Distributed Fixed-Time Optimal Resource Management for Microgrids

This article studies the problem of distributed cooperative resource management for Microgrids. In order to maximize the social welfare, a distributed fixed-time consensus algorithm is first proposed to integrate economic dispatch and demand response, which optimally assigns the energy between gener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automation science and engineering Jg. 20; H. 1; S. 404 - 412
Hauptverfasser: Liu, Li-Ning, Yang, Guang-Hong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1545-5955, 1558-3783
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This article studies the problem of distributed cooperative resource management for Microgrids. In order to maximize the social welfare, a distributed fixed-time consensus algorithm is first proposed to integrate economic dispatch and demand response, which optimally assigns the energy between generation participants and load participants. Based on the designed algorithm, each participant is able to quickly obtain its optimal operation and only requires partial calculation and communication without a central control coordination, thus it offers high flexibility, strong robustness, and better privacy. Moreover, compared with the existing distributed optimization algorithms, the proposed algorithm simultaneously possesses the advantages of fixed-time consensus, no initialization conditions, and supporting switching topology, etc. Furthermore, it is proved that each participant can achieve consensus in a fixed-time manner and converge to the global optimal point if the parameters of the algorithm satisfy some conditions. Finally, numerical simulations in the 6-Bus and the IEEE 30-Bus systems are provided to validate the effectiveness of the presented algorithm. Note to Practitioners-This article is motivated by the problem of distributed cooperative resource management for Microgrids to make the system economical and safe operation. The existing distributed methods only converge in an infinite time horizon. However, asymptotic convergence is undesirable in practice, especially in multiperiod optimisation problems. To address this issue and integrate more distributed resources in the future, in this article, we first propose a distributed fixed-time consensus method, where each participant can achieve consensus in a fixed time and obtain its optimal operation locally. Moreover, the proposed method is robust to communication failures and adaptive to topology changes. Our future work will aim at considering more practical constraints, such as power flow constraints, ramping rate constraints, etc.
AbstractList This article studies the problem of distributed cooperative resource management for Microgrids. In order to maximize the social welfare, a distributed fixed-time consensus algorithm is first proposed to integrate economic dispatch and demand response, which optimally assigns the energy between generation participants and load participants. Based on the designed algorithm, each participant is able to quickly obtain its optimal operation and only requires partial calculation and communication without a central control coordination, thus it offers high flexibility, strong robustness, and better privacy. Moreover, compared with the existing distributed optimization algorithms, the proposed algorithm simultaneously possesses the advantages of fixed-time consensus, no initialization conditions, and supporting switching topology, etc. Furthermore, it is proved that each participant can achieve consensus in a fixed-time manner and converge to the global optimal point if the parameters of the algorithm satisfy some conditions. Finally, numerical simulations in the 6-Bus and the IEEE 30-Bus systems are provided to validate the effectiveness of the presented algorithm. Note to Practitioners—This article is motivated by the problem of distributed cooperative resource management for Microgrids to make the system economical and safe operation. The existing distributed methods only converge in an infinite time horizon. However, asymptotic convergence is undesirable in practice, especially in multiperiod optimisation problems. To address this issue and integrate more distributed resources in the future, in this article, we first propose a distributed fixed-time consensus method, where each participant can achieve consensus in a fixed time and obtain its optimal operation locally. Moreover, the proposed method is robust to communication failures and adaptive to topology changes. Our future work will aim at considering more practical constraints, such as power flow constraints, ramping rate constraints, etc.
Author Liu, Li-Ning
Yang, Guang-Hong
Author_xml – sequence: 1
  givenname: Li-Ning
  orcidid: 0000-0001-9748-3966
  surname: Liu
  fullname: Liu, Li-Ning
  email: liningliu@163.com
  organization: College of Information Science and Engineering, Northeastern University, Shenyang, China
– sequence: 2
  givenname: Guang-Hong
  surname: Yang
  fullname: Yang, Guang-Hong
  email: yangguanghong@ise.neu.edu.cn
  organization: State Key Laboratory of Synthetical Automation for Process Industries and the College of Information Science and Engineering, Northeastern University, Shenyang, China
BookMark eNp9UMtKAzEUDaJgW_0AcTPgemoek8csS21VaCloXQ-ZzE1JaWdqkoL-vRlaXLhwdc_inHseQ3TZdi0gdEfwmBBcPq4n77MxxZSOGeGcCHaBBgmonEnFLntc8JyXnF-jYQhbjGmhSjxAkycXonf1MUKTzd0XNPna7SFbHaLb6132BqE7egPZUrd6A3toY2Y7ny2d8d3GuybcoCurdwFuz3eEPuaz9fQlX6yeX6eTRW5oyWLelNZaziWutTDGyrokIApla1BFrYxgCtdMSW5BE4O55SAoNqmKUkKBlmyEHk5_D777PEKI1TYla5NlRaUgTAqpeGKREyvFC8GDrQ4-FfHfFcFVv1TVL1X1S1XnpZJG_tEYF3V0XRu9drt_lfcnpQOAX6dSUklKwX4APo933Q
CODEN ITASC7
CitedBy_id crossref_primary_10_1109_TASE_2025_3593336
crossref_primary_10_1109_TASE_2023_3309983
crossref_primary_10_1109_TPWRS_2023_3349165
crossref_primary_10_1016_j_epsr_2024_111375
crossref_primary_10_1016_j_sysconle_2025_106062
crossref_primary_10_1109_TCYB_2024_3367851
crossref_primary_10_1109_TASE_2024_3485922
crossref_primary_10_1109_TASE_2023_3339110
crossref_primary_10_1016_j_apenergy_2024_124102
crossref_primary_10_1109_TNSE_2022_3195953
crossref_primary_10_1109_TASE_2025_3601160
crossref_primary_10_1002_rnc_8017
crossref_primary_10_1016_j_ijepes_2025_110942
crossref_primary_10_1109_TASE_2023_3329479
crossref_primary_10_1109_TASE_2023_3340411
crossref_primary_10_1109_TASE_2024_3361651
crossref_primary_10_1109_TII_2025_3545042
crossref_primary_10_1016_j_sysconle_2023_105619
crossref_primary_10_1109_TASE_2024_3487214
crossref_primary_10_1109_TASE_2024_3504718
crossref_primary_10_1109_TASE_2023_3310328
crossref_primary_10_3390_pr13092980
crossref_primary_10_1109_TII_2023_3304025
crossref_primary_10_1016_j_ast_2025_110618
crossref_primary_10_1016_j_jfranklin_2025_107857
crossref_primary_10_1109_TASE_2025_3544892
crossref_primary_10_1109_TSIPN_2024_3511258
crossref_primary_10_1109_TASE_2025_3526967
crossref_primary_10_1109_JIOT_2025_3575397
crossref_primary_10_1109_TAES_2024_3368996
crossref_primary_10_3390_en18102616
crossref_primary_10_1002_oca_2949
crossref_primary_10_1016_j_energy_2025_136630
crossref_primary_10_1016_j_automatica_2024_111870
crossref_primary_10_1109_TASE_2025_3550740
crossref_primary_10_1016_j_neucom_2024_128391
Cites_doi 10.1080/00207721.2014.925608
10.1109/TIE.2021.3120492
10.1109/TPWRS.2013.2271640
10.1109/TCYB.2021.3060743
10.1109/TII.2019.2955739
10.1109/TNSE.2020.2965999
10.1109/TPWRS.2014.2376935
10.1109/TAC.2004.834113
10.1109/TII.2015.2426419
10.1109/TII.2022.3146165
10.1109/TCYB.2017.2766762
10.1109/TAC.2022.3148384
10.1109/TSMC.2019.2900722
10.1109/TSG.2016.2516017
10.1109/TSMC.2019.2931846
10.1109/TIE.2010.2102319
10.1109/TII.2018.2862436
10.1109/TNSE.2021.3076526
10.1109/TII.2018.2799239
10.1109/TASE.2016.2627006
10.1109/TPWRS.2014.2299436
10.1109/TSMC.2016.2628907
10.1016/j.automatica.2021.109664
10.1109/TPWRS.2012.2188912
10.1109/TCST.2018.2842208
10.1109/TPWRS.2017.2702179
10.1109/TSG.2018.2834368
10.1109/TASE.2019.2923986
10.1109/TII.2021.3077509
10.1109/TASE.2021.3104393
10.1109/TASE.2020.2986269
10.1109/TSTE.2013.2271517
10.1109/TIE.2014.2356171
10.1109/TSG.2020.3005179
10.35833/MPCE.2020.000267
10.1109/TII.2016.2569506
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2022.3155163
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 412
ExternalDocumentID 10_1109_TASE_2022_3155163
9727196
Genre orig-research
GrantInformation_xml – fundername: Research Fund of State Key Laboratory of Synthetical Automation for Process Industries
  grantid: 2018ZCX03
  funderid: 10.13039/501100011248
– fundername: Funds of the National Key Research and Development Program of China
  grantid: 2020YFE0201100
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 61621004; U1908213
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-d9fff5570ba6ccf7b91e648fbe84b8c6380b3875fea1c05f5e620c5518868ea73
IEDL.DBID RIE
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000767845200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sun Jun 29 16:47:31 EDT 2025
Tue Nov 18 20:57:52 EST 2025
Sat Nov 29 04:12:48 EST 2025
Wed Aug 27 02:54:14 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-d9fff5570ba6ccf7b91e648fbe84b8c6380b3875fea1c05f5e620c5518868ea73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9748-3966
PQID 2761376785
PQPubID 27623
PageCount 9
ParticipantIDs proquest_journals_2761376785
crossref_primary_10_1109_TASE_2022_3155163
ieee_primary_9727196
crossref_citationtrail_10_1109_TASE_2022_3155163
PublicationCentury 2000
PublicationDate 2023-Jan.
2023-1-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
Wood (ref7) 1996
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref30
  doi: 10.1080/00207721.2014.925608
– ident: ref11
  doi: 10.1109/TIE.2021.3120492
– ident: ref14
  doi: 10.1109/TPWRS.2013.2271640
– ident: ref32
  doi: 10.1109/TCYB.2021.3060743
– ident: ref22
  doi: 10.1109/TII.2019.2955739
– ident: ref26
  doi: 10.1109/TNSE.2020.2965999
– ident: ref16
  doi: 10.1109/TPWRS.2014.2376935
– ident: ref36
  doi: 10.1109/TAC.2004.834113
– ident: ref15
  doi: 10.1109/TII.2015.2426419
– ident: ref10
  doi: 10.1109/TII.2022.3146165
– ident: ref31
  doi: 10.1109/TCYB.2017.2766762
– volume-title: Power Generation, Operation, and Control
  year: 1996
  ident: ref7
– ident: ref9
  doi: 10.1109/TAC.2022.3148384
– ident: ref24
  doi: 10.1109/TSMC.2019.2900722
– ident: ref28
  doi: 10.1109/TSG.2016.2516017
– ident: ref29
  doi: 10.1109/TSMC.2019.2931846
– ident: ref8
  doi: 10.1109/TIE.2010.2102319
– ident: ref19
  doi: 10.1109/TII.2018.2862436
– ident: ref27
  doi: 10.1109/TNSE.2021.3076526
– ident: ref25
  doi: 10.1109/TII.2018.2799239
– ident: ref2
  doi: 10.1109/TASE.2016.2627006
– ident: ref17
  doi: 10.1109/TPWRS.2014.2299436
– ident: ref37
  doi: 10.1109/TSMC.2016.2628907
– ident: ref12
  doi: 10.1016/j.automatica.2021.109664
– ident: ref13
  doi: 10.1109/TPWRS.2012.2188912
– ident: ref18
  doi: 10.1109/TCST.2018.2842208
– ident: ref23
  doi: 10.1109/TPWRS.2017.2702179
– ident: ref34
  doi: 10.1109/TSG.2018.2834368
– ident: ref3
  doi: 10.1109/TASE.2019.2923986
– ident: ref21
  doi: 10.1109/TII.2021.3077509
– ident: ref1
  doi: 10.1109/TASE.2021.3104393
– ident: ref4
  doi: 10.1109/TASE.2020.2986269
– ident: ref6
  doi: 10.1109/TSTE.2013.2271517
– ident: ref33
  doi: 10.1109/TIE.2014.2356171
– ident: ref20
  doi: 10.1109/TSG.2020.3005179
– ident: ref5
  doi: 10.35833/MPCE.2020.000267
– ident: ref35
  doi: 10.1109/TII.2016.2569506
SSID ssj0024890
Score 2.5276484
Snippet This article studies the problem of distributed cooperative resource management for Microgrids. In order to maximize the social welfare, a distributed...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 404
SubjectTerms Algorithms
Asymptotic methods
Communication networks
Convergence
Costs
cyber-physical system
demand response
Distributed algorithm
Distributed algorithms
Distributed generation
fixed-time
Microgrids
Optimization
Power dispatch
Power flow
Resource management
Robustness (mathematics)
Switches
System effectiveness
Topology
Title Distributed Fixed-Time Optimal Resource Management for Microgrids
URI https://ieeexplore.ieee.org/document/9727196
https://www.proquest.com/docview/2761376785
Volume 20
WOSCitedRecordID wos000767845200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8aAHX1WsVtmDJzF2H81mcyza4kGrYIXelmwyKwVtpQ_x55vJbltFEbztIYHlSzLv-QbgTGuMuCCGS4OKtVAaJpNQsJhnwihhrNXs2PVvRa-XDAbyoQIXy14YRHTFZ3hJny6Xb8Z6TqGyprTK1t6YNVgTIi56tVa8eomLp5BFwLjkvMxgBr5s9tuPHesJhqF1UCkvFH3TQW6oyg9J7NRLd_t_P7YDW6UZ6bWLc9-FCo72YPMLuWAN2tfEiUvjrNB43eEHGkb9Ht69FRKvdu8icO-tKmA8a8F6d1Si9zwZmuk-PHU7_asbVg5MYNpq7RkzMs9z4tTKVKx1LjIZYNxK8gyTVpZo-9T8LLIOSo4q0D7POcahrx0nW5ygEtEBVEfjER6CZwIrCriQgRbW5eJGKevnhEhk7jyOtKqDv4Aw1SWbOA21eEmdV-HLlFBPCfW0RL0O58stbwWVxl-LawTzcmGJcB0ai3NKy8c2TUNhbRJhtS4_-n3XMWzQlPgictKA6mwyxxNY1--z4XRy6u7RJ12YxBo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFdSDb7E-9-BJXLuPZrM5Fm2p2FbBCr0tu8msFLSVPsSfbyZNW0URvO0hgWWSzHu-D-BcSgwZJ4RLhalbQaFcEQfcjVjGVcqV9poNun6Tt9txtyseCnA5n4VBRNN8hlf0aWr5aiAnlCorC21s9Y1ZgmVizrLTWgtkvdhkVMgncJlgzNYwfU-UO9XHmo4Fg0CHqFQZCr9ZIUOr8kMXGwNT3_zfr23BhnUkner05LehgP0dWP8CL7gL1RtCxSVCK1ROvfeByqWJD-deq4lXvXeWuncWPTCO9mGdFjXpPQ97arQHT_Va57rhWsoEV2q7PXaVyPOcULWyNJIy55nwMarEeYZxJYulfmxeFuoQJcfUlx7LGUaBJw0qWxRjysN9KPYHfTwAR_laGTAufMl10MVUmupIJ0CCc2dRKNMSeDMRJtLiiROtxUti4gpPJCT1hKSeWKmX4GK-5W0KpvHX4l0S83yhlXAJjmfnlNjnNkoCrr0Sru0uO_x91xmsNjqtZtK8bd8dwRpxxk_zKMdQHA8neAIr8n3cGw1PzZ36BMLvx2M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Fixed-Time+Optimal+Resource+Management+for+Microgrids&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Liu%2C+Li-Ning&rft.au=Yang%2C+Guang-Hong&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=20&rft.issue=1&rft.spage=404&rft.epage=412&rft_id=info:doi/10.1109%2FTASE.2022.3155163&rft.externalDocID=9727196
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon