Reliable Accuracy Estimates from k-Fold Cross Validation

It is popular to evaluate the performance of classification algorithms by k -fold cross validation. A reliable accuracy estimate will have a relatively small variance, and several studies therefore suggested to repeatedly perform k -fold cross validation. Most of them did not consider the correlatio...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering Vol. 32; no. 8; pp. 1586 - 1594
Main Authors: Wong, Tzu-Tsung, Yeh, Po-Yang
Format: Journal Article
Language:English
Published: New York IEEE 01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1041-4347, 1558-2191
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract It is popular to evaluate the performance of classification algorithms by k -fold cross validation. A reliable accuracy estimate will have a relatively small variance, and several studies therefore suggested to repeatedly perform k -fold cross validation. Most of them did not consider the correlation among the replications of k -fold cross validation, and hence the variance could be underestimated. The purpose of this study is to explore whether k -fold cross validation should be repeatedly performed for obtaining reliable accuracy estimates. The dependency relationships between the predictions of the same instance in two replications of k -fold cross validation are first analyzed for k -nearest neighbors with <inline-formula><tex-math notation="LaTeX">k= 1</tex-math> <mml:math><mml:mrow><mml:mi>k</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="wong-ieq1-2912815.gif"/> </inline-formula>. Then, statistical methods are proposed to test the strength of the dependency level between the accuracy estimates resulting from two replications of k -fold cross validation. The experimental results on 20 data sets show that the accuracy estimates obtained from various replications of k -fold cross validation are generally highly correlated, and the correlation will be higher as the number of folds increases. The k -fold cross validation with a large number of folds and a small number of replications should be adopted for performance evaluation of classification algorithms.
AbstractList It is popular to evaluate the performance of classification algorithms by k -fold cross validation. A reliable accuracy estimate will have a relatively small variance, and several studies therefore suggested to repeatedly perform k -fold cross validation. Most of them did not consider the correlation among the replications of k -fold cross validation, and hence the variance could be underestimated. The purpose of this study is to explore whether k -fold cross validation should be repeatedly performed for obtaining reliable accuracy estimates. The dependency relationships between the predictions of the same instance in two replications of k -fold cross validation are first analyzed for k -nearest neighbors with [Formula Omitted]. Then, statistical methods are proposed to test the strength of the dependency level between the accuracy estimates resulting from two replications of k -fold cross validation. The experimental results on 20 data sets show that the accuracy estimates obtained from various replications of k -fold cross validation are generally highly correlated, and the correlation will be higher as the number of folds increases. The k -fold cross validation with a large number of folds and a small number of replications should be adopted for performance evaluation of classification algorithms.
It is popular to evaluate the performance of classification algorithms by k -fold cross validation. A reliable accuracy estimate will have a relatively small variance, and several studies therefore suggested to repeatedly perform k -fold cross validation. Most of them did not consider the correlation among the replications of k -fold cross validation, and hence the variance could be underestimated. The purpose of this study is to explore whether k -fold cross validation should be repeatedly performed for obtaining reliable accuracy estimates. The dependency relationships between the predictions of the same instance in two replications of k -fold cross validation are first analyzed for k -nearest neighbors with <inline-formula><tex-math notation="LaTeX">k= 1</tex-math> <mml:math><mml:mrow><mml:mi>k</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="wong-ieq1-2912815.gif"/> </inline-formula>. Then, statistical methods are proposed to test the strength of the dependency level between the accuracy estimates resulting from two replications of k -fold cross validation. The experimental results on 20 data sets show that the accuracy estimates obtained from various replications of k -fold cross validation are generally highly correlated, and the correlation will be higher as the number of folds increases. The k -fold cross validation with a large number of folds and a small number of replications should be adopted for performance evaluation of classification algorithms.
Author Yeh, Po-Yang
Wong, Tzu-Tsung
Author_xml – sequence: 1
  givenname: Tzu-Tsung
  orcidid: 0000-0001-8132-0214
  surname: Wong
  fullname: Wong, Tzu-Tsung
  email: tzutsung@mail.ncku.edu.tw
  organization: National Cheng Kung University, Tainan City, Taiwan, ROC
– sequence: 2
  givenname: Po-Yang
  surname: Yeh
  fullname: Yeh, Po-Yang
  email: zx9430@gmail.com
  organization: National Cheng Kung University, Tainan City, Taiwan, ROC
BookMark eNp9kDFPwzAQhS1UJNrCD0AskZhTfHYc22NVWkBUQkIVq-U6tuSSJsV2hv57EloxMDDdDe-7e-9N0KhpG4vQLeAZAJYPm9fH5YxgkDMigQhgF2gMjImcgIRRv-MC8oIW_ApNYtxhjAUXMEbi3dZeb2ubzY3pgjbHbBmT3-tkY-ZCu88-81VbV9kitDFmH7r2lU6-ba7RpdN1tDfnOUWb1XKzeM7Xb08vi_k6N0TSlFdltTVGWqIrokmpS-YqYh3TFFdccmqIk9JJKqiWxhjuuCYMY4qNpEBKOkX3p7OH0H51Nia1a7vQ9B8VKUgfmJWc9ip-UpnBZbBOGZ9-bKagfa0Aq6ElNbSkhpbUuaWehD_kIfTpw_Ff5u7EeGvtr16UUggK9BtNInOl
CODEN ITKEEH
CitedBy_id crossref_primary_10_32604_cmc_2024_060837
crossref_primary_10_1016_j_biosystemseng_2025_104276
crossref_primary_10_1111_1541_4337_70082
crossref_primary_10_1002_ntls_20220016
crossref_primary_10_1371_journal_pone_0328880
crossref_primary_10_1111_exsy_13651
crossref_primary_10_1371_journal_pone_0326103
crossref_primary_10_1109_JBHI_2022_3207519
crossref_primary_10_1007_s11030_021_10245_z
crossref_primary_10_3389_fenvs_2021_748734
crossref_primary_10_1111_jan_16591
crossref_primary_10_3390_diagnostics13223439
crossref_primary_10_1016_j_compgeo_2022_105094
crossref_primary_10_1007_s00477_025_03091_0
crossref_primary_10_1016_j_soilad_2025_100045
crossref_primary_10_3390_jimaging9100219
crossref_primary_10_1007_s11269_025_04211_9
crossref_primary_10_1016_j_tsep_2024_102882
crossref_primary_10_1109_ACCESS_2024_3470869
crossref_primary_10_1177_03611981251348446
crossref_primary_10_1016_j_eswa_2024_124384
crossref_primary_10_1088_2053_1591_ad87b1
crossref_primary_10_1016_j_engstruct_2024_118184
crossref_primary_10_1016_j_neunet_2025_107226
crossref_primary_10_1061__ASCE_CF_1943_5509_0001745
crossref_primary_10_3390_s22239542
crossref_primary_10_3390_agriculture13091784
crossref_primary_10_1109_ACCESS_2024_3480310
crossref_primary_10_1109_TAES_2024_3456090
crossref_primary_10_1016_j_conbuildmat_2023_134646
crossref_primary_10_3390_math12081267
crossref_primary_10_1007_s13198_022_01756_5
crossref_primary_10_1016_j_jafr_2025_102175
crossref_primary_10_3390_app14031023
crossref_primary_10_1016_j_bspc_2023_105624
crossref_primary_10_1016_j_comnet_2023_109871
crossref_primary_10_3390_app11114945
crossref_primary_10_1007_s42461_022_00678_x
crossref_primary_10_1007_s41939_023_00154_z
crossref_primary_10_1016_j_jtrangeo_2024_103828
crossref_primary_10_1371_journal_pone_0282429
crossref_primary_10_1007_s10661_023_11283_w
crossref_primary_10_1016_j_asoc_2021_107249
crossref_primary_10_3389_fpsyg_2025_1579259
crossref_primary_10_1016_j_buildenv_2025_113287
crossref_primary_10_1016_j_envpol_2023_123105
crossref_primary_10_1016_j_optlastec_2024_112028
crossref_primary_10_1021_acs_energyfuels_5c00792
crossref_primary_10_1007_s41976_025_00242_3
crossref_primary_10_1016_j_future_2021_01_024
crossref_primary_10_1186_s12864_025_11553_6
crossref_primary_10_1016_j_neuroimage_2024_120727
crossref_primary_10_1109_TIM_2025_3544732
crossref_primary_10_1016_j_psep_2024_04_097
crossref_primary_10_32604_jpm_2024_053859
crossref_primary_10_1016_j_jrmge_2024_09_034
crossref_primary_10_3390_en13205464
crossref_primary_10_3390_rs14153547
crossref_primary_10_1007_s13349_025_00972_4
crossref_primary_10_1016_j_seares_2025_102613
crossref_primary_10_3390_bioengineering12060659
crossref_primary_10_1016_j_cstp_2025_101518
crossref_primary_10_1109_LCOMM_2020_2990188
crossref_primary_10_1109_TBME_2024_3509533
crossref_primary_10_1016_j_ultsonch_2024_107032
crossref_primary_10_3390_s24072297
crossref_primary_10_1016_j_bspc_2023_105609
crossref_primary_10_1080_10255842_2025_2553347
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127531
crossref_primary_10_1002_adfm_202214271
crossref_primary_10_1016_j_heliyon_2024_e41084
crossref_primary_10_3847_2041_8213_ad1ceb
crossref_primary_10_3390_su16229805
crossref_primary_10_3390_app13095260
crossref_primary_10_3390_app13042658
crossref_primary_10_3390_s24248111
crossref_primary_10_3390_jpm11050353
crossref_primary_10_1007_s13042_024_02133_3
crossref_primary_10_1002_adts_202401489
crossref_primary_10_1016_j_micpro_2020_103615
crossref_primary_10_1061__ASCE_IR_1943_4774_0001727
crossref_primary_10_1177_09544062251349003
crossref_primary_10_1016_j_engappai_2025_111357
crossref_primary_10_1007_s44290_025_00301_0
crossref_primary_10_1038_s41598_024_68651_w
crossref_primary_10_3390_app13020773
crossref_primary_10_1007_s12145_024_01521_1
crossref_primary_10_3390_app12115413
crossref_primary_10_1016_j_conbuildmat_2023_133377
crossref_primary_10_1016_j_engappai_2025_111473
crossref_primary_10_1016_j_matbio_2023_03_003
crossref_primary_10_1007_s10712_024_09853_9
crossref_primary_10_1016_j_jobcr_2025_01_012
crossref_primary_10_3348_jksr_2020_0171
crossref_primary_10_1109_ACCESS_2024_3512495
crossref_primary_10_3389_fpsyt_2025_1648585
crossref_primary_10_3390_s22103700
crossref_primary_10_1002_rse2_291
crossref_primary_10_1016_j_jhydrol_2024_131625
crossref_primary_10_1371_journal_pone_0272946
crossref_primary_10_1016_j_dyepig_2022_110647
crossref_primary_10_1109_TIM_2025_3571088
crossref_primary_10_1016_j_jechem_2025_05_029
crossref_primary_10_13005_bpj_3163
crossref_primary_10_1016_j_csbj_2023_09_025
crossref_primary_10_1016_j_eswa_2023_122731
crossref_primary_10_3390_drones7080493
crossref_primary_10_1111_prd_70000
crossref_primary_10_1007_s41939_023_00315_0
crossref_primary_10_1016_j_atmosres_2024_107576
crossref_primary_10_1007_s41365_025_01684_6
crossref_primary_10_1016_j_jobe_2024_111248
crossref_primary_10_1177_15333175251339730
crossref_primary_10_1007_s00603_024_04287_6
crossref_primary_10_1016_j_fuel_2024_133323
crossref_primary_10_1016_j_tust_2025_106448
crossref_primary_10_1177_10591478251331143
crossref_primary_10_1111_exsy_12786
crossref_primary_10_1016_j_autcon_2024_105489
crossref_primary_10_1016_j_eswa_2023_121608
crossref_primary_10_1016_j_cej_2023_142619
crossref_primary_10_1177_01445987251318353
crossref_primary_10_1016_j_rineng_2025_105287
crossref_primary_10_3390_agronomy15010077
crossref_primary_10_1016_j_marpolbul_2025_118477
crossref_primary_10_1016_j_ecoenv_2025_119003
crossref_primary_10_1016_j_enbuild_2025_115991
crossref_primary_10_1109_JSEN_2020_2990864
crossref_primary_10_1109_ACCESS_2025_3539309
crossref_primary_10_1093_jamia_ocaf118
crossref_primary_10_1016_j_jobe_2025_113717
crossref_primary_10_1007_s44290_025_00204_0
crossref_primary_10_1007_s11696_024_03715_9
crossref_primary_10_1016_j_measurement_2022_111207
crossref_primary_10_1109_ACCESS_2020_2986232
crossref_primary_10_3390_plants14010083
crossref_primary_10_1016_j_fsidi_2024_301812
crossref_primary_10_1109_ACCESS_2021_3134330
crossref_primary_10_1109_TGRS_2025_3550554
crossref_primary_10_1016_j_jclepro_2023_138925
crossref_primary_10_3390_jintelligence12110111
crossref_primary_10_1002_cjce_25102
crossref_primary_10_1016_j_mtcomm_2025_113801
crossref_primary_10_1109_JAS_2024_124359
crossref_primary_10_1016_j_mtcomm_2024_109372
crossref_primary_10_3390_w17121776
crossref_primary_10_1016_j_sca_2025_100128
crossref_primary_10_3389_frai_2024_1467051
crossref_primary_10_3390_healthcare11070929
crossref_primary_10_1109_JSEN_2024_3408323
crossref_primary_10_1007_s42979_024_03622_6
crossref_primary_10_1371_journal_pone_0324204
crossref_primary_10_1016_j_csbj_2023_01_028
crossref_primary_10_1016_j_ifset_2021_102796
crossref_primary_10_3390_math10203771
crossref_primary_10_1109_LSP_2023_3337727
crossref_primary_10_1016_j_ssci_2024_106708
crossref_primary_10_3390_risks12040062
crossref_primary_10_3390_rs16132424
crossref_primary_10_1109_TUFFC_2024_3433407
crossref_primary_10_1016_j_ecoinf_2023_102084
crossref_primary_10_1016_j_compeleceng_2025_110117
crossref_primary_10_7235_HORT_20240022
crossref_primary_10_1016_j_rser_2023_113486
crossref_primary_10_1007_s40996_022_01015_4
crossref_primary_10_7717_peerj_cs_2516
crossref_primary_10_1038_s41598_021_03867_8
crossref_primary_10_1080_21655979_2023_2243416
crossref_primary_10_1109_TII_2020_2971014
crossref_primary_10_1371_journal_pone_0316830
crossref_primary_10_1016_j_agwat_2023_108416
crossref_primary_10_3390_rs17050797
crossref_primary_10_1016_j_asoc_2023_109987
crossref_primary_10_1002_ps_7788
crossref_primary_10_1016_j_measurement_2024_115270
crossref_primary_10_3390_w15223970
crossref_primary_10_3390_app14135660
crossref_primary_10_1016_j_compind_2023_103883
crossref_primary_10_1186_s42834_024_00225_x
crossref_primary_10_1016_j_irfa_2023_103028
crossref_primary_10_3390_math12162542
crossref_primary_10_3390_app12178765
crossref_primary_10_3390_s23146613
crossref_primary_10_1109_ACCESS_2025_3590871
crossref_primary_10_1007_s41870_021_00707_w
crossref_primary_10_3390_jmse12122267
crossref_primary_10_1016_j_tre_2024_103647
crossref_primary_10_1007_s00521_024_10147_9
crossref_primary_10_3390_cancers15184636
crossref_primary_10_3390_machines11121038
crossref_primary_10_1016_j_tafmec_2025_105129
crossref_primary_10_3390_electronics14101948
crossref_primary_10_1016_j_advwatres_2023_104569
crossref_primary_10_1016_j_aei_2025_103288
crossref_primary_10_1002_mp_17411
crossref_primary_10_3390_a18080465
crossref_primary_10_1088_1361_6501_ad3bdd
crossref_primary_10_1016_j_jfoodeng_2025_112492
crossref_primary_10_3390_computers10090112
crossref_primary_10_1016_j_jhydrol_2022_128956
crossref_primary_10_3390_jpm11080727
crossref_primary_10_1007_s11042_025_21058_9
crossref_primary_10_1016_j_inffus_2025_103122
crossref_primary_10_1093_geronb_gbad061
crossref_primary_10_1016_j_landusepol_2022_106409
crossref_primary_10_1016_j_chaos_2024_114908
crossref_primary_10_1038_s41928_024_01134_y
crossref_primary_10_1080_15389588_2025_2527849
crossref_primary_10_1016_j_engappai_2023_105991
crossref_primary_10_1016_j_eswa_2024_123934
crossref_primary_10_1016_j_cie_2022_108559
crossref_primary_10_3390_en15061966
crossref_primary_10_3389_fpls_2021_616689
crossref_primary_10_3390_w17131988
crossref_primary_10_1016_j_jag_2024_104013
crossref_primary_10_1007_s00432_023_05467_7
crossref_primary_10_1007_s11270_021_05036_z
crossref_primary_10_1016_j_compbiomed_2021_105065
crossref_primary_10_1016_j_compag_2025_110680
crossref_primary_10_2166_ws_2023_248
crossref_primary_10_1016_j_ijplas_2023_103646
crossref_primary_10_1007_s42107_023_00698_y
crossref_primary_10_1177_03611981231212162
crossref_primary_10_3390_app13074430
crossref_primary_10_3390_app12189321
crossref_primary_10_3390_agronomy15020492
crossref_primary_10_1007_s13178_022_00768_x
crossref_primary_10_3390_data8120179
crossref_primary_10_1016_j_conbuildmat_2024_137619
crossref_primary_10_1016_j_engfailanal_2022_106647
crossref_primary_10_1016_j_ejor_2024_03_008
crossref_primary_10_1016_j_asr_2024_12_056
crossref_primary_10_1016_j_applanim_2021_105491
crossref_primary_10_3390_jpm11090893
crossref_primary_10_3390_e24030335
crossref_primary_10_3390_foods14111987
crossref_primary_10_1007_s11709_021_0785_x
crossref_primary_10_1186_s12911_022_02026_x
crossref_primary_10_1016_j_cscm_2025_e05303
crossref_primary_10_1186_s13638_020_01818_x
crossref_primary_10_1016_j_seppur_2025_134691
crossref_primary_10_1016_j_jece_2025_115946
crossref_primary_10_1016_j_chemosphere_2024_143781
crossref_primary_10_1080_24725854_2024_2302368
crossref_primary_10_1155_2021_9304925
crossref_primary_10_1016_j_est_2023_107063
crossref_primary_10_1016_j_jenvman_2025_125688
crossref_primary_10_1016_j_envpol_2025_126849
crossref_primary_10_1016_j_indcrop_2024_119934
crossref_primary_10_3390_s24216815
crossref_primary_10_1007_s42979_024_02828_y
crossref_primary_10_1016_j_ress_2023_109141
crossref_primary_10_3390_app131810157
crossref_primary_10_1016_j_engappai_2022_105445
crossref_primary_10_1007_s11663_024_03191_2
crossref_primary_10_1001_jamanetworkopen_2024_50260
crossref_primary_10_3390_rs15102626
crossref_primary_10_1007_s00521_021_06440_6
crossref_primary_10_3390_s22093234
crossref_primary_10_1016_j_desal_2025_119041
crossref_primary_10_3390_f13091350
crossref_primary_10_1016_j_infrared_2023_104653
crossref_primary_10_1016_j_jbi_2023_104581
crossref_primary_10_1007_s13369_024_09034_1
crossref_primary_10_3390_a17020078
crossref_primary_10_1016_j_buildenv_2023_110047
crossref_primary_10_1016_j_compag_2024_109062
crossref_primary_10_3390_buildings14092894
crossref_primary_10_1016_j_identj_2025_100883
crossref_primary_10_1016_j_future_2022_08_007
crossref_primary_10_1007_s41348_023_00784_y
crossref_primary_10_1016_j_agrformet_2022_109275
crossref_primary_10_1007_s13206_024_00186_8
crossref_primary_10_1016_j_asoc_2022_109266
crossref_primary_10_1016_j_engappai_2025_111425
crossref_primary_10_1109_JSEN_2025_3545035
crossref_primary_10_3390_healthcare12242527
crossref_primary_10_1016_j_jvs_2025_06_023
crossref_primary_10_1088_1742_6596_2835_1_012011
crossref_primary_10_1177_10775463241276645
crossref_primary_10_1061_AJRUA6_RUENG_1632
crossref_primary_10_1111_aogs_14623
crossref_primary_10_2118_217452_PA
crossref_primary_10_1016_j_mtcomm_2025_112282
crossref_primary_10_1108_SASBE_12_2024_0558
crossref_primary_10_1016_j_compbiomed_2023_107723
crossref_primary_10_1007_s42114_024_01113_z
crossref_primary_10_1016_j_cej_2024_156687
crossref_primary_10_1016_j_ress_2025_110885
crossref_primary_10_1007_s10726_025_09920_5
crossref_primary_10_1016_j_eswa_2025_128461
crossref_primary_10_1016_j_jobe_2023_106263
crossref_primary_10_1016_j_aiepr_2025_06_002
crossref_primary_10_1016_j_snb_2024_136924
crossref_primary_10_1149_1945_7111_adeb2c
crossref_primary_10_1002_admt_202301316
crossref_primary_10_1016_j_ijhydene_2024_08_257
crossref_primary_10_1016_j_jhazmat_2024_133560
crossref_primary_10_3390_make5030057
crossref_primary_10_1016_j_ejrh_2025_102651
crossref_primary_10_1016_j_compbiomed_2023_106649
crossref_primary_10_1016_j_oceaneng_2025_121589
crossref_primary_10_1016_j_wasman_2024_12_034
crossref_primary_10_1177_21582440241266370
crossref_primary_10_1016_j_ecolind_2025_113572
crossref_primary_10_1038_s43247_025_02624_3
crossref_primary_10_1039_D4EW00111G
crossref_primary_10_7717_peerj_cs_2474
crossref_primary_10_1038_s41545_024_00361_2
crossref_primary_10_1007_s11356_023_30443_6
crossref_primary_10_1111_ijfs_16915
crossref_primary_10_3390_diagnostics12061396
crossref_primary_10_1007_s11042_024_18280_2
crossref_primary_10_1108_ACMM_12_2023_2935
crossref_primary_10_1109_ACCESS_2020_3032173
crossref_primary_10_1016_j_ijdrr_2025_105204
crossref_primary_10_1061__ASCE_SU_1943_5428_0000411
crossref_primary_10_1016_j_engstruct_2025_121175
crossref_primary_10_1109_ACCESS_2022_3170897
crossref_primary_10_1016_j_childyouth_2024_107644
crossref_primary_10_3389_fbioe_2022_1097363
crossref_primary_10_1002_smll_202204719
crossref_primary_10_1016_j_ymeth_2022_08_002
crossref_primary_10_1109_TVLSI_2025_3530956
crossref_primary_10_1016_j_pss_2024_105894
crossref_primary_10_1016_j_scico_2024_103140
crossref_primary_10_1016_j_ijnonlinmec_2024_104857
crossref_primary_10_1016_j_jnoncrysol_2023_122693
crossref_primary_10_1016_j_powtec_2023_118480
crossref_primary_10_1145_3733051
crossref_primary_10_1007_s42979_023_02208_y
crossref_primary_10_3390_f16010065
crossref_primary_10_1016_j_scitotenv_2024_171556
crossref_primary_10_1016_j_undsp_2023_01_006
crossref_primary_10_1007_s41870_020_00592_9
crossref_primary_10_1109_ACCESS_2024_3442979
crossref_primary_10_1016_j_ijepes_2023_109579
crossref_primary_10_1109_TIM_2024_3375980
crossref_primary_10_1038_s41598_023_50164_7
crossref_primary_10_3390_su151914357
crossref_primary_10_3390_electronics13244905
crossref_primary_10_1038_s41598_025_12129_w
crossref_primary_10_3390_s21196412
crossref_primary_10_1007_s11227_023_05817_9
crossref_primary_10_1038_s41598_024_54990_1
crossref_primary_10_1016_j_saa_2024_125608
crossref_primary_10_1016_j_ejim_2025_02_009
crossref_primary_10_1007_s10115_025_02533_z
crossref_primary_10_3390_f14030616
crossref_primary_10_3390_su16145901
crossref_primary_10_1016_j_bspc_2025_107987
crossref_primary_10_1016_j_cie_2024_110590
crossref_primary_10_1063_5_0136830
crossref_primary_10_1109_ACCESS_2023_3326075
crossref_primary_10_1177_10790632231200838
crossref_primary_10_1093_jigpal_jzae020
crossref_primary_10_3390_s23239550
crossref_primary_10_1016_j_apenergy_2024_123673
crossref_primary_10_1029_2022WR032395
crossref_primary_10_1016_j_ress_2022_108753
crossref_primary_10_1016_j_socscimed_2025_117690
crossref_primary_10_1007_s12145_024_01582_2
crossref_primary_10_3390_math11143204
crossref_primary_10_1134_S0040579523070102
crossref_primary_10_3390_ijms26178423
crossref_primary_10_1016_j_ndteint_2022_102782
crossref_primary_10_1186_s12871_025_02987_2
crossref_primary_10_1016_j_enbenv_2025_02_001
crossref_primary_10_3390_axioms11080374
crossref_primary_10_3390_rs13224577
crossref_primary_10_1016_j_autcon_2023_104767
crossref_primary_10_3390_agronomy13051277
crossref_primary_10_1016_j_oceaneng_2023_115271
crossref_primary_10_1016_j_jhydrol_2025_133506
crossref_primary_10_1016_j_jmapro_2025_07_083
crossref_primary_10_3390_su17104287
crossref_primary_10_1007_s44291_025_00054_1
crossref_primary_10_3390_s21248378
crossref_primary_10_1016_j_vibspec_2025_103816
crossref_primary_10_1007_s11468_025_02781_3
crossref_primary_10_1016_j_bonr_2024_101821
crossref_primary_10_3390_app15169209
crossref_primary_10_3390_s25175380
crossref_primary_10_1016_j_jenvman_2024_121295
crossref_primary_10_1007_s40747_022_00938_9
crossref_primary_10_1016_j_enbuild_2025_116251
crossref_primary_10_1016_j_energy_2024_133863
crossref_primary_10_1016_j_saa_2025_126934
crossref_primary_10_1016_j_neuri_2021_100034
crossref_primary_10_1016_j_rineng_2025_105715
crossref_primary_10_1016_j_asoc_2024_112088
crossref_primary_10_1002_ece3_70003
crossref_primary_10_3389_fpubh_2024_1414209
crossref_primary_10_3390_coatings13061060
crossref_primary_10_1016_j_ress_2024_110148
crossref_primary_10_1016_j_jss_2024_112109
crossref_primary_10_1177_00405175231162643
crossref_primary_10_1016_j_epsr_2023_109486
crossref_primary_10_1016_j_seizure_2024_03_013
crossref_primary_10_1088_1741_2552_ad5b19
crossref_primary_10_1016_j_eswa_2024_124871
crossref_primary_10_1016_j_imavis_2024_105081
crossref_primary_10_3758_s13428_025_02718_y
crossref_primary_10_1007_s11069_025_07317_w
crossref_primary_10_1016_j_psep_2025_107594
crossref_primary_10_1155_2024_4616609
crossref_primary_10_1016_j_jallcom_2023_172664
crossref_primary_10_1177_03019233251356229
crossref_primary_10_1109_TIM_2025_3597675
crossref_primary_10_1016_j_ress_2025_111309
crossref_primary_10_1016_j_cma_2024_116812
crossref_primary_10_1007_s42979_023_01840_y
crossref_primary_10_1016_j_rse_2024_114026
crossref_primary_10_3390_rs17121974
crossref_primary_10_1080_10837450_2023_2231074
crossref_primary_10_3390_jpm12050768
crossref_primary_10_1016_j_health_2022_100121
crossref_primary_10_3390_a17030108
crossref_primary_10_3390_polym15051324
crossref_primary_10_1016_j_asoc_2024_112185
crossref_primary_10_1088_1361_6501_abc6e3
crossref_primary_10_1016_j_jgsce_2025_205782
crossref_primary_10_1016_j_jlumin_2025_121388
crossref_primary_10_1007_s42243_024_01198_2
crossref_primary_10_1007_s41939_023_00220_6
crossref_primary_10_3390_a16040182
crossref_primary_10_3390_jimaging10060131
crossref_primary_10_1016_j_eswa_2024_124780
crossref_primary_10_1109_ACCESS_2024_3457922
crossref_primary_10_3390_mi13081352
crossref_primary_10_1109_ACCESS_2025_3584890
crossref_primary_10_3390_land13111903
crossref_primary_10_1007_s11042_023_16423_5
crossref_primary_10_3390_app13053125
crossref_primary_10_3390_s25144264
crossref_primary_10_1007_s13369_024_09284_z
crossref_primary_10_3390_app9183723
crossref_primary_10_1016_j_istruc_2024_107649
crossref_primary_10_1097_j_jcrs_0000000000001419
crossref_primary_10_1039_D5AY00304K
crossref_primary_10_1117_1_NPh_9_2_025003
crossref_primary_10_1016_j_compstruc_2023_107114
crossref_primary_10_1016_j_jss_2025_112459
crossref_primary_10_1016_j_psep_2024_05_036
crossref_primary_10_3390_biomimetics10090567
crossref_primary_10_1007_s12040_023_02217_8
crossref_primary_10_3390_s22176709
crossref_primary_10_1007_s10479_022_04531_8
crossref_primary_10_1007_s40430_025_05458_4
crossref_primary_10_1016_j_pnmrs_2025_101562
crossref_primary_10_1007_s13246_022_01106_6
crossref_primary_10_1038_s41529_025_00638_y
crossref_primary_10_1038_s41598_025_07450_3
crossref_primary_10_1016_j_jenvman_2025_127132
crossref_primary_10_1002_minf_202400193
crossref_primary_10_1007_s10895_023_03499_3
crossref_primary_10_1016_j_surfcoat_2025_132494
crossref_primary_10_1016_j_xjmad_2025_100116
crossref_primary_10_1049_tje2_12362
crossref_primary_10_1093_bib_bbae380
crossref_primary_10_3390_e27010083
crossref_primary_10_1007_s10044_024_01369_7
crossref_primary_10_3390_f16050783
crossref_primary_10_3390_su17136193
crossref_primary_10_1080_15599612_2023_2225573
crossref_primary_10_1016_j_habitatint_2025_103518
crossref_primary_10_1109_TED_2024_3474618
crossref_primary_10_1016_j_jafr_2024_101605
crossref_primary_10_1021_acs_analchem_5c03126
crossref_primary_10_1007_s11416_021_00385_z
crossref_primary_10_1016_j_gsme_2025_09_006
crossref_primary_10_1016_j_tust_2024_105802
crossref_primary_10_1038_s41598_025_12026_2
crossref_primary_10_1016_j_jhazmat_2022_128807
crossref_primary_10_1186_s40359_025_02768_z
crossref_primary_10_1007_s12265_024_10534_6
crossref_primary_10_1007_s12652_025_04978_0
crossref_primary_10_1007_s40747_024_01399_y
crossref_primary_10_1016_j_ast_2025_110251
crossref_primary_10_1038_s41598_025_09957_1
crossref_primary_10_1063_5_0142198
crossref_primary_10_1007_s40996_023_01138_2
crossref_primary_10_1049_ell2_13086
crossref_primary_10_1007_s11116_023_10447_4
crossref_primary_10_1016_j_csite_2024_105048
crossref_primary_10_2478_remav_2025_0001
crossref_primary_10_1371_journal_pone_0297615
crossref_primary_10_1007_s10489_022_03314_9
crossref_primary_10_1016_j_irfa_2023_102953
crossref_primary_10_1109_TPWRS_2024_3443105
crossref_primary_10_3390_rs14153536
crossref_primary_10_3390_f15122136
crossref_primary_10_1080_00102202_2025_2540313
crossref_primary_10_3389_fdata_2024_1402384
crossref_primary_10_1002_int_22471
crossref_primary_10_1016_j_ijsolstr_2025_113637
crossref_primary_10_1007_s10207_023_00684_0
crossref_primary_10_3390_rs15184534
crossref_primary_10_3390_app15010352
crossref_primary_10_1038_s41598_024_83902_6
crossref_primary_10_3390_s21010002
crossref_primary_10_1016_j_imed_2024_01_001
crossref_primary_10_1016_j_microc_2024_111396
crossref_primary_10_1177_01445987251365291
crossref_primary_10_3390_rs17010105
crossref_primary_10_1016_j_inffus_2023_102023
crossref_primary_10_1093_bib_bbae674
crossref_primary_10_3390_su142416692
crossref_primary_10_3390_agriengineering6040233
crossref_primary_10_1007_s11356_024_32158_8
crossref_primary_10_1007_s40846_023_00777_0
crossref_primary_10_1086_733509
crossref_primary_10_1109_TIM_2022_3165740
crossref_primary_10_3390_su17093804
crossref_primary_10_1007_s10661_025_14461_0
crossref_primary_10_1016_j_ress_2023_109736
crossref_primary_10_12688_f1000research_75469_1
crossref_primary_10_3390_computation10070104
crossref_primary_10_1088_1361_6668_ace3fb
crossref_primary_10_1007_s11760_021_01907_4
crossref_primary_10_3390_agriculture15010071
crossref_primary_10_12688_f1000research_75469_2
crossref_primary_10_3390_app112412135
crossref_primary_10_1111_nph_19955
crossref_primary_10_1371_journal_pone_0292185
crossref_primary_10_3390_s24041159
crossref_primary_10_1016_j_imu_2020_100508
crossref_primary_10_1016_j_jag_2024_103986
crossref_primary_10_3390_su142215180
crossref_primary_10_3389_fpubh_2022_959667
crossref_primary_10_1016_j_heliyon_2024_e40748
crossref_primary_10_3390_app15116312
crossref_primary_10_1002_ente_202300735
crossref_primary_10_1016_j_ocemod_2025_102601
crossref_primary_10_3390_diagnostics12092132
crossref_primary_10_1016_j_cclet_2024_109870
crossref_primary_10_1371_journal_pone_0276814
crossref_primary_10_1007_s42417_022_00780_w
crossref_primary_10_1016_j_envpol_2023_121484
crossref_primary_10_1007_s00542_024_05776_y
crossref_primary_10_1007_s40964_025_01276_1
crossref_primary_10_1016_j_apenergy_2023_121439
crossref_primary_10_1063_5_0277974
crossref_primary_10_1016_j_envres_2025_121916
crossref_primary_10_32604_cmc_2021_016907
crossref_primary_10_1016_j_inffus_2024_102424
crossref_primary_10_1109_TIA_2023_3234935
crossref_primary_10_1007_s00170_024_13311_6
crossref_primary_10_1109_JSEN_2025_3596131
crossref_primary_10_1038_s41598_025_18172_x
crossref_primary_10_1007_s13198_025_02951_w
crossref_primary_10_3390_brainsci11070902
crossref_primary_10_1038_s41598_025_13634_8
crossref_primary_10_1080_10298436_2023_2270765
crossref_primary_10_1016_j_heliyon_2023_e21828
crossref_primary_10_3390_agriengineering5040145
crossref_primary_10_1016_j_coal_2023_104294
crossref_primary_10_1049_gtd2_12610
crossref_primary_10_1016_j_cie_2025_110967
crossref_primary_10_1021_acssensors_5c01439
Cites_doi 10.1016/j.patrec.2015.08.002
10.1162/089976699300016007
10.1016/j.patcog.2015.03.009
10.1109/TPAMI.2009.187
10.1162/NECO_a_00532
10.1109/TNNLS.2012.2199516
10.1214/aos/1032181158
10.1162/089976698300017197
10.1016/j.csda.2009.04.009
10.1109/TKDE.2017.2740926
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2019.2912815
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 1594
ExternalDocumentID 10_1109_TKDE_2019_2912815
8698831
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: 106-2410-H-006-020
  funderid: 10.13039/501100004663
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-d6dbcc9e2ad2a26a65fd2ef5a30d7973c2f99f9383a9ccc7f7a250030c931263
IEDL.DBID RIE
ISICitedReferencesCount 675
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000546878300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Mon Jun 30 04:50:31 EDT 2025
Sat Nov 29 04:46:48 EST 2025
Tue Nov 18 22:28:51 EST 2025
Wed Aug 27 02:36:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-d6dbcc9e2ad2a26a65fd2ef5a30d7973c2f99f9383a9ccc7f7a250030c931263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8132-0214
PQID 2422015673
PQPubID 85438
PageCount 9
ParticipantIDs proquest_journals_2422015673
crossref_citationtrail_10_1109_TKDE_2019_2912815
crossref_primary_10_1109_TKDE_2019_2912815
ieee_primary_8698831
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References bengio (ref2) 2004; 5
ref12
witten (ref3) 2011
kohavi (ref13) 1995
ref15
ref14
vanwinckelen (ref5) 2012
demšar (ref7) 2006; 7
ref10
lichman (ref17) 2013
ref1
ref18
ref8
wang (ref11) 2014; 26
cramer (ref16) 1946
ref9
ref6
bouckaert (ref4) 2003
References_xml – ident: ref12
  doi: 10.1016/j.patrec.2015.08.002
– ident: ref10
  doi: 10.1162/089976699300016007
– year: 2011
  ident: ref3
  publication-title: Data Mining Practical Machine Learning Tools and Techniques
– start-page: 39
  year: 2012
  ident: ref5
  article-title: On estimating model accuracy with repeated cross-validation
  publication-title: Proc Belgian-Dutch Conf Mach Learn
– start-page: 1137
  year: 1995
  ident: ref13
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
  publication-title: Proc Int Joint Conf Artif Intell
– ident: ref8
  doi: 10.1016/j.patcog.2015.03.009
– year: 1946
  ident: ref16
  publication-title: Mathematical Methods of Statistics
– volume: 7
  start-page: 1
  year: 2006
  ident: ref7
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– ident: ref14
  doi: 10.1109/TPAMI.2009.187
– volume: 26
  start-page: 208
  year: 2014
  ident: ref11
  article-title: Blocked 3×2 cross-validated t-Test for comparing supervised classification learning algorithms
  publication-title: Neural Comput
  doi: 10.1162/NECO_a_00532
– ident: ref18
  doi: 10.1109/TNNLS.2012.2199516
– ident: ref1
  doi: 10.1214/aos/1032181158
– ident: ref9
  doi: 10.1162/089976698300017197
– ident: ref6
  doi: 10.1016/j.csda.2009.04.009
– year: 2013
  ident: ref17
– ident: ref15
  doi: 10.1109/TKDE.2017.2740926
– volume: 5
  start-page: 1089
  year: 2004
  ident: ref2
  article-title: No unbiased estimator of the variance of k-fold cross-validation
  publication-title: J Mach Learn Res
– start-page: 51
  year: 2003
  ident: ref4
  article-title: Choosing between two learning algorithms based on calibrated tests
  publication-title: Proc 20th Int Conf Mach Learn
SSID ssj0008781
Score 2.717646
Snippet It is popular to evaluate the performance of classification algorithms by k -fold cross validation. A reliable accuracy estimate will have a relatively small...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1586
SubjectTerms <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -fold cross validation
Accuracy
Algorithms
Classification
Classification algorithms
Correlation
Dependence
Dependency relationship
Estimates
Forests
Journalists
Performance evaluation
Reliability
reliable estimate
replication
Roads
Statistical analysis
Statistical methods
Testing
Urban areas
Variance
Vocabulary development
Title Reliable Accuracy Estimates from k-Fold Cross Validation
URI https://ieeexplore.ieee.org/document/8698831
https://www.proquest.com/docview/2422015673
Volume 32
WOSCitedRecordID wos000546878300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5UPOjBt1hf5OBJ3Hab7G4yx1JbBEE8FPG2xNkERG2ltoL_3ky6LYoieNtDAmFmJzOTmW8-gDPpLDrjgiF5rZKMjE_QZSap2mQyF1IioymSTeibG3N_j7dLcLHAwjjnYvOZa_JnrOVXI5ryU1nLFGgMg6aXtdYzrNbi1jU6EpKG7CLkRCrTdQWznWJrcH3Z4yYubErkwlH-zQdFUpUfN3F0L_3N_x1sCzbqMFJ0ZnrfhiU33IHNOUWDqC12B9a_zBvcBcMNyIyVEh2i6djSh-gFE3_heFMw0EQ8Jf3RcyW6fG5xF2L0GeXSHgz6vUH3KqmpExIK_nuSME0UETppK2llYYvcV9L53Kq00qgVSY_oMejCIhFpr22IhYLBE6q2LNQ-rAxHQ3cAwktboFfGU2UzLdUDylyFKNAW3uVUpA1I57IsqR4rzuwWz2VML1IsWfwli7-sxd-A88WW19lMjb8W77K8FwtrUTfgeK6wsra6tzKEG5Kh4Vod_r7rCNYk58uxge8YVibjqTuBVXqfPL6NT-MP9QmS08ca
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RTxsxDLYqQBo8UFZAFBjLw56mHVyTu0v8iFirorJqD9XUt1PmSyQEtKi0SPx74vRagTZN2ts9JFJkn2M79ucP4It0Fp1xwZC8VklGxifoMpNUHTKZCymR0RTJJvRwaMZj_NmAb2ssjHMuNp-5c_6MtfxqSgt-KrswBRrDoOnNPMtkZ4nWWt-7RkdK0pBfhKxIZbquYXZSvBgNvne5jQvPJXLpKH_nhSKtyh93cXQwveb_HW0PdutAUlwuNf8RGm7SguaKpEHUNtuCnTcTB_fBcAsyo6XEJdFiZulFdIORP3DEKRhqIu6S3vS-Eld8bvErROlL0qUDGPW6o6t-UpMnJBQ8-DxhoigidNJW0srCFrmvpPO5VWmlUSuSHtFj0IZFItJe2xANBZMnVB1ZqEPYmEwn7giEl7ZAr4ynymZaqt8ocxXiQFt4l1ORtiFdybKkerA481vclzHBSLFk8Zcs_rIWfxu-rrc8Lqdq_GvxPst7vbAWdRtOVwora7t7KkPAIRkcrtXx33d9hg_90Y-b8uZ6ODiBbcnZc2znO4WN-WzhPsEWPc9vn2Zn8ed6BRrJymE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliable+Accuracy+Estimates+from+k+-Fold+Cross+Validation&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Wong%2C+Tzu-Tsung&rft.au=Yeh%2C+Po-Yang&rft.date=2020-08-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=32&rft.issue=8&rft.spage=1586&rft.epage=1594&rft_id=info:doi/10.1109%2FTKDE.2019.2912815&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2019_2912815
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon