Duality and Optimization for Generalized Multi-Hop MIMO Amplify-and-Forward Relay Networks With Linear Constraints

We consider a generalized multi-hop MIMO amplify-and-forward (AF) relay network with multiple sources/destinations and arbitrarily number of relays. We establish two dualities and the corresponding dual transformations between such a network and its dual, respectively, under single-network linear co...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on signal processing Ročník 61; číslo 9; s. 2356 - 2365
Hlavní autori: An Liu, Lau, V. K. N., Youjian Liu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.05.2013
Institute of Electrical and Electronics Engineers
Predmet:
ISSN:1053-587X, 1941-0476
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider a generalized multi-hop MIMO amplify-and-forward (AF) relay network with multiple sources/destinations and arbitrarily number of relays. We establish two dualities and the corresponding dual transformations between such a network and its dual, respectively, under single-network linear constraint and per-hop linear constraint. A unified optimization framework is proposed to find a stationary point for an important class of nonconvex optimization problems of AF relay networks based on a local Lagrange dual method, where the primal algorithm only finds a stationary point for the inner loop problem of maximizing the Lagrangian w.r.t. the primal variables. The input covariance matrices are shown to satisfy a polite water-filling structure at a stationary point of the inner loop problem. The duality and polite water-filling are exploited to design fast primal algorithms. Compared with the existing algorithms, the proposed optimization framework with duality-based primal algorithms can be used to solve more general problems with lower computation cost.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2013.2245126