An Optimal Locality-Aware Task Scheduling Algorithm Based on Bipartite Graph Modelling for Spark Applications

In the distributed computing framework of Spark, cross-node/rack data transfer produced by map tasks and reduce tasks are common problems resulting in performance degradation, such as prolonging of entire execution time and network congestion. To address these problems, this article utilizes the bip...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on parallel and distributed systems Ročník 31; číslo 10; s. 2406 - 2420
Hlavní autoři: Fu, Zhongming, Tang, Zhuo, Yang, Li, Liu, Chubo
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1045-9219, 1558-2183
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In the distributed computing framework of Spark, cross-node/rack data transfer produced by map tasks and reduce tasks are common problems resulting in performance degradation, such as prolonging of entire execution time and network congestion. To address these problems, this article utilizes the bipartite graph modelling to propose an optimal locality-aware task scheduling algorithm. By considering global optimality, the algorithm can generate the optimal scheduling solution for both the map tasks and the reduce tasks for data locality. Because of the different communication modes, this article uses a unified graph to model the map task scheduling and the reduce task scheduling respectively. Then, by calculating the communication cost matrix of tasks, we formulate an optimal task scheduling scheme to minimize overall communication cost and transform the problem as the well-known graph problem: minimum weighted bipartite matching (MWBM), which can be resolved by Kuhn-Munkres algorithm. In addition, this article proposes a locality-aware executor allocation strategy to improve the data locality further. We implement our algorithm and strategy in Spark-2.4.1 and evaluate its performance using several representative micro-benchmarks, macro-benchmarks, and HiBench benchmark suite. The experimental results verify that by reducing the network traffic and access latency, the proposed algorithm can improve the job performance substantially compared to some other task scheduling algorithms.
AbstractList In the distributed computing framework of Spark, cross-node/rack data transfer produced by map tasks and reduce tasks are common problems resulting in performance degradation, such as prolonging of entire execution time and network congestion. To address these problems, this article utilizes the bipartite graph modelling to propose an optimal locality-aware task scheduling algorithm. By considering global optimality, the algorithm can generate the optimal scheduling solution for both the map tasks and the reduce tasks for data locality. Because of the different communication modes, this article uses a unified graph to model the map task scheduling and the reduce task scheduling respectively. Then, by calculating the communication cost matrix of tasks, we formulate an optimal task scheduling scheme to minimize overall communication cost and transform the problem as the well-known graph problem: minimum weighted bipartite matching (MWBM), which can be resolved by Kuhn-Munkres algorithm. In addition, this article proposes a locality-aware executor allocation strategy to improve the data locality further. We implement our algorithm and strategy in Spark-2.4.1 and evaluate its performance using several representative micro-benchmarks, macro-benchmarks, and HiBench benchmark suite. The experimental results verify that by reducing the network traffic and access latency, the proposed algorithm can improve the job performance substantially compared to some other task scheduling algorithms.
Author Yang, Li
Fu, Zhongming
Liu, Chubo
Tang, Zhuo
Author_xml – sequence: 1
  givenname: Zhongming
  orcidid: 0000-0003-3041-6990
  surname: Fu
  fullname: Fu, Zhongming
  email: fuzhongming@hnu.edu.cn
  organization: College of Information Science and Engineering, and National Supercomputing Center in Changsha, Hunan University, Hunan, China
– sequence: 2
  givenname: Zhuo
  orcidid: 0000-0001-9081-8153
  surname: Tang
  fullname: Tang, Zhuo
  email: ztang@hnu.edu.cn
  organization: College of Information Science and Engineering, and National Supercomputing Center in Changsha, Hunan University, Hunan, China
– sequence: 3
  givenname: Li
  surname: Yang
  fullname: Yang, Li
  email: yanglixt@gmail.com
  organization: College of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China
– sequence: 4
  givenname: Chubo
  orcidid: 0000-0002-2372-6715
  surname: Liu
  fullname: Liu, Chubo
  email: liuchubo@hnu.edu.cn
  organization: College of Information Science and Engineering, and National Supercomputing Center in Changsha, Hunan University, Hunan, China
BookMark eNp9kE1PAjEQhhujiYD-AOOliefFtttdtscFFU0wmIDnTelOobBs17bE8O9dPuLBg-lhmszzzkyeLrqsbQ0I3VHSp5SIx_nH06zPCCN9JgQjg_gCdWiSZBGjWXzZ_glPIsGouEZd79eEUJ4Q3kHbvMbTJpitrPDEKlmZsI_yb-kAz6Xf4JlaQbmrTL3EebW0zoTVFg-lhxLbGg9NI10wAfDYyWaF320J1RHW1uFZ29zgvGkqo2QwtvY36ErLysPtufbQ58vzfPQaTabjt1E-iRQTcYhKAYqUpVBMcc4VMC6A0QUVikAstNJJEmvNEsoWXAtBeZqpFCDNMsJgoHXcQw-nuY2zXzvwoVjbnavblQXjpH2MpYOWGpwo5az3DnShTDgeGpw0VUFJcXBbHNwWB7fF2W2bpH-SjWsVuv2_mftTxgDALy9IlmSCxD9aloeL
CODEN ITDSEO
CitedBy_id crossref_primary_10_3390_electronics9122077
crossref_primary_10_1109_TC_2024_3500381
crossref_primary_10_2298_CSIS240831018Z
crossref_primary_10_26599_BDMA_2024_9020084
crossref_primary_10_1007_s11227_022_04381_y
crossref_primary_10_1007_s42514_025_00225_2
crossref_primary_10_1016_j_chemolab_2023_104896
crossref_primary_10_1007_s42514_025_00218_1
crossref_primary_10_1002_cpe_70244
crossref_primary_10_3724_SP_J_1249_2025_03317
crossref_primary_10_1109_TVT_2021_3109265
crossref_primary_10_1007_s10723_022_09630_1
crossref_primary_10_1016_j_future_2024_02_009
crossref_primary_10_1016_j_jnca_2020_102889
crossref_primary_10_1109_TCC_2024_3406041
crossref_primary_10_1109_JIOT_2023_3234078
crossref_primary_10_1186_s13677_023_00520_9
crossref_primary_10_1061_JCEMD4_COENG_15107
crossref_primary_10_1155_2022_4148713
crossref_primary_10_1109_TGCN_2023_3347276
crossref_primary_10_3390_app12031646
crossref_primary_10_1016_j_future_2023_01_024
crossref_primary_10_1109_TPDS_2022_3155713
Cites_doi 10.1109/INFCOM.2013.6566850
10.1109/CLOUD.2011.17
10.1016/j.future.2016.06.027
10.1002/nav.20053
10.1109/INFCOM.2013.6566959
10.1007/978-3-319-11194-0_7
10.1007/s10586-017-0972-7
10.1109/CCGrid.2011.55
10.1109/TCC.2018.2878838
10.1145/1327452.1327492
10.5815/ijitcs.2015.04.08
10.1137/0105003
10.1145/1755913.1755940
10.1016/j.peva.2015.12.002
10.1109/BigData.2017.8257943
10.1109/CCGrid.2012.42
10.1109/INFOCOM.2014.6848123
10.1145/1272998.1273005
10.1109/TCC.2019.2947674
10.1016/j.future.2018.07.043
10.1109/ISPDC.2015.12
10.1109/TPDS.2016.2603511
10.1109/JSYST.2017.2764481
10.1109/CloudCom.2010.25
10.1109/TC.2017.2669964
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TPDS.2020.2992073
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2183
EndPage 2420
ExternalDocumentID 10_1109_TPDS_2020_2992073
9085890
Genre orig-research
GrantInformation_xml – fundername: China Knowledge Centre for Engineering Sciences and Technology
  grantid: CKCEST-2018-1-13; CKCEST-2019-2-13
  funderid: 10.13039/501100012455
– fundername: National Natural Science Foundation of China
  grantid: 61873090; L1824034; L1924056
  funderid: 10.13039/501100001809
– fundername: Science and Technology on Parallel and Distributed Processing Laboratory
  grantid: WDZC20195500110
– fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2018YFB1701401; 2018YFB0203804; 2017YFB0202201
  funderid: 10.13039/501100012166
– fundername: Ministry of Education-China Mobile Research Fund Project
  grantid: MCM20170506
GroupedDBID --Z
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
TWZ
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-d9ec0dd9c2c444ce249e21b19c0e39fcf553ff2512b4f991468c6ee68802e7ff3
IEDL.DBID RIE
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000536784800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1045-9219
IngestDate Mon Jun 30 02:36:49 EDT 2025
Tue Nov 18 22:32:09 EST 2025
Sat Nov 29 06:06:47 EST 2025
Wed Aug 27 02:39:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-d9ec0dd9c2c444ce249e21b19c0e39fcf553ff2512b4f991468c6ee68802e7ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2372-6715
0000-0001-9081-8153
0000-0003-3041-6990
PQID 2404042267
PQPubID 85437
PageCount 15
ParticipantIDs ieee_primary_9085890
proquest_journals_2404042267
crossref_primary_10_1109_TPDS_2020_2992073
crossref_citationtrail_10_1109_TPDS_2020_2992073
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on parallel and distributed systems
PublicationTitleAbbrev TPDS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References lin (ref38) 0
ref13
ref12
ref15
ref14
ref30
tang (ref11) 2015
ref1
ref17
xie (ref18) 2010
hammoud (ref10) 2012
ref16
(ref35) 0
ref19
(ref33) 0
(ref31) 0
(ref3) 0
ren (ref39) 2013
(ref26) 0
ref24
ref23
ref25
ref20
ref22
ref21
(ref36) 0
(ref34) 0
ref28
ref27
(ref32) 0
ref29
ref8
ref7
(ref2) 0
qumranet (ref37) 2007
ref9
ref4
ref6
ref5
ref40
References_xml – start-page: 225
  year: 2007
  ident: ref37
  article-title: KVM: The linux virtual machine monitor
  publication-title: Proc Ottawa Linux Symp
– ident: ref21
  doi: 10.1109/INFCOM.2013.6566850
– ident: ref15
  doi: 10.1109/CLOUD.2011.17
– year: 0
  ident: ref33
– ident: ref20
  doi: 10.1016/j.future.2016.06.027
– year: 0
  ident: ref34
– ident: ref29
  doi: 10.1002/nav.20053
– ident: ref40
  doi: 10.1109/INFCOM.2013.6566959
– year: 0
  ident: ref38
  article-title: The curse of Zipf and limits to parallelization: A look at the stragglers problem in MapReduce
– ident: ref16
  doi: 10.1007/978-3-319-11194-0_7
– start-page: 536
  year: 2015
  ident: ref11
  article-title: MARS: Scheduling non-local tasks in MapReduce
  publication-title: Proc IEEE Int Conf Cloud Comput Intell Syst
– year: 0
  ident: ref32
– year: 0
  ident: ref2
– year: 0
  ident: ref31
– ident: ref13
  doi: 10.1007/s10586-017-0972-7
– year: 0
  ident: ref3
– ident: ref23
  doi: 10.1109/CCGrid.2011.55
– start-page: 3
  year: 2013
  ident: ref39
  article-title: Workload characterization on a production Hadoop cluster: A case study on taobao
  publication-title: Proc IEEE Int Symp Workload Characterization
– ident: ref27
  doi: 10.1109/TCC.2018.2878838
– start-page: 1
  year: 2010
  ident: ref18
  article-title: Improving MapReduce performance through data placement in heterogeneous hadoop clusters
  publication-title: Proc IEEE Int Symp Parallel Distrib Process
– ident: ref1
  doi: 10.1145/1327452.1327492
– ident: ref19
  doi: 10.5815/ijitcs.2015.04.08
– ident: ref30
  doi: 10.1137/0105003
– ident: ref8
  doi: 10.1145/1755913.1755940
– ident: ref17
  doi: 10.1016/j.peva.2015.12.002
– start-page: 570
  year: 2012
  ident: ref10
  article-title: Locality-aware reduce task scheduling for MapReduce
  publication-title: Proc IEEE 3rd Int Conf Cloud Comput Technol Sci
– ident: ref24
  doi: 10.1109/BigData.2017.8257943
– year: 0
  ident: ref36
– year: 0
  ident: ref35
– ident: ref14
  doi: 10.1109/CCGrid.2012.42
– year: 0
  ident: ref26
– ident: ref22
  doi: 10.1109/INFOCOM.2014.6848123
– ident: ref4
  doi: 10.1145/1272998.1273005
– ident: ref6
  doi: 10.1109/TCC.2019.2947674
– ident: ref9
  doi: 10.1016/j.future.2018.07.043
– ident: ref7
  doi: 10.1109/ISPDC.2015.12
– ident: ref5
  doi: 10.1109/TPDS.2016.2603511
– ident: ref12
  doi: 10.1109/JSYST.2017.2764481
– ident: ref28
  doi: 10.1109/CloudCom.2010.25
– ident: ref25
  doi: 10.1109/TC.2017.2669964
SSID ssj0014504
Score 2.4747553
Snippet In the distributed computing framework of Spark, cross-node/rack data transfer produced by map tasks and reduce tasks are common problems resulting in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2406
SubjectTerms Algorithms
Benchmarks
Communication
Communication cost
Communications traffic
Computer networks
data locality
Data transfer
Data transfer (computers)
Distributed processing
Graph theory
Modelling
Optimal scheduling
Optimization
Performance degradation
Performance evaluation
Scheduling
Scheduling algorithms
Spark
Sparks
Task analysis
Task scheduling
weighted bipartite graph
Title An Optimal Locality-Aware Task Scheduling Algorithm Based on Bipartite Graph Modelling for Spark Applications
URI https://ieeexplore.ieee.org/document/9085890
https://www.proquest.com/docview/2404042267
Volume 31
WOSCitedRecordID wos000536784800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2183
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014504
  issn: 1045-9219
  databaseCode: RIE
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZg4gAH3ojxUg6cEIW0TdPlWN4HBEgMiVu1Jg5MsA5tHfx9nKybQCAkbpUaV5W-xP4cJ_4A9okld0Jrk8AqHlOCYnRQSCMClZoQuaEYo71qyXV6c9N6fFR3M3A4vQuDiP7wGR65R1_LN309cltlx4r4QUtRgj6bpnJ8V2taMRCJlwqk7CIJFC3DuoIZcnXcvju7p0ww4kfkeyOext9ikBdV-eGJfXi5WPrfjy3DYk0jWTbGfQVmsFyFpYlEA6tX7CosfOk3uAa9rGS35CN6ZHrtghhR8CD76AyQtTvDFzJ7psjjLqiz7PWpP-hWzz12QnHOsH7JTrpvbp5VyC5dl2vmZNR8R29GxJfd08sXln2ph6_Dw8V5-_QqqPUWAk1BvwqMQs2NUTrSQgiNlJlhFBah0hxjZbVNkthaR4gKYYlXCtnSElGSC4gwtTbegEbZL3ETGGXdskiUVnEshYpNIdyOaUcnoUw0kbQm8AkCua6bkTtNjNfcJyVc5Q603IGW16A14WBq8jbuxPHX4DWH0nRgDVATdiYw5_VaHebEaYTrhCbTrd-ttmHefXt8hG8HGtVghLswp9-r7nCw56fhJxCh2b8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4hhsR4GL-1AmN-4GkixUnspH4MMGCiFCSK1Leosc-jgqaoDdu_z9lNK9AQ0t4ixadE-uy773z2fQAHxJL7obUysIrHlKAYHRSJEYFKTYjcUIzRXrWknXY6rV5P3SzA4fwuDCL6w2fYdI--lm9G-tltlR0p4gctRQn6JylExKe3teY1AyG9WCDlFzJQtBDrGmbI1VH35vSWcsGIN8n7RjyN30QhL6vyjy_2AeZs9f9-bQ2-1ESSZVPk12EByw1YnYk0sHrNbsDKq46DmzDMSnZNXmJIpm0XxoiEB9nf_hhZtz95ILN7ij3uijrLHn-PxoPqfsiOKdIZNirZ8eDJzbQK2bnrc82ckJrv6c2I-rJbevnAslcV8S24O_vZPbkIasWFQFPYrwKjUHNjlI60EEIj5WYYhUWoNMdYWW2ljK11lKgQlpilSFo6QUzICUSYWhtvw2I5KvErMMq7k0IqreI4ESo2hXB7pn0tw0RqomkN4DMEcl23I3eqGI-5T0u4yh1ouQMtr0FrwI-5ydO0F8dHgzcdSvOBNUAN2JvBnNerdZITqxGuF1qS7rxv9R2WL7pX7bz9q3O5C5_dd6YH-vZgsRo_4zdY0n-qwWS876fkC4vb3QY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimal+Locality-Aware+Task+Scheduling+Algorithm+Based+on+Bipartite+Graph+Modelling+for+Spark+Applications&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Fu%2C+Zhongming&rft.au=Tang%2C+Zhuo&rft.au=Yang%2C+Li&rft.au=Liu%2C+Chubo&rft.date=2020-10-01&rft.pub=IEEE&rft.issn=1045-9219&rft.volume=31&rft.issue=10&rft.spage=2406&rft.epage=2420&rft_id=info:doi/10.1109%2FTPDS.2020.2992073&rft.externalDocID=9085890
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon