Enumerating Maximum Cliques in Massive Graphs
Cliques refer to subgraphs in an undirected graph such that vertices in each subgraph are pairwise adjacent. The maximum clique problem, to find the clique with most vertices in a given graph, has been extensively studied. Besides its theoretical value as an NP-hard problem, the maximum clique probl...
Saved in:
| Published in: | IEEE transactions on knowledge and data engineering Vol. 34; no. 9; pp. 4215 - 4230 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1041-4347, 1558-2191 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Cliques refer to subgraphs in an undirected graph such that vertices in each subgraph are pairwise adjacent. The maximum clique problem, to find the clique with most vertices in a given graph, has been extensively studied. Besides its theoretical value as an NP-hard problem, the maximum clique problem is known to have direct applications in various fields, such as community search in social networks and social media, team formation in expert networks, gene expression and motif discovery in bioinformatics and anomaly detection in complex networks, revealing the structure and function of networks. However, algorithms designed for the maximum clique problem are expensive to deal with real-world networks. In this paper, we first devise a randomized algorithm for the maximum clique problem. Different from previous algorithms that search from each vertex one after another, our approach RMC , for the randomized maximum clique problem, employs a binary search while maintaining a lower bound <inline-formula><tex-math notation="LaTeX">\underline{\omega _c}</tex-math> <mml:math><mml:munder><mml:msub><mml:mi>ω</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>̲</mml:mo></mml:munder></mml:math><inline-graphic xlink:href="lu-ieq1-3036013.gif"/> </inline-formula> and an upper bound <inline-formula><tex-math notation="LaTeX">\overline{\omega _c}</tex-math> <mml:math><mml:mover><mml:msub><mml:mi>ω</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>¯</mml:mo></mml:mover></mml:math><inline-graphic xlink:href="lu-ieq2-3036013.gif"/> </inline-formula> of <inline-formula><tex-math notation="LaTeX">\omega (G)</tex-math> <mml:math><mml:mrow><mml:mi>ω</mml:mi><mml:mo>(</mml:mo><mml:mi>G</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="lu-ieq3-3036013.gif"/> </inline-formula>. In each iteration, RMC attempts to find a <inline-formula><tex-math notation="LaTeX">\omega _t</tex-math> <mml:math><mml:msub><mml:mi>ω</mml:mi><mml:mi>t</mml:mi></mml:msub></mml:math><inline-graphic xlink:href="lu-ieq4-3036013.gif"/> </inline-formula>-clique where <inline-formula><tex-math notation="LaTeX">\omega _t=\lfloor (\underline{\omega _c}+\overline{\omega _c})/2\rfloor</tex-math> <mml:math><mml:mrow><mml:msub><mml:mi>ω</mml:mi><mml:mi>t</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mo>⌊</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:munder><mml:msub><mml:mi>ω</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>̲</mml:mo></mml:munder><mml:mo>+</mml:mo><mml:mover><mml:msub><mml:mi>ω</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>¯</mml:mo></mml:mover><mml:mo>)</mml:mo></mml:mrow><mml:mo>/</mml:mo><mml:mn>2</mml:mn><mml:mo>⌋</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="lu-ieq5-3036013.gif"/> </inline-formula>. As finding <inline-formula><tex-math notation="LaTeX">\omega _t</tex-math> <mml:math><mml:msub><mml:mi>ω</mml:mi><mml:mi>t</mml:mi></mml:msub></mml:math><inline-graphic xlink:href="lu-ieq6-3036013.gif"/> </inline-formula> in each iteration is NP-complete, we extract a seed set <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq7-3036013.gif"/> </inline-formula> such that the problem of finding a <inline-formula><tex-math notation="LaTeX">\omega _t</tex-math> <mml:math><mml:msub><mml:mi>ω</mml:mi><mml:mi>t</mml:mi></mml:msub></mml:math><inline-graphic xlink:href="lu-ieq8-3036013.gif"/> </inline-formula>-clique in <inline-formula><tex-math notation="LaTeX">G</tex-math> <mml:math><mml:mi>G</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq9-3036013.gif"/> </inline-formula> is equivalent to finding a <inline-formula><tex-math notation="LaTeX">\omega _t</tex-math> <mml:math><mml:msub><mml:mi>ω</mml:mi><mml:mi>t</mml:mi></mml:msub></mml:math><inline-graphic xlink:href="lu-ieq10-3036013.gif"/> </inline-formula>-clique in <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq11-3036013.gif"/> </inline-formula> with probability guarantees (<inline-formula><tex-math notation="LaTeX">\geq</tex-math> <mml:math><mml:mo>≥</mml:mo></mml:math><inline-graphic xlink:href="lu-ieq12-3036013.gif"/> </inline-formula><inline-formula><tex-math notation="LaTeX"> 1-n^{-c}</tex-math> <mml:math><mml:mrow><mml:mn>1</mml:mn><mml:mo>-</mml:mo><mml:msup><mml:mi>n</mml:mi><mml:mrow><mml:mo>-</mml:mo><mml:mi>c</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href="lu-ieq13-3036013.gif"/> </inline-formula>). We propose a novel iterative algorithm to determine the maximum clique by searching a <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq14-3036013.gif"/> </inline-formula>-clique in <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq15-3036013.gif"/> </inline-formula> starting from <inline-formula><tex-math notation="LaTeX">k=\underline{\omega _c}+1</tex-math> <mml:math><mml:mrow><mml:mi>k</mml:mi><mml:mo>=</mml:mo><mml:munder><mml:msub><mml:mi>ω</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>̲</mml:mo></mml:munder><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="lu-ieq16-3036013.gif"/> </inline-formula> until <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq17-3036013.gif"/> </inline-formula> becomes <inline-formula><tex-math notation="LaTeX">\lbrace \rbrace</tex-math> <mml:math><mml:mrow><mml:mo>{</mml:mo><mml:mo>}</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="lu-ieq18-3036013.gif"/> </inline-formula>, when more iterations benefit marginally. Due to the potential inconsistency of maximum clique algorithms, we study the problem of maximum clique enumeration and propose an efficient algorithm RMCE to enumerate all maximum cliques in a given graph. As confirmed by the experiments, both RMC and RMCE are much more efficient and robust than previous solutions, RMC can always find the exact maximum clique, and RMCE can always enumerate all maximum cliques in a given graph. |
|---|---|
| AbstractList | Cliques refer to subgraphs in an undirected graph such that vertices in each subgraph are pairwise adjacent. The maximum clique problem, to find the clique with most vertices in a given graph, has been extensively studied. Besides its theoretical value as an NP-hard problem, the maximum clique problem is known to have direct applications in various fields, such as community search in social networks and social media, team formation in expert networks, gene expression and motif discovery in bioinformatics and anomaly detection in complex networks, revealing the structure and function of networks. However, algorithms designed for the maximum clique problem are expensive to deal with real-world networks. In this paper, we first devise a randomized algorithm for the maximum clique problem. Different from previous algorithms that search from each vertex one after another, our approach RMC , for the randomized maximum clique problem, employs a binary search while maintaining a lower bound [Formula Omitted] and an upper bound [Formula Omitted] of [Formula Omitted]. In each iteration, RMC attempts to find a [Formula Omitted]-clique where [Formula Omitted]. As finding [Formula Omitted] in each iteration is NP-complete, we extract a seed set [Formula Omitted] such that the problem of finding a [Formula Omitted]-clique in [Formula Omitted] is equivalent to finding a [Formula Omitted]-clique in [Formula Omitted] with probability guarantees ([Formula Omitted][Formula Omitted]). We propose a novel iterative algorithm to determine the maximum clique by searching a [Formula Omitted]-clique in [Formula Omitted] starting from [Formula Omitted] until [Formula Omitted] becomes [Formula Omitted], when more iterations benefit marginally. Due to the potential inconsistency of maximum clique algorithms, we study the problem of maximum clique enumeration and propose an efficient algorithm RMCE to enumerate all maximum cliques in a given graph. As confirmed by the experiments, both RMC and RMCE are much more efficient and robust than previous solutions, RMC can always find the exact maximum clique, and RMCE can always enumerate all maximum cliques in a given graph. Cliques refer to subgraphs in an undirected graph such that vertices in each subgraph are pairwise adjacent. The maximum clique problem, to find the clique with most vertices in a given graph, has been extensively studied. Besides its theoretical value as an NP-hard problem, the maximum clique problem is known to have direct applications in various fields, such as community search in social networks and social media, team formation in expert networks, gene expression and motif discovery in bioinformatics and anomaly detection in complex networks, revealing the structure and function of networks. However, algorithms designed for the maximum clique problem are expensive to deal with real-world networks. In this paper, we first devise a randomized algorithm for the maximum clique problem. Different from previous algorithms that search from each vertex one after another, our approach RMC , for the randomized maximum clique problem, employs a binary search while maintaining a lower bound <inline-formula><tex-math notation="LaTeX">\underline{\omega _c}</tex-math> <mml:math><mml:munder><mml:msub><mml:mi>ω</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>̲</mml:mo></mml:munder></mml:math><inline-graphic xlink:href="lu-ieq1-3036013.gif"/> </inline-formula> and an upper bound <inline-formula><tex-math notation="LaTeX">\overline{\omega _c}</tex-math> <mml:math><mml:mover><mml:msub><mml:mi>ω</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>¯</mml:mo></mml:mover></mml:math><inline-graphic xlink:href="lu-ieq2-3036013.gif"/> </inline-formula> of <inline-formula><tex-math notation="LaTeX">\omega (G)</tex-math> <mml:math><mml:mrow><mml:mi>ω</mml:mi><mml:mo>(</mml:mo><mml:mi>G</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="lu-ieq3-3036013.gif"/> </inline-formula>. In each iteration, RMC attempts to find a <inline-formula><tex-math notation="LaTeX">\omega _t</tex-math> <mml:math><mml:msub><mml:mi>ω</mml:mi><mml:mi>t</mml:mi></mml:msub></mml:math><inline-graphic xlink:href="lu-ieq4-3036013.gif"/> </inline-formula>-clique where <inline-formula><tex-math notation="LaTeX">\omega _t=\lfloor (\underline{\omega _c}+\overline{\omega _c})/2\rfloor</tex-math> <mml:math><mml:mrow><mml:msub><mml:mi>ω</mml:mi><mml:mi>t</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mo>⌊</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:munder><mml:msub><mml:mi>ω</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>̲</mml:mo></mml:munder><mml:mo>+</mml:mo><mml:mover><mml:msub><mml:mi>ω</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>¯</mml:mo></mml:mover><mml:mo>)</mml:mo></mml:mrow><mml:mo>/</mml:mo><mml:mn>2</mml:mn><mml:mo>⌋</mml:mo></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href="lu-ieq5-3036013.gif"/> </inline-formula>. As finding <inline-formula><tex-math notation="LaTeX">\omega _t</tex-math> <mml:math><mml:msub><mml:mi>ω</mml:mi><mml:mi>t</mml:mi></mml:msub></mml:math><inline-graphic xlink:href="lu-ieq6-3036013.gif"/> </inline-formula> in each iteration is NP-complete, we extract a seed set <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq7-3036013.gif"/> </inline-formula> such that the problem of finding a <inline-formula><tex-math notation="LaTeX">\omega _t</tex-math> <mml:math><mml:msub><mml:mi>ω</mml:mi><mml:mi>t</mml:mi></mml:msub></mml:math><inline-graphic xlink:href="lu-ieq8-3036013.gif"/> </inline-formula>-clique in <inline-formula><tex-math notation="LaTeX">G</tex-math> <mml:math><mml:mi>G</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq9-3036013.gif"/> </inline-formula> is equivalent to finding a <inline-formula><tex-math notation="LaTeX">\omega _t</tex-math> <mml:math><mml:msub><mml:mi>ω</mml:mi><mml:mi>t</mml:mi></mml:msub></mml:math><inline-graphic xlink:href="lu-ieq10-3036013.gif"/> </inline-formula>-clique in <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq11-3036013.gif"/> </inline-formula> with probability guarantees (<inline-formula><tex-math notation="LaTeX">\geq</tex-math> <mml:math><mml:mo>≥</mml:mo></mml:math><inline-graphic xlink:href="lu-ieq12-3036013.gif"/> </inline-formula><inline-formula><tex-math notation="LaTeX"> 1-n^{-c}</tex-math> <mml:math><mml:mrow><mml:mn>1</mml:mn><mml:mo>-</mml:mo><mml:msup><mml:mi>n</mml:mi><mml:mrow><mml:mo>-</mml:mo><mml:mi>c</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href="lu-ieq13-3036013.gif"/> </inline-formula>). We propose a novel iterative algorithm to determine the maximum clique by searching a <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq14-3036013.gif"/> </inline-formula>-clique in <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq15-3036013.gif"/> </inline-formula> starting from <inline-formula><tex-math notation="LaTeX">k=\underline{\omega _c}+1</tex-math> <mml:math><mml:mrow><mml:mi>k</mml:mi><mml:mo>=</mml:mo><mml:munder><mml:msub><mml:mi>ω</mml:mi><mml:mi>c</mml:mi></mml:msub><mml:mo>̲</mml:mo></mml:munder><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="lu-ieq16-3036013.gif"/> </inline-formula> until <inline-formula><tex-math notation="LaTeX">S</tex-math> <mml:math><mml:mi>S</mml:mi></mml:math><inline-graphic xlink:href="lu-ieq17-3036013.gif"/> </inline-formula> becomes <inline-formula><tex-math notation="LaTeX">\lbrace \rbrace</tex-math> <mml:math><mml:mrow><mml:mo>{</mml:mo><mml:mo>}</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="lu-ieq18-3036013.gif"/> </inline-formula>, when more iterations benefit marginally. Due to the potential inconsistency of maximum clique algorithms, we study the problem of maximum clique enumeration and propose an efficient algorithm RMCE to enumerate all maximum cliques in a given graph. As confirmed by the experiments, both RMC and RMCE are much more efficient and robust than previous solutions, RMC can always find the exact maximum clique, and RMCE can always enumerate all maximum cliques in a given graph. |
| Author | Wei, Hao Yu, Jeffrey Xu Zhang, Yikai Lu, Can |
| Author_xml | – sequence: 1 givenname: Can orcidid: 0000-0002-7334-2875 surname: Lu fullname: Lu, Can email: lucan@se.cuhk.edu.hk organization: Chinese University of Hong Kong, Hong Kong, China – sequence: 2 givenname: Jeffrey Xu orcidid: 0000-0002-9738-827X surname: Yu fullname: Yu, Jeffrey Xu email: yu@se.cuhk.edu.hk organization: Chinese University of Hong Kong, Hong Kong, China – sequence: 3 givenname: Hao orcidid: 0000-0003-0747-9889 surname: Wei fullname: Wei, Hao email: hwei@se.cuhk.edu.hk organization: Chinese University of Hong Kong, Hong Kong, China – sequence: 4 givenname: Yikai orcidid: 0000-0003-4924-7824 surname: Zhang fullname: Zhang, Yikai email: ykzhang@se.cuhk.edu.hk organization: Chinese University of Hong Kong, Hong Kong, China |
| BookMark | eNp9kE9PwzAMxSM0JLbBB0BcKnHusJM0f45ojIEY4jLOUdOmkGlrR9Ii-Pa02sSBAydb1vv52W9CRnVTO0IuEWaIoG_WT3eLGQUKMwZMALITMsYsUylFjaO-B44pZ1yekUmMGwBQUuGYpIu627mQt75-S57zL7_rdsl86z86FxNf96MY_adLliHfv8dzclrl2-gujnVKXu8X6_lDunpZPs5vV2lBNWvT0nJbYM4lU1xIB5WkrlK0lGitBYG9OfKsKB1XQoOVmRNOl9YVGpworWRTcn3Yuw_NcElrNk0X6t7SUKGVQoFC9Sp5UBWhiTG4yhS-7T9p6jbkfmsQzJCNGbIxQzbmmE1P4h9yH_wuD9__MlcHxjvnfvWaZiBAsh_sSG_k |
| CODEN | ITKEEH |
| CitedBy_id | crossref_primary_10_1016_j_cosrev_2025_100784 crossref_primary_10_1016_j_eswa_2023_120353 crossref_primary_10_1103_PhysRevE_111_054103 crossref_primary_10_1145_3748512 |
| Cites_doi | 10.1186/1471-2105-13-S10-S5 10.5486/PMD.1959.6.3-4.12 10.1145/2567948.2577283 10.14778/2311906.2311909 10.1145/3292500.3330986 10.1145/362342.362367 10.1016/0378-8733(83)90028-x 10.1287/ijoc.1.3.190 10.1016/j.tcs.2008.05.010 10.1137/0206038 10.1145/2487575.2487645 10.1137/S089548010240415X 10.14778/3137628.3137660 10.1007/s10618-011-0224-z 10.1007/BF02289146 10.1109/SFCS.1991.185341 10.1002/rsa.3240030402 10.3390/a5040545 10.1007/s10898-006-9039-7 10.1016/j.jplph.2010.09.010 10.1145/800157.805047 10.1613/jair.1815 10.1007/s00373-007-0738-8 10.1007/978-3-642-11440-3_18 10.1145/1557019.1557074 10.1016/0743-7315(92)90072-U 10.1007/3-540-45995-2_51 10.1073/pnas.0306752101 10.1126/science.286.5439.509 10.1145/2505515.2505751 10.1109/SFCS.1996.548522 10.1145/1150402.1150506 10.1007/BF01096763 10.1145/2783258.2783385 10.1016/0167-6377(90)90057-C 10.1007/BF02760024 10.1145/1772690.1772751 10.1007/978-1-4684-2001-2_9 10.1515/9781400841356.240 10.1038/30918.PMID9623998 10.1007/978-3-319-03536-9_13 10.1016/S0022-0000(74)80044-9 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TKDE.2020.3036013 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 4230 |
| ExternalDocumentID | 10_1109_TKDE_2020_3036013 9250607 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Research Grants Council of Hong Kong, China grantid: 14203618; 14202919 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-db4bc1a4738467e0f72ef82d71bbb061008145cde48690b75e6e9dbec90e6db73 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000836626800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1041-4347 |
| IngestDate | Sun Nov 09 07:43:36 EST 2025 Sat Nov 29 02:36:03 EST 2025 Tue Nov 18 22:35:36 EST 2025 Wed Aug 27 02:23:34 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-db4bc1a4738467e0f72ef82d71bbb061008145cde48690b75e6e9dbec90e6db73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9738-827X 0000-0003-0747-9889 0000-0002-7334-2875 0000-0003-4924-7824 |
| PQID | 2698816168 |
| PQPubID | 85438 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1109_TKDE_2020_3036013 crossref_primary_10_1109_TKDE_2020_3036013 ieee_primary_9250607 proquest_journals_2698816168 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 Niskanen (ref34) 2003 ref16 ref19 ref18 Konc (ref23) 2007; 4 Leung (ref28) ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 Leskovec (ref27) 2014 ref49 ref8 ref7 ref9 ref3 ref6 ref40 ref35 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 Batagelj (ref4) 2003 ref38 Berry (ref5) 2004 ref26 ref25 ref20 ref22 ref21 Gibson (ref17) Kopf (ref24) 1987; 12 ref29 |
| References_xml | – ident: ref11 doi: 10.1186/1471-2105-13-S10-S5 – ident: ref12 doi: 10.5486/PMD.1959.6.3-4.12 – ident: ref39 doi: 10.1145/2567948.2577283 – ident: ref45 doi: 10.14778/2311906.2311909 – volume: 4 start-page: 569 issue: 5 year: 2007 ident: ref23 article-title: An improved branch and bound algorithm for the maximum clique problem publication-title: Proteins – ident: ref9 doi: 10.1145/3292500.3330986 – ident: ref6 doi: 10.1145/362342.362367 – ident: ref40 doi: 10.1016/0378-8733(83)90028-x – ident: ref18 doi: 10.1287/ijoc.1.3.190 – ident: ref8 doi: 10.1016/j.tcs.2008.05.010 – ident: ref41 doi: 10.1137/0206038 – ident: ref44 doi: 10.1145/2487575.2487645 – ident: ref13 doi: 10.1137/S089548010240415X – ident: ref29 doi: 10.14778/3137628.3137660 – ident: ref35 doi: 10.1007/s10618-011-0224-z – ident: ref30 doi: 10.1007/BF02289146 – ident: ref14 doi: 10.1109/SFCS.1991.185341 – ident: ref20 doi: 10.1002/rsa.3240030402 – ident: ref37 doi: 10.3390/a5040545 – ident: ref42 doi: 10.1007/s10898-006-9039-7 – ident: ref50 doi: 10.1016/j.jplph.2010.09.010 – ident: ref10 doi: 10.1145/800157.805047 – ident: ref38 doi: 10.1613/jair.1815 – ident: ref47 doi: 10.1007/s00373-007-0738-8 – ident: ref43 doi: 10.1007/978-3-642-11440-3_18 – ident: ref26 doi: 10.1145/1557019.1557074 – ident: ref16 doi: 10.1016/0743-7315(92)90072-U – ident: ref1 doi: 10.1007/3-540-45995-2_51 – ident: ref48 doi: 10.1073/pnas.0306752101 – year: 2003 ident: ref4 article-title: An o (m) algorithm for cores decomposition of networks – year: 2014 ident: ref27 article-title: SNAP: A general purpose network analysis and graph mining library in C++ – ident: ref3 doi: 10.1126/science.286.5439.509 – ident: ref2 doi: 10.1145/2505515.2505751 – start-page: 721 volume-title: Proc. 31st Int. Conf. Very Large Data Bases ident: ref17 article-title: Discovering large dense subgraphs in massive graphs – ident: ref19 doi: 10.1109/SFCS.1996.548522 – volume: 12 start-page: 167 year: 1987 ident: ref24 article-title: A computational study of the weighted independent set problem for general graphs publication-title: Found. Control Eng. – ident: ref49 doi: 10.1145/1150402.1150506 – ident: ref15 doi: 10.1007/BF01096763 – ident: ref31 doi: 10.1145/2783258.2783385 – ident: ref7 doi: 10.1016/0167-6377(90)90057-C – year: 2004 ident: ref5 article-title: Emergent clique formation in terrorist recruitment publication-title: Prof. Workshop Agent Organizations: Theory Practice – year: 2003 ident: ref34 article-title: Cliquer user’s guide: Version 1.0 – ident: ref33 doi: 10.1007/BF02760024 – ident: ref25 doi: 10.1145/1772690.1772751 – start-page: 333 volume-title: Proc. 28th Australas. Conf. Comput. Sci. ident: ref28 article-title: Unsupervised anomaly detection in network intrusion detection using clusters – ident: ref22 doi: 10.1007/978-1-4684-2001-2_9 – ident: ref32 doi: 10.1515/9781400841356.240 – ident: ref46 doi: 10.1038/30918.PMID9623998 – ident: ref36 doi: 10.1007/978-3-319-03536-9_13 – ident: ref21 doi: 10.1016/S0022-0000(74)80044-9 |
| SSID | ssj0008781 |
| Score | 2.4162977 |
| Snippet | Cliques refer to subgraphs in an undirected graph such that vertices in each subgraph are pairwise adjacent. The maximum clique problem, to find the clique... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4215 |
| SubjectTerms | Algorithms Anomalies Apexes Approximation algorithms Bioinformatics Color community search Complex networks Enumeration Gene expression Graph theory Iterative algorithms Iterative methods Lower bounds Maximum clique Search problems Searching Social networking (online) Social networks Upper bound Upper bounds |
| Title | Enumerating Maximum Cliques in Massive Graphs |
| URI | https://ieeexplore.ieee.org/document/9250607 https://www.proquest.com/docview/2698816168 |
| Volume | 34 |
| WOSCitedRecordID | wos000836626800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5UPOjBR6tYX-TgSYzdpJvd7FFqq6AWD1V6C5vNBAptKk0r_nx3tmlRFMFbCLsQZnZn5svMfANwoXWATJrA15Rp5UIYX0s0volkKHKehsIV0bw-yl4vHgzU8xpcrXphENEVn-E1PbpcfjYxc_pV1lQh0eHJdViXUix6tVZWN5ZuIKlFFxYTtbisMpgBU83-w23HIsHQAlRrr1nQ-uaD3FCVH5bYuZfu7v8-bA92qjDSu1nofR_WsKjB7nJEg1fd2Bpsf-EbrIPfKajdUlOps_ekP4bj-dhrj4jCtfSGhX1VUjW7d0cs1uUBvHQ7_fa9X81L8I112jM_S3lqAs1li4IKZLkMMY_DTAZpmlq_Te6fRyZDTmOoUhmhQJVZJSqGIktl6xA2ikmBR-BxHikeMSNiwzjHLFY55kxrZQGaiQJsAFtKMDEVmTjNtBglDlQwlZDQExJ6Ugm9AZerLW8LJo2_FtdJyquFlYAbcLpUU1LdtTIJhYpjG7iK-Pj3XSewFVLTgqsMO4WN2XSOZ7Bp3mfDcnrujtEnf5XCyA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50FdSDb3F99uBJrKbdNGmOousD18XDKt5Kmk5hQatsd8WfbyZmF0URvJWSQJlJ5tGZ-T6AA60jZNJEoaZKKxfChFqiCU0iY1HyPBauieahI7vd9PFR3U3B0WQWBhFd8xke06Or5RcvZkS_yk5UTHB4chpmiDnLT2tN7G4qHSWpzS9sVtTi0tcwI6ZOejfnbZsLxjZFtRabRa1vXsjRqvywxc7BXCz979OWYdEHksHpp-ZXYAqrVVgakzQE_s6uwsIXxME1CNsVDVxqanYObvV7_3n0HJw9EYhrHfQr-6qmfvbgknCs63W4v2j3zq5Cz5gQGuu2h2GR89xEmssWhRXIShljmcaFjPI8t56bAgCemAI5EVHlMkGBqrBqVAxFkcvWBjSqlwo3IeA8UTxhRqSGcY5FqkosmdbKpmgmibAJbCzBzHg4cWK1eMpcWsFURkLPSOiZF3oTDidbXj-xNP5avEZSniz0Am7CzlhNmb9tdRYLlaY2dBXp1u-79mHuqnfbyTrX3ZttmI9phMH1ie1AYzgY4S7Mmrdhvx7suSP1AdP5xhE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enumerating+Maximum+Cliques+in+Massive+Graphs&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Lu%2C+Can&rft.au=Yu%2C+Jeffrey+Xu&rft.au=Wei%2C+Hao&rft.au=Zhang%2C+Yikai&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=34&rft.issue=9&rft.spage=4215&rft.epage=4230&rft_id=info:doi/10.1109%2FTKDE.2020.3036013&rft.externalDocID=9250607 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |