Self-Balancing Federated Learning With Global Imbalanced Data in Mobile Systems

Federated learning (FL) is a distributed deep learning method that enables multiple participants, such as mobile and IoT devices, to contribute a neural network while their private training data remains in local devices. This distributed approach is promising in the mobile systems where have a large...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on parallel and distributed systems Vol. 32; no. 1; pp. 59 - 71
Main Authors: Duan, Moming, Liu, Duo, Chen, Xianzhang, Liu, Renping, Tan, Yujuan, Liang, Liang
Format: Journal Article
Language:English
Published: New York IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1045-9219, 1558-2183
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Federated learning (FL) is a distributed deep learning method that enables multiple participants, such as mobile and IoT devices, to contribute a neural network while their private training data remains in local devices. This distributed approach is promising in the mobile systems where have a large corpus of decentralized data and require high privacy. However, unlike the common datasets, the data distribution of the mobile systems is imbalanced which will increase the bias of model. In this article, we demonstrate that the imbalanced distributed training data will cause an accuracy degradation of FL applications. To counter this problem, we build a self-balancing FL framework named Astraea, which alleviates the imbalances by 1) Z-score-based data augmentation, and 2) Mediator-based multi-client rescheduling. The proposed framework relieves global imbalance by adaptive data augmentation and downsampling, and for averaging the local imbalance, it creates the mediator to reschedule the training of clients based on Kullback-Leibler divergence (KLD) of their data distribution. Compared with FedAvg , the vanilla FL algorithm, Astraea shows +4.39 and +6.51 percent improvement of top-1 accuracy on the imbalanced EMNIST and imbalanced CINIC-10 datasets, respectively. Meanwhile, the communication traffic of Astraea is reduced by 75 percent compared to FedAvg .
AbstractList Federated learning (FL) is a distributed deep learning method that enables multiple participants, such as mobile and IoT devices, to contribute a neural network while their private training data remains in local devices. This distributed approach is promising in the mobile systems where have a large corpus of decentralized data and require high privacy. However, unlike the common datasets, the data distribution of the mobile systems is imbalanced which will increase the bias of model. In this article, we demonstrate that the imbalanced distributed training data will cause an accuracy degradation of FL applications. To counter this problem, we build a self-balancing FL framework named Astraea, which alleviates the imbalances by 1) Z-score-based data augmentation, and 2) Mediator-based multi-client rescheduling. The proposed framework relieves global imbalance by adaptive data augmentation and downsampling, and for averaging the local imbalance, it creates the mediator to reschedule the training of clients based on Kullback-Leibler divergence (KLD) of their data distribution. Compared with FedAvg , the vanilla FL algorithm, Astraea shows +4.39 and +6.51 percent improvement of top-1 accuracy on the imbalanced EMNIST and imbalanced CINIC-10 datasets, respectively. Meanwhile, the communication traffic of Astraea is reduced by 75 percent compared to FedAvg .
Author Liang, Liang
Liu, Duo
Duan, Moming
Chen, Xianzhang
Tan, Yujuan
Liu, Renping
Author_xml – sequence: 1
  givenname: Moming
  surname: Duan
  fullname: Duan, Moming
  email: booker_duan@yahoo.com
  organization: Key Laboratory of Dependable Service Computing in Cyber Physical Society, the Ministry of Education, Chongqing University, Chongqing, China
– sequence: 2
  givenname: Duo
  orcidid: 0000-0002-3040-2065
  surname: Liu
  fullname: Liu, Duo
  email: liuduo@cqu.edu.cn
  organization: Key Laboratory of Dependable Service Computing in Cyber Physical Society, the Ministry of Education, Chongqing University, Chongqing, China
– sequence: 3
  givenname: Xianzhang
  surname: Chen
  fullname: Chen, Xianzhang
  email: xzchen@cqu.edu.cn
  organization: Key Laboratory of Dependable Service Computing in Cyber Physical Society, the Ministry of Education, Chongqing University, Chongqing, China
– sequence: 4
  givenname: Renping
  surname: Liu
  fullname: Liu, Renping
  email: liurenping123321@163.com
  organization: Key Laboratory of Dependable Service Computing in Cyber Physical Society, the Ministry of Education, Chongqing University, Chongqing, China
– sequence: 5
  givenname: Yujuan
  orcidid: 0000-0002-9055-5389
  surname: Tan
  fullname: Tan, Yujuan
  email: tanyujuan@gmail.com
  organization: Key Laboratory of Dependable Service Computing in Cyber Physical Society, the Ministry of Education, Chongqing University, Chongqing, China
– sequence: 6
  givenname: Liang
  orcidid: 0000-0002-2778-455X
  surname: Liang
  fullname: Liang, Liang
  email: liangliang@cqu.edu.cn
  organization: School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, China
BookMark eNp9kM1PwkAQxTcGExH9A4yXJp6Ls1_9OCoIkmAwAeNxs9tOdUlpcXc58N9bhHjw4GleZt6bl_wuSa9pGyTkhsKQUsjvV6_j5ZABgyEHyAUkZ6RPpcxiRjPe6zQIGeeM5hfk0vs1ABUSRJ8sllhX8aOudVPY5iOaYIlOByyjOWrXHFbvNnxG07o1uo5mG_Nj7e5jHXRkm-ilNbbGaLn3ATf-ipxXuvZ4fZoD8jZ5Wo2e4_liOhs9zOOC5TzEZZ5LzNBkkCa61JJLSQWUpWGJMUyklcwYNVkBqAvkElIpTFlVFZSdSmTFB-Tu-Hfr2q8d-qDW7c41XaVigtMUhBBZ56JHV-Fa7x1WauvsRru9oqAO3NSBmzpwUyduXSb9kyls0MG2TXDa1v8mb49Ji4i_TTkVVPCEfwObJnvO
CODEN ITDSEO
CitedBy_id crossref_primary_10_1016_j_knosys_2023_110813
crossref_primary_10_1109_TIFS_2024_3516547
crossref_primary_10_1016_j_jnca_2025_104105
crossref_primary_10_1109_TBDATA_2022_3231277
crossref_primary_10_1109_TPDS_2023_3334398
crossref_primary_10_1109_TKDE_2023_3341808
crossref_primary_10_1109_TSUSC_2024_3403427
crossref_primary_10_2298_CSIS250131052Z
crossref_primary_10_3390_s24082579
crossref_primary_10_1016_j_ins_2022_12_045
crossref_primary_10_1186_s40537_025_01195_6
crossref_primary_10_1007_s12083_021_01254_8
crossref_primary_10_1109_TMC_2022_3147792
crossref_primary_10_1109_TSC_2023_3332102
crossref_primary_10_3390_s22020450
crossref_primary_10_1016_j_asoc_2024_111483
crossref_primary_10_1109_JIOT_2023_3299947
crossref_primary_10_1109_JIOT_2022_3153343
crossref_primary_10_1109_TC_2023_3333213
crossref_primary_10_1007_s44196_025_00814_7
crossref_primary_10_1109_LWC_2022_3147236
crossref_primary_10_1109_TCE_2023_3321846
crossref_primary_10_1109_TMC_2024_3398052
crossref_primary_10_1109_TSMC_2024_3422068
crossref_primary_10_1109_TASE_2023_3270354
crossref_primary_10_1109_TSC_2025_3536309
crossref_primary_10_1007_s11390_024_3639_x
crossref_primary_10_1051_wujns_2022276508
crossref_primary_10_1109_TNNLS_2024_3417452
crossref_primary_10_1109_TIFS_2022_3227435
crossref_primary_10_1109_JIOT_2024_3370964
crossref_primary_10_1016_j_compeleceng_2024_110012
crossref_primary_10_1109_TNET_2024_3363916
crossref_primary_10_1145_3730587
crossref_primary_10_3390_electronics14122331
crossref_primary_10_1109_JIOT_2024_3502245
crossref_primary_10_26599_BDMA_2024_9020067
crossref_primary_10_1109_TPWRS_2023_3267463
crossref_primary_10_1109_COMST_2024_3427324
crossref_primary_10_1016_j_cose_2023_103597
crossref_primary_10_1016_j_conengprac_2024_106098
crossref_primary_10_1109_JIOT_2023_3271692
crossref_primary_10_1109_TIFS_2022_3186739
crossref_primary_10_1109_TPDS_2022_3150579
crossref_primary_10_1016_j_future_2024_04_026
crossref_primary_10_1109_TMC_2023_3315451
crossref_primary_10_1016_j_oceaneng_2025_120823
crossref_primary_10_1016_j_cosrev_2024_100697
crossref_primary_10_1016_j_future_2022_07_010
crossref_primary_10_1016_j_jksuci_2024_101912
crossref_primary_10_1145_3623397
crossref_primary_10_1016_j_comnet_2025_111406
crossref_primary_10_1016_j_ins_2024_120475
crossref_primary_10_1016_j_iot_2022_100642
crossref_primary_10_1007_s40747_023_01332_9
crossref_primary_10_1109_ACCESS_2023_3267964
crossref_primary_10_1109_COMST_2024_3352910
crossref_primary_10_1109_TNSE_2024_3410275
crossref_primary_10_1016_j_future_2024_107626
crossref_primary_10_1016_j_jbi_2024_104712
crossref_primary_10_1109_TPDS_2022_3151853
crossref_primary_10_1109_TSUSC_2023_3341836
crossref_primary_10_1109_ACCESS_2024_3392838
crossref_primary_10_1109_TMC_2023_3262829
crossref_primary_10_1007_s10586_025_05260_w
crossref_primary_10_1109_TAFFC_2024_3516822
crossref_primary_10_1109_ACCESS_2024_3413069
crossref_primary_10_1016_j_asoc_2021_107872
crossref_primary_10_1109_TNSE_2021_3053588
crossref_primary_10_1007_s10844_023_00797_x
crossref_primary_10_1109_TMC_2024_3388731
crossref_primary_10_1109_TKDE_2024_3372708
crossref_primary_10_1109_TNSM_2025_3560629
crossref_primary_10_1109_JIOT_2021_3130115
crossref_primary_10_1109_TVT_2022_3205307
crossref_primary_10_1109_TCE_2024_3355058
crossref_primary_10_1109_TPDS_2021_3134263
crossref_primary_10_1109_JIOT_2023_3341811
crossref_primary_10_1016_j_compind_2021_103509
crossref_primary_10_1109_JIOT_2023_3286398
crossref_primary_10_1016_j_comnet_2025_111428
crossref_primary_10_1145_3606017
crossref_primary_10_1109_TPDS_2021_3098467
crossref_primary_10_3390_fi17070315
crossref_primary_10_1016_j_future_2021_10_016
crossref_primary_10_1109_TPAMI_2023_3290213
crossref_primary_10_1007_s10489_022_04070_6
crossref_primary_10_1007_s11042_023_17737_0
crossref_primary_10_1007_s10586_025_05250_y
crossref_primary_10_1109_TSC_2025_3528325
crossref_primary_10_1016_j_future_2021_09_015
crossref_primary_10_1109_ACCESS_2024_3353617
crossref_primary_10_1109_TCOMM_2023_3302067
crossref_primary_10_1186_s42400_024_00295_9
crossref_primary_10_3390_electronics13214193
crossref_primary_10_1109_TMI_2023_3299206
crossref_primary_10_1145_3429252
crossref_primary_10_1016_j_neunet_2024_106436
crossref_primary_10_1109_TNSE_2022_3168969
crossref_primary_10_1109_COMST_2024_3399612
crossref_primary_10_1109_TAI_2023_3254519
crossref_primary_10_1109_TNNLS_2022_3160699
crossref_primary_10_1016_j_eswa_2025_128600
crossref_primary_10_1109_TMC_2024_3452312
crossref_primary_10_1109_JIOT_2021_3089054
crossref_primary_10_1016_j_future_2025_107911
crossref_primary_10_1016_j_hcc_2025_100325
crossref_primary_10_1016_j_ins_2024_120825
crossref_primary_10_1109_TPDS_2021_3127712
crossref_primary_10_1007_s11063_024_11493_4
crossref_primary_10_1109_TSC_2024_3387734
crossref_primary_10_1007_s10586_025_05163_w
crossref_primary_10_1109_ACCESS_2022_3156045
crossref_primary_10_1109_TMC_2025_3539284
crossref_primary_10_1109_TMC_2023_3310248
crossref_primary_10_1109_COMST_2022_3200740
crossref_primary_10_1109_TPDS_2023_3240767
crossref_primary_10_1109_TPDS_2022_3218807
crossref_primary_10_1016_j_eswa_2023_121982
crossref_primary_10_1016_j_knosys_2024_111420
crossref_primary_10_1109_TWC_2022_3226867
crossref_primary_10_1016_j_conengprac_2024_106050
crossref_primary_10_1109_TPDS_2021_3139191
crossref_primary_10_1016_j_knosys_2023_110658
crossref_primary_10_1109_JSYST_2023_3274197
crossref_primary_10_1109_TSC_2021_3109910
crossref_primary_10_1109_TPDS_2023_3244198
crossref_primary_10_1016_j_future_2025_108114
crossref_primary_10_1016_j_dt_2024_08_015
crossref_primary_10_1109_TMC_2024_3466227
crossref_primary_10_1016_j_patcog_2025_111746
crossref_primary_10_1007_s11704_023_2791_8
crossref_primary_10_1109_TNSE_2022_3196463
crossref_primary_10_1016_j_iot_2023_100890
crossref_primary_10_1016_j_knosys_2025_113494
crossref_primary_10_1093_jcde_qwaf068
crossref_primary_10_3390_e27060553
crossref_primary_10_1016_j_inffus_2025_103555
crossref_primary_10_1109_TITS_2024_3362058
crossref_primary_10_1109_TMC_2025_3528404
crossref_primary_10_1145_3708495
crossref_primary_10_1016_j_engappai_2025_111201
crossref_primary_10_1109_TSC_2022_3187962
crossref_primary_10_1016_j_inffus_2023_101923
crossref_primary_10_1109_TNNLS_2025_3552206
crossref_primary_10_1109_TMC_2025_3558874
crossref_primary_10_1109_TMC_2024_3509852
crossref_primary_10_1109_TAI_2021_3133819
crossref_primary_10_1109_ACCESS_2024_3435910
crossref_primary_10_3390_sym17050782
crossref_primary_10_1109_JIOT_2024_3358799
crossref_primary_10_1007_s00530_025_01719_3
crossref_primary_10_1016_j_neucom_2024_127906
crossref_primary_10_1145_3659205
crossref_primary_10_1038_s41598_025_11864_4
crossref_primary_10_1007_s00221_022_06430_7
crossref_primary_10_1109_ACCESS_2022_3184309
crossref_primary_10_1109_JIOT_2024_3467110
crossref_primary_10_1109_TMC_2022_3223578
crossref_primary_10_1109_TKDE_2024_3523043
crossref_primary_10_1016_j_knosys_2023_110763
crossref_primary_10_1016_j_comnet_2024_110663
crossref_primary_10_1109_TPDS_2023_3238768
crossref_primary_10_1109_ACCESS_2022_3142899
crossref_primary_10_1109_TWC_2022_3162595
crossref_primary_10_1109_TPDS_2022_3142314
crossref_primary_10_1109_TII_2022_3149516
crossref_primary_10_1007_s11704_024_40065_x
crossref_primary_10_1109_TC_2024_3474180
crossref_primary_10_1016_j_future_2020_12_003
crossref_primary_10_1109_JIOT_2023_3262582
crossref_primary_10_1016_j_eswa_2023_122874
crossref_primary_10_1109_TPDS_2023_3264480
crossref_primary_10_1109_JIOT_2023_3301019
crossref_primary_10_1016_j_eswa_2024_123460
crossref_primary_10_1109_TCE_2024_3478349
crossref_primary_10_1109_TMC_2024_3502686
crossref_primary_10_3390_s24010088
crossref_primary_10_1007_s10115_024_02285_2
crossref_primary_10_1007_s10844_024_00910_8
crossref_primary_10_1016_j_future_2025_108037
crossref_primary_10_1109_TII_2022_3190034
crossref_primary_10_1109_TPDS_2024_3501581
crossref_primary_10_1145_3674973
crossref_primary_10_1007_s11227_025_07374_9
crossref_primary_10_1016_j_jiixd_2023_08_003
crossref_primary_10_1016_j_patcog_2023_109507
crossref_primary_10_1109_ACCESS_2024_3508030
crossref_primary_10_3390_e25040606
crossref_primary_10_1109_ACCESS_2024_3351600
crossref_primary_10_1109_TPDS_2022_3225185
crossref_primary_10_1109_TPDS_2020_3040981
crossref_primary_10_1007_s10462_023_10563_8
crossref_primary_10_1016_j_comcom_2023_04_023
crossref_primary_10_1109_TC_2021_3099723
crossref_primary_10_1016_j_neunet_2022_07_030
crossref_primary_10_1016_j_future_2024_107595
crossref_primary_10_1109_TNSE_2024_3447904
crossref_primary_10_1109_TSG_2023_3318418
crossref_primary_10_1109_TSC_2023_3332703
crossref_primary_10_1109_TITS_2022_3149753
crossref_primary_10_1109_TNSE_2024_3483295
crossref_primary_10_1145_3735125
crossref_primary_10_1109_TVT_2023_3277438
crossref_primary_10_3390_e25050715
crossref_primary_10_1016_j_eswa_2024_125336
crossref_primary_10_1109_LWC_2025_3556462
crossref_primary_10_1016_j_comcom_2023_04_012
crossref_primary_10_1109_TMC_2024_3521304
crossref_primary_10_1007_s10044_025_01533_7
crossref_primary_10_1109_TMC_2022_3200016
crossref_primary_10_1016_j_knosys_2025_113073
crossref_primary_10_1007_s12083_024_01660_8
crossref_primary_10_1007_s10462_022_10141_4
crossref_primary_10_1016_j_neucom_2022_10_012
crossref_primary_10_1109_TPDS_2024_3480115
crossref_primary_10_1007_s11432_024_4254_5
crossref_primary_10_1049_blc2_12054
crossref_primary_10_1109_ACCESS_2020_3032520
crossref_primary_10_1109_TPDS_2021_3134647
crossref_primary_10_1016_j_hcc_2022_100068
crossref_primary_10_3390_fi14110338
Cites_doi 10.1109/TKDE.2008.239
10.1109/CVPR.2018.00568
10.1109/MSP.2012.2205597
10.1613/jair.953
10.1145/2939672.2939785
10.14778/2212351.2212354
10.1109/IJCNN.2017.7966217
10.1038/nature14539
10.1016/j.future.2018.09.020
10.1109/ICCD46524.2019.00038
10.1109/DICTA.2016.7797091
10.1007/978-3-319-57959-7
10.1016/j.ijmedinf.2018.01.007
10.1145/3065386
10.1145/3133956.3133982
10.1109/INFOCOM.2019.8737416
10.1145/3298981
10.1109/TNNLS.2019.2944481
10.1109/GLOCOM.2018.8647927
10.1023/A:1007618119488
10.1007/s00365-006-0663-2
10.1109/CVPR.2019.00482
10.1109/TIFS.2019.2929409
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TPDS.2020.3009406
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2183
EndPage 71
ExternalDocumentID 10_1109_TPDS_2020_3009406
9141436
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61672116; 61601067; 61802038; 61672115
  funderid: 10.13039/501100001809
– fundername: Chongqing Youth Talent Support Program
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 0214005207005; 2019CDJGFJSJ001
  funderid: 10.13039/501100012226
– fundername: Chongqing High-Tech Research Key Program
  grantid: cstc2019jscx-mbdx0063
– fundername: China Postdoctoral Science Foundation
  grantid: 2017M620412
  funderid: 10.13039/501100002858
GroupedDBID --Z
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
TWZ
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-d995e8eb8076ada5355140ddb26bb247f5821b8c0eace350754bdfff0d75465f3
IEDL.DBID RIE
ISICitedReferencesCount 325
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000557346500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1045-9219
IngestDate Sun Nov 09 06:00:21 EST 2025
Sat Nov 29 06:06:47 EST 2025
Tue Nov 18 22:26:35 EST 2025
Wed Aug 27 02:31:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-d995e8eb8076ada5355140ddb26bb247f5821b8c0eace350754bdfff0d75465f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9055-5389
0000-0002-3040-2065
0000-0002-2778-455X
PQID 2431704448
PQPubID 85437
PageCount 13
ParticipantIDs crossref_primary_10_1109_TPDS_2020_3009406
crossref_citationtrail_10_1109_TPDS_2020_3009406
proquest_journals_2431704448
ieee_primary_9141436
PublicationCentury 2000
PublicationDate 2021-Jan.-1
2021-1-1
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.-1
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on parallel and distributed systems
PublicationTitleAbbrev TPDS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
smith (ref25) 2017
luo (ref49) 2019
lecun (ref2) 2015; 521
ref17
chen (ref48) 2018
ref18
abadi (ref20) 2016
adamic (ref39) 2002; 3
zhao (ref15) 2018
ref46
yang (ref45) 2018
lecun (ref14) 2010; 2
han (ref36) 2005
ref4
ref3
finn (ref47) 2017
hard (ref10) 2018
ref6
ref5
mohri (ref33) 2019
dean (ref21) 2012
ref35
ref34
ref37
bonawitz (ref11) 2019
ref31
ref30
ref32
ref1
mcmahan (ref9) 2017
ref38
wan (ref42) 2013; 28
darlow (ref19) 2018
agarwal (ref29) 2018
zhang (ref8) 2015
ref24
ref26
kingma (ref43) 2014
ref22
ref28
ref27
li (ref7) 2014
krizhevsky (ref16) 2009
iglewicz (ref44) 1993; 16
bodaghi (ref41) 2017
hard (ref23) 2018
caldas (ref40) 2018
References_xml – ident: ref34
  doi: 10.1109/TKDE.2008.239
– start-page: 685
  year: 2015
  ident: ref8
  article-title: Deep learning with elastic averaging SGD
  publication-title: Proc 28th Int Conf Neural Inf Process Syst
– ident: ref3
  doi: 10.1109/CVPR.2018.00568
– volume: 3
  start-page: 143
  year: 2002
  ident: ref39
  article-title: Zipf's law and the internet
  publication-title: Glottometrics
– year: 2018
  ident: ref23
  article-title: Federated learning for mobile keyboard prediction
– start-page: 1126
  year: 2017
  ident: ref47
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
  publication-title: Proc 34th Int Conf Mach Learn
– ident: ref5
  doi: 10.1109/MSP.2012.2205597
– ident: ref35
  doi: 10.1613/jair.953
– ident: ref38
  doi: 10.1145/2939672.2939785
– year: 2019
  ident: ref49
  article-title: Real-world image datasets for federated learning
– ident: ref22
  doi: 10.14778/2212351.2212354
– ident: ref17
  doi: 10.1109/IJCNN.2017.7966217
– volume: 28
  start-page: 1058
  year: 2013
  ident: ref42
  article-title: Regularization of neural networks using dropconnect
  publication-title: Proc 30th Int Conf Mach Learn
– start-page: 4427
  year: 2017
  ident: ref25
  article-title: Federated multi-task learning
  publication-title: Proc 31st Int Conf Neural Inf Process Syst
– volume: 521
  year: 2015
  ident: ref2
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2018
  ident: ref40
  article-title: Leaf: A benchmark for federated settings
– ident: ref27
  doi: 10.1016/j.future.2018.09.020
– year: 2017
  ident: ref41
  article-title: Dynamics of instagram users
– ident: ref1
  doi: 10.1109/ICCD46524.2019.00038
– year: 2009
  ident: ref16
  article-title: Learning multiple layers of features from tiny images
– ident: ref18
  doi: 10.1109/DICTA.2016.7797091
– ident: ref6
  doi: 10.1007/978-3-319-57959-7
– ident: ref24
  doi: 10.1016/j.ijmedinf.2018.01.007
– year: 2019
  ident: ref11
  article-title: Towards federated learning at scale: System design
  publication-title: Proc 2nd SysML Conf
– ident: ref13
  doi: 10.1145/3065386
– year: 2014
  ident: ref43
  article-title: Adam: A method for stochastic optimization
– year: 2018
  ident: ref10
  article-title: Federated learning for mobile keyboard prediction
– ident: ref28
  doi: 10.1145/3133956.3133982
– year: 2018
  ident: ref45
  article-title: Applied federated learning: Improving google keyboard query suggestions
– ident: ref30
  doi: 10.1109/INFOCOM.2019.8737416
– start-page: 583
  year: 2014
  ident: ref7
  article-title: Scaling distributed machine learning with the parameter server
  publication-title: Proc 11th USENIX Symp Operating Syst Des Implementation
– year: 2018
  ident: ref15
  article-title: Federated learning with non-IID data
– start-page: 4615
  year: 2019
  ident: ref33
  article-title: Agnostic federated learning
  publication-title: Proceedings 36th Int Conf Mach Learn
– ident: ref12
  doi: 10.1145/3298981
– year: 2018
  ident: ref48
  article-title: Federated meta-learning for recommendation
– ident: ref32
  doi: 10.1109/TNNLS.2019.2944481
– start-page: 265
  year: 2016
  ident: ref20
  article-title: Tensorflow: A system for large-scale machine learning
  publication-title: Proc 12th USENIX Symp Operating Syst Des Implementation
– start-page: 7564
  year: 2018
  ident: ref29
  article-title: cpSGD: Communication-efficient and differentially-private distributed SGD
  publication-title: Proc 32nd Int Conf Neural Inf Process Syst
– start-page: 1273
  year: 2017
  ident: ref9
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Proc 20th Int Conf Artif Intell Statist
– ident: ref26
  doi: 10.1109/GLOCOM.2018.8647927
– volume: 2
  year: 2010
  ident: ref14
  article-title: MNIST handwritten digit database
  publication-title: ATT Labs
– ident: ref37
  doi: 10.1023/A:1007618119488
– year: 2018
  ident: ref19
  article-title: CINIC-10 is not imagenet or CIFAR-10
– ident: ref46
  doi: 10.1007/s00365-006-0663-2
– ident: ref4
  doi: 10.1109/CVPR.2019.00482
– start-page: 878
  year: 2005
  ident: ref36
  article-title: Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
  publication-title: Proc Int Conf Intell Comput
– start-page: 1223
  year: 2012
  ident: ref21
  article-title: Large scale distributed deep networks
  publication-title: Proc 25th Int Conf Neural Inf Process Syst
– volume: 16
  year: 1993
  ident: ref44
  publication-title: How to Detect and Handle Outliers
– ident: ref31
  doi: 10.1109/TIFS.2019.2929409
SSID ssj0014504
Score 2.7029996
Snippet Federated learning (FL) is a distributed deep learning method that enables multiple participants, such as mobile and IoT devices, to contribute a neural...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 59
SubjectTerms Algorithms
Balancing
Communications traffic
Data augmentation
Data models
Datasets
Distributed databases
distributed machine learning
Electronic devices
Federated learning
Machine learning
Mobile communication systems
Mobile handsets
Neural networks
Privacy
Rescheduling
Servers
Training
Title Self-Balancing Federated Learning With Global Imbalanced Data in Mobile Systems
URI https://ieeexplore.ieee.org/document/9141436
https://www.proquest.com/docview/2431704448
Volume 32
WOSCitedRecordID wos000557346500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2183
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014504
  issn: 1045-9219
  databaseCode: RIE
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0g8aAHUdCIounBk3GldD-6PapI9CCSgJHbpl-rJAgGFn-_bSmERGPibbM7TTb7tp2ZzvQ9gIuE8VQIwgLsyoycs4DJOAo4TxQWsXPiTmyCdrvpcMh6Jbhan4XRWrvmM31tL10tX03lwm6VNVkrMu492YItSunyrNa6YhDFTirQZBdxwMw09BXMFmbNQa_dN5kgMQmqbaSz4kYbPsiJqvxYiZ176VT-92L7sOfDSHSzxP0ASnpShcpKogH5GVuF3Q2-wRo89_U4D25tN6M0N1DHMkmYYFMhT7P6hl5HxTtaCgGgxw_hTM3zNi84Gk3Q01SYZQR5nvNDeOncD-4eAq-oEEjj1otAMRbrVIsU04QrHoc2XsJKCZIYwCKa22OzIpXYLMc6NKFiHAmV5zlW1Iqm5-ERlCfTiT4G1FIkpJFOiUxYFBIhZMpkyCNpApA8pqQOePWNM-npxq3qxThzaQdmmYUls7BkHpY6XK6HfC65Nv4yrlkc1oYegjo0VkBmfjbOM2KjJEuMl578PuoUdojtVXFbKw0oF7OFPoNt-VWM5rNz96N9AwAuzhA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oFNQH7-J0ah58EuuyNGmbR29jQ52CE30ruVUHuomr_n6TLBsDRfCttCdQ-jU55-ScfB_AYcJFJiXhEfZlRiF4xBWjkRCJxpJ5J-7FJtJOJ3t64nczcDw5C2OM8c1n5sRd-lq-HqhPt1VW5w1q3XsyC3OMUtIYndaa1Awo82KBNr9gEbcTMdQwG5jXu3cX9zYXJDZFda10Tt5oygt5WZUfa7F3MM2V_73aKiyHQBKdjpBfgxnTX4eVsUgDCnN2HZamGAc34PbevBbRmetnVPYGajouCRtuahSIVp_RY698QSMpANR-k97UPr8QpUC9ProZSLuQoMB0vgkPzcvueSsKmgqRso69jDTnzGRGZjhNhBYsdhET1lqSxEJG08IdnJWZwnZBNrENFhmVuigKrFMnm17EW1DpD_pmG1BDkzilJiMq4TQmUqqMq1hQZUOQgqWkCnj8jXMVCMed7sVr7hMPzHMHS-5gyQMsVTiaDHkfsW38ZbzhcJgYBgiqUBsDmYf5OMyJi5McNV628_uoA1hodW-u8-t252oXFonrXPEbLTWolB-fZg_m1VfZG37s-5_uG-NT0Vc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Balancing+Federated+Learning+With+Global+Imbalanced+Data+in+Mobile+Systems&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Duan%2C+Moming&rft.au=Liu%2C+Duo&rft.au=Chen%2C+Xianzhang&rft.au=Liu%2C+Renping&rft.date=2021-01-01&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=32&rft.issue=1&rft.spage=59&rft.epage=71&rft_id=info:doi/10.1109%2FTPDS.2020.3009406&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPDS_2020_3009406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon