mml:mi>ω</mml:mi><mml:mi>t</mml:mi></mml:msub></mml:math><inline-graphic xlink:href="lu-ieq10-3036013.gif"/> </inline-formula>-clique in <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq11-3036013.gif"/> </inline-formula> with probability guarantees (<inline-formula><tex-math notation="LaTeX">\geq</tex-math> <mml:math><mml:mo>≥</mml:mo></mml:math><inline-graphic xlink:href="lu-ieq12-3036013.gif"/> </inline-formula><inline-formula><tex-math notation="LaTeX"> 1-n^{-c}</tex-math> <mml:math><mml:mrow><mml:mn>1</mml:mn><mml:mo>-</mml:mo><mml:msup><mml:mi>n</mml:mi><mml:mrow><mml:mo>-</mml:mo><mml:mi>c</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href="lu-ieq13-3036013.gif"/> </inline-formula>). We propose a novel iterative algorithm to determine the maximum clique by searching a <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq14-3036013.gif"/> </inline-formula>-clique in <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq15-3036013.gif"/> </inline-formula> starting from <inline-formula><tex-math notation="LaTeX">k=\underline{\omega _c}+1</tex-math> <mml:math><mml:mrow><mml:mi>k</mml:mi><mml:mo>=</mml:mo><mml:munder><mml:msub><mml:mi>ω</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>̲</mml:mo></mml:munder><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="lu-ieq16-3036013.gif"/> </inline-formula> until <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq17-3036013.gif"/> </inline-formula> becomes <inline-formula><tex-math notation="LaTeX">\lbrace \rbrace</tex-math> <mml:math><mml:mrow><mml:mo>{</mml:mo><mml:mo>}</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="lu-ieq18-3036013.gif"/> </inline-formula>, when more iterations benefit marginally. Due to the potential inconsistency of maximum clique algorithms, we study the problem of maximum clique enumeration and propose an efficient algorithm RMCE to enumerate all maximum cliques in a given graph. As confirmed by the experiments, both RMC and RMCE are much more efficient and robust than previous solutions, RMC can always find the exact maximum clique, and RMCE can always enumerate all maximum cliques in a given graph.
AbstractList Cliques refer to subgraphs in an undirected graph such that vertices in each subgraph are pairwise adjacent. The maximum clique problem, to find the clique with most vertices in a given graph, has been extensively studied. Besides its theoretical value as an NP-hard problem, the maximum clique problem is known to have direct applications in various fields, such as community search in social networks and social media, team formation in expert networks, gene expression and motif discovery in bioinformatics and anomaly detection in complex networks, revealing the structure and function of networks. However, algorithms designed for the maximum clique problem are expensive to deal with real-world networks. In this paper, we first devise a randomized algorithm for the maximum clique problem. Different from previous algorithms that search from each vertex one after another, our approach RMC , for the randomized maximum clique problem, employs a binary search while maintaining a lower bound [Formula Omitted] and an upper bound [Formula Omitted] of [Formula Omitted]. In each iteration, RMC attempts to find a [Formula Omitted]-clique where [Formula Omitted]. As finding [Formula Omitted] in each iteration is NP-complete, we extract a seed set [Formula Omitted] such that the problem of finding a [Formula Omitted]-clique in [Formula Omitted] is equivalent to finding a [Formula Omitted]-clique in [Formula Omitted] with probability guarantees ([Formula Omitted][Formula Omitted]). We propose a novel iterative algorithm to determine the maximum clique by searching a [Formula Omitted]-clique in [Formula Omitted] starting from [Formula Omitted] until [Formula Omitted] becomes [Formula Omitted], when more iterations benefit marginally. Due to the potential inconsistency of maximum clique algorithms, we study the problem of maximum clique enumeration and propose an efficient algorithm RMCE to enumerate all maximum cliques in a given graph. As confirmed by the experiments, both RMC and RMCE are much more efficient and robust than previous solutions, RMC can always find the exact maximum clique, and RMCE can always enumerate all maximum cliques in a given graph.
Cliques refer to subgraphs in an undirected graph such that vertices in each subgraph are pairwise adjacent. The maximum clique problem, to find the clique with most vertices in a given graph, has been extensively studied. Besides its theoretical value as an NP-hard problem, the maximum clique problem is known to have direct applications in various fields, such as community search in social networks and social media, team formation in expert networks, gene expression and motif discovery in bioinformatics and anomaly detection in complex networks, revealing the structure and function of networks. However, algorithms designed for the maximum clique problem are expensive to deal with real-world networks. In this paper, we first devise a randomized algorithm for the maximum clique problem. Different from previous algorithms that search from each vertex one after another, our approach RMC , for the randomized maximum clique problem, employs a binary search while maintaining a lower bound <inline-formula><tex-math notation="LaTeX">\underline{\omega _c}</tex-math> <mml:math><mml:munder><mml:msub><mml:mi>ω</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>̲</mml:mo></mml:munder></mml:math><inline-graphic xlink:href="lu-ieq1-3036013.gif"/> </inline-formula> and an upper bound <inline-formula><tex-math notation="LaTeX">\overline{\omega _c}</tex-math> <mml:math><mml:mover><mml:msub><mml:mi>ω</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>¯</mml:mo></mml:mover></mml:math><inline-graphic xlink:href="lu-ieq2-3036013.gif"/> </inline-formula> of <inline-formula><tex-math notation="LaTeX">\omega (G)</tex-math> <mml:math><mml:mrow><mml:mi>ω</mml:mi><mml:mo>(</mml:mo><mml:mi>G</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="lu-ieq3-3036013.gif"/> </inline-formula>. In each iteration, RMC attempts to find a <inline-formula><tex-math notation="LaTeX">\omega _t</tex-math> <mml:math><mml:msub><mml:mi>ω</mml:mi><mml:mi>t</mml:mi></mml:msub></mml:math><inline-graphic xlink:href="lu-ieq4-3036013.gif"/> </inline-formula>-clique where <inline-formula><tex-math notation="LaTeX">\omega _t=\lfloor (\underline{\omega _c}+\overline{\omega _c})/2\rfloor</tex-math> <mml:math><mml:mrow><mml:msub><mml:mi>ω</mml:mi><mml:mi>t</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mo>⌊</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:munder><mml:msub><mml:mi>ω</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>̲</mml:mo></mml:munder><mml:mo>+</mml:mo><mml:mover><mml:msub><mml:mi>ω</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>¯</mml:mo></mml:mover><mml:mo>)</mml:mo></mml:mrow><mml:mo>/</mml:mo><mml:mn>2</mml:mn><mml:mo>⌋</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="lu-ieq5-3036013.gif"/> </inline-formula>. As finding <inline-formula><tex-math notation="LaTeX">\omega _t</tex-math> <mml:math><mml:msub><mml:mi>ω</mml:mi><mml:mi>t</mml:mi></mml:msub></mml:math><inline-graphic xlink:href="lu-ieq6-3036013.gif"/> </inline-formula> in each iteration is NP-complete, we extract a seed set <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq7-3036013.gif"/> </inline-formula> such that the problem of finding a <inline-formula><tex-math notation="LaTeX">\omega _t</tex-math> <mml:math><mml:msub><mml:mi>ω</mml:mi><mml:mi>t</mml:mi></mml:msub></mml:math><inline-graphic xlink:href="lu-ieq8-3036013.gif"/> </inline-formula>-clique in <inline-formula><tex-math notation="LaTeX">G</tex-math> <mml:math><mml:mi>G</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq9-3036013.gif"/> </inline-formula> is equivalent to finding a <inline-formula><tex-math notation="LaTeX">\omega _t</tex-math> <mml:math><mml:msub><mml:mi>ω</mml:mi><mml:mi>t</mml:mi></mml:msub></mml:math><inline-graphic xlink:href="lu-ieq10-3036013.gif"/> </inline-formula>-clique in <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq11-3036013.gif"/> </inline-formula> with probability guarantees (<inline-formula><tex-math notation="LaTeX">\geq</tex-math> <mml:math><mml:mo>≥</mml:mo></mml:math><inline-graphic xlink:href="lu-ieq12-3036013.gif"/> </inline-formula><inline-formula><tex-math notation="LaTeX"> 1-n^{-c}</tex-math> <mml:math><mml:mrow><mml:mn>1</mml:mn><mml:mo>-</mml:mo><mml:msup><mml:mi>n</mml:mi><mml:mrow><mml:mo>-</mml:mo><mml:mi>c</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href="lu-ieq13-3036013.gif"/> </inline-formula>). We propose a novel iterative algorithm to determine the maximum clique by searching a <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq14-3036013.gif"/> </inline-formula>-clique in <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq15-3036013.gif"/> </inline-formula> starting from <inline-formula><tex-math notation="LaTeX">k=\underline{\omega _c}+1</tex-math> <mml:math><mml:mrow><mml:mi>k</mml:mi><mml:mo>=</mml:mo><mml:munder><mml:msub><mml:mi>ω</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>̲</mml:mo></mml:munder><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="lu-ieq16-3036013.gif"/> </inline-formula> until <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq17-3036013.gif"/> </inline-formula> becomes <inline-formula><tex-math notation="LaTeX">\lbrace \rbrace</tex-math> <mml:math><mml:mrow><mml:mo>{</mml:mo><mml:mo>}</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="lu-ieq18-3036013.gif"/> </inline-formula>, when more iterations benefit marginally. Due to the potential inconsistency of maximum clique algorithms, we study the problem of maximum clique enumeration and propose an efficient algorithm RMCE to enumerate all maximum cliques in a given graph. As confirmed by the experiments, both RMC and RMCE are much more efficient and robust than previous solutions, RMC can always find the exact maximum clique, and RMCE can always enumerate all maximum cliques in a given graph.
Author Wei, Hao
Yu, Jeffrey Xu
Zhang, Yikai
Lu, Can
Author_xml – sequence: 1
  givenname: Can
  orcidid: 0000-0002-7334-2875
  surname: Lu
  fullname: Lu, Can
  email: lucan@se.cuhk.edu.hk
  organization: Chinese University of Hong Kong, Hong Kong, China
– sequence: 2
  givenname: Jeffrey Xu
  orcidid: 0000-0002-9738-827X
  surname: Yu
  fullname: Yu, Jeffrey Xu
  email: yu@se.cuhk.edu.hk
  organization: Chinese University of Hong Kong, Hong Kong, China
– sequence: 3
  givenname: Hao
  orcidid: 0000-0003-0747-9889
  surname: Wei
  fullname: Wei, Hao
  email: hwei@se.cuhk.edu.hk
  organization: Chinese University of Hong Kong, Hong Kong, China
– sequence: 4
  givenname: Yikai
  orcidid: 0000-0003-4924-7824
  surname: Zhang
  fullname: Zhang, Yikai
  email: ykzhang@se.cuhk.edu.hk
  organization: Chinese University of Hong Kong, Hong Kong, China
BookMark eNp9kE9PwzAMxSM0JLbBB0BcKnHusJM0f45ojIEY4jLOUdOmkGlrR9Ii-Pa02sSBAydb1vv52W9CRnVTO0IuEWaIoG_WT3eLGQUKMwZMALITMsYsUylFjaO-B44pZ1yekUmMGwBQUuGYpIu627mQt75-S57zL7_rdsl86z86FxNf96MY_adLliHfv8dzclrl2-gujnVKXu8X6_lDunpZPs5vV2lBNWvT0nJbYM4lU1xIB5WkrlK0lGitBYG9OfKsKB1XQoOVmRNOl9YVGpworWRTcn3Yuw_NcElrNk0X6t7SUKGVQoFC9Sp5UBWhiTG4yhS-7T9p6jbkfmsQzJCNGbIxQzbmmE1P4h9yH_wuD9__MlcHxjvnfvWaZiBAsh_sSG_k
CODEN ITKEEH
CitedBy_id crossref_primary_10_1016_j_cosrev_2025_100784
crossref_primary_10_1016_j_eswa_2023_120353
crossref_primary_10_1103_PhysRevE_111_054103
crossref_primary_10_1145_3748512
Cites_doi 10.1186/1471-2105-13-S10-S5
10.5486/PMD.1959.6.3-4.12
10.1145/2567948.2577283
10.14778/2311906.2311909
10.1145/3292500.3330986
10.1145/362342.362367
10.1016/0378-8733(83)90028-x
10.1287/ijoc.1.3.190
10.1016/j.tcs.2008.05.010
10.1137/0206038
10.1145/2487575.2487645
10.1137/S089548010240415X
10.14778/3137628.3137660
10.1007/s10618-011-0224-z
10.1007/BF02289146
10.1109/SFCS.1991.185341
10.1002/rsa.3240030402
10.3390/a5040545
10.1007/s10898-006-9039-7
10.1016/j.jplph.2010.09.010
10.1145/800157.805047
10.1613/jair.1815
10.1007/s00373-007-0738-8
10.1007/978-3-642-11440-3_18
10.1145/1557019.1557074
10.1016/0743-7315(92)90072-U
10.1007/3-540-45995-2_51
10.1073/pnas.0306752101
10.1126/science.286.5439.509
10.1145/2505515.2505751
10.1109/SFCS.1996.548522
10.1145/1150402.1150506
10.1007/BF01096763
10.1145/2783258.2783385
10.1016/0167-6377(90)90057-C
10.1007/BF02760024
10.1145/1772690.1772751
10.1007/978-1-4684-2001-2_9
10.1515/9781400841356.240
10.1038/30918.PMID9623998
10.1007/978-3-319-03536-9_13
10.1016/S0022-0000(74)80044-9
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2020.3036013
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 4230
ExternalDocumentID 10_1109_TKDE_2020_3036013
9250607
Genre orig-research
GrantInformation_xml – fundername: Research Grants Council of Hong Kong, China
  grantid: 14203618; 14202919
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-db4bc1a4738467e0f72ef82d71bbb061008145cde48690b75e6e9dbec90e6db73
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000836626800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sun Nov 09 07:43:36 EST 2025
Sat Nov 29 02:36:03 EST 2025
Tue Nov 18 22:35:36 EST 2025
Wed Aug 27 02:23:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-db4bc1a4738467e0f72ef82d71bbb061008145cde48690b75e6e9dbec90e6db73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9738-827X
0000-0003-0747-9889
0000-0002-7334-2875
0000-0003-4924-7824
PQID 2698816168
PQPubID 85438
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TKDE_2020_3036013
crossref_primary_10_1109_TKDE_2020_3036013
ieee_primary_9250607
proquest_journals_2698816168
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
Niskanen (ref34) 2003
ref16
ref19
ref18
Konc (ref23) 2007; 4
Leung (ref28)
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Leskovec (ref27) 2014
ref49
ref8
ref7
ref9
ref3
ref6
ref40
ref35
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
Batagelj (ref4) 2003
ref38
Berry (ref5) 2004
ref26
ref25
ref20
ref22
ref21
Gibson (ref17)
Kopf (ref24) 1987; 12
ref29
References_xml – ident: ref11
  doi: 10.1186/1471-2105-13-S10-S5
– ident: ref12
  doi: 10.5486/PMD.1959.6.3-4.12
– ident: ref39
  doi: 10.1145/2567948.2577283
– ident: ref45
  doi: 10.14778/2311906.2311909
– volume: 4
  start-page: 569
  issue: 5
  year: 2007
  ident: ref23
  article-title: An improved branch and bound algorithm for the maximum clique problem
  publication-title: Proteins
– ident: ref9
  doi: 10.1145/3292500.3330986
– ident: ref6
  doi: 10.1145/362342.362367
– ident: ref40
  doi: 10.1016/0378-8733(83)90028-x
– ident: ref18
  doi: 10.1287/ijoc.1.3.190
– ident: ref8
  doi: 10.1016/j.tcs.2008.05.010
– ident: ref41
  doi: 10.1137/0206038
– ident: ref44
  doi: 10.1145/2487575.2487645
– ident: ref13
  doi: 10.1137/S089548010240415X
– ident: ref29
  doi: 10.14778/3137628.3137660
– ident: ref35
  doi: 10.1007/s10618-011-0224-z
– ident: ref30
  doi: 10.1007/BF02289146
– ident: ref14
  doi: 10.1109/SFCS.1991.185341
– ident: ref20
  doi: 10.1002/rsa.3240030402
– ident: ref37
  doi: 10.3390/a5040545
– ident: ref42
  doi: 10.1007/s10898-006-9039-7
– ident: ref50
  doi: 10.1016/j.jplph.2010.09.010
– ident: ref10
  doi: 10.1145/800157.805047
– ident: ref38
  doi: 10.1613/jair.1815
– ident: ref47
  doi: 10.1007/s00373-007-0738-8
– ident: ref43
  doi: 10.1007/978-3-642-11440-3_18
– ident: ref26
  doi: 10.1145/1557019.1557074
– ident: ref16
  doi: 10.1016/0743-7315(92)90072-U
– ident: ref1
  doi: 10.1007/3-540-45995-2_51
– ident: ref48
  doi: 10.1073/pnas.0306752101
– year: 2003
  ident: ref4
  article-title: An o (m) algorithm for cores decomposition of networks
– year: 2014
  ident: ref27
  article-title: SNAP: A general purpose network analysis and graph mining library in C++
– ident: ref3
  doi: 10.1126/science.286.5439.509
– ident: ref2
  doi: 10.1145/2505515.2505751
– start-page: 721
  volume-title: Proc. 31st Int. Conf. Very Large Data Bases
  ident: ref17
  article-title: Discovering large dense subgraphs in massive graphs
– ident: ref19
  doi: 10.1109/SFCS.1996.548522
– volume: 12
  start-page: 167
  year: 1987
  ident: ref24
  article-title: A computational study of the weighted independent set problem for general graphs
  publication-title: Found. Control Eng.
– ident: ref49
  doi: 10.1145/1150402.1150506
– ident: ref15
  doi: 10.1007/BF01096763
– ident: ref31
  doi: 10.1145/2783258.2783385
– ident: ref7
  doi: 10.1016/0167-6377(90)90057-C
– year: 2004
  ident: ref5
  article-title: Emergent clique formation in terrorist recruitment
  publication-title: Prof. Workshop Agent Organizations: Theory Practice
– year: 2003
  ident: ref34
  article-title: Cliquer user’s guide: Version 1.0
– ident: ref33
  doi: 10.1007/BF02760024
– ident: ref25
  doi: 10.1145/1772690.1772751
– start-page: 333
  volume-title: Proc. 28th Australas. Conf. Comput. Sci.
  ident: ref28
  article-title: Unsupervised anomaly detection in network intrusion detection using clusters
– ident: ref22
  doi: 10.1007/978-1-4684-2001-2_9
– ident: ref32
  doi: 10.1515/9781400841356.240
– ident: ref46
  doi: 10.1038/30918.PMID9623998
– ident: ref36
  doi: 10.1007/978-3-319-03536-9_13
– ident: ref21
  doi: 10.1016/S0022-0000(74)80044-9
SSID ssj0008781
Score 2.4162977
Snippet Cliques refer to subgraphs in an undirected graph such that vertices in each subgraph are pairwise adjacent. The maximum clique problem, to find the clique...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4215
SubjectTerms Algorithms
Anomalies
Apexes
Approximation algorithms
Bioinformatics
Color
community search
Complex networks
Enumeration
Gene expression
Graph theory
Iterative algorithms
Iterative methods
Lower bounds
Maximum clique
Search problems
Searching
Social networking (online)
Social networks
Upper bound
Upper bounds
Title Enumerating Maximum Cliques in Massive Graphs
URI https://ieeexplore.ieee.org/document/9250607
https://www.proquest.com/docview/2698816168
Volume 34
WOSCitedRecordID wos000836626800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5UPOjBR6tYX-TgSYzdpJvd7FFqq6AWD1V6C5vNBAptKk0r_nx3tmlRFMFbCLsQZnZn5svMfANwoXWATJrA15Rp5UIYX0s0volkKHKehsIV0bw-yl4vHgzU8xpcrXphENEVn-E1PbpcfjYxc_pV1lQh0eHJdViXUix6tVZWN5ZuIKlFFxYTtbisMpgBU83-w23HIsHQAlRrr1nQ-uaD3FCVH5bYuZfu7v8-bA92qjDSu1nofR_WsKjB7nJEg1fd2Bpsf-EbrIPfKajdUlOps_ekP4bj-dhrj4jCtfSGhX1VUjW7d0cs1uUBvHQ7_fa9X81L8I112jM_S3lqAs1li4IKZLkMMY_DTAZpmlq_Te6fRyZDTmOoUhmhQJVZJSqGIktl6xA2ikmBR-BxHikeMSNiwzjHLFY55kxrZQGaiQJsAFtKMDEVmTjNtBglDlQwlZDQExJ6Ugm9AZerLW8LJo2_FtdJyquFlYAbcLpUU1LdtTIJhYpjG7iK-Pj3XSewFVLTgqsMO4WN2XSOZ7Bp3mfDcnrujtEnf5XCyA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50FdSDb3F99uBJrKbdNGmOousD18XDKt5Kmk5hQatsd8WfbyZmF0URvJWSQJlJ5tGZ-T6AA60jZNJEoaZKKxfChFqiCU0iY1HyPBauieahI7vd9PFR3U3B0WQWBhFd8xke06Or5RcvZkS_yk5UTHB4chpmiDnLT2tN7G4qHSWpzS9sVtTi0tcwI6ZOejfnbZsLxjZFtRabRa1vXsjRqvywxc7BXCz979OWYdEHksHpp-ZXYAqrVVgakzQE_s6uwsIXxME1CNsVDVxqanYObvV7_3n0HJw9EYhrHfQr-6qmfvbgknCs63W4v2j3zq5Cz5gQGuu2h2GR89xEmssWhRXIShljmcaFjPI8t56bAgCemAI5EVHlMkGBqrBqVAxFkcvWBjSqlwo3IeA8UTxhRqSGcY5FqkosmdbKpmgmibAJbCzBzHg4cWK1eMpcWsFURkLPSOiZF3oTDidbXj-xNP5avEZSniz0Am7CzlhNmb9tdRYLlaY2dBXp1u-79mHuqnfbyTrX3ZttmI9phMH1ie1AYzgY4S7Mmrdhvx7suSP1AdP5xhE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enumerating+Maximum+Cliques+in+Massive+Graphs&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Lu%2C+Can&rft.au=Yu%2C+Jeffrey+Xu&rft.au=Wei%2C+Hao&rft.au=Zhang%2C+Yikai&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=34&rft.issue=9&rft.spage=4215&rft.epage=4230&rft_id=info:doi/10.1109%2FTKDE.2020.3036013&rft.externalDocID=9250607
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon