Objective Space-Based Population Generation to Accelerate Evolutionary Algorithms for Large-Scale Many-Objective Optimization

The generation and updating of solutions, e.g., crossover and mutation, of many existing evolutionary algorithms directly operate on decision variables. The operators are very time consuming for large-scale and many-objective optimization problems. Different from them, this work proposes an objectiv...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on evolutionary computation Ročník 27; číslo 2; s. 326 - 340
Hlavní autoři: Deng, Qi, Kang, Qi, Zhang, Liang, Zhou, MengChu, An, Jing
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1089-778X, 1941-0026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The generation and updating of solutions, e.g., crossover and mutation, of many existing evolutionary algorithms directly operate on decision variables. The operators are very time consuming for large-scale and many-objective optimization problems. Different from them, this work proposes an objective space-based population generation method to obtain new individuals in the objective space and then map them to decision variable space and synthesize new solutions. It introduces three new objective vector generation methods and uses a linear mapping method to tightly connect objective space and decision one to jointly determine new-generation solutions. A loop can be formed directly between two spaces, which can generate new solutions faster and use more feedback information in the objective space. In order to demonstrate the performance of the proposed algorithm, this work performs a series of empirical experiments involving both large-scale decision variables and many objectives. Compared with the state-of-the-art traditional and large-scale algorithms, the proposed method exceeds or at least reaches its peers' best level in overall performance while achieving great saving in execution time.
AbstractList The generation and updating of solutions, e.g., crossover and mutation, of many existing evolutionary algorithms directly operate on decision variables. The operators are very time consuming for large-scale and many-objective optimization problems. Different from them, this work proposes an objective space-based population generation method to obtain new individuals in the objective space and then map them to decision variable space and synthesize new solutions. It introduces three new objective vector generation methods and uses a linear mapping method to tightly connect objective space and decision one to jointly determine new-generation solutions. A loop can be formed directly between two spaces, which can generate new solutions faster and use more feedback information in the objective space. In order to demonstrate the performance of the proposed algorithm, this work performs a series of empirical experiments involving both large-scale decision variables and many objectives. Compared with the state-of-the-art traditional and large-scale algorithms, the proposed method exceeds or at least reaches its peers' best level in overall performance while achieving great saving in execution time.
Author Kang, Qi
Zhou, MengChu
Zhang, Liang
Deng, Qi
An, Jing
Author_xml – sequence: 1
  givenname: Qi
  orcidid: 0000-0003-3154-6711
  surname: Deng
  fullname: Deng, Qi
  email: 1652365@tongji.edu.cn
  organization: Department of Control Science and Engineering, Tongji University, Shanghai, China
– sequence: 2
  givenname: Qi
  orcidid: 0000-0001-7128-6913
  surname: Kang
  fullname: Kang, Qi
  email: qkang@tongji.edu.cn
  organization: Department of Control Science and Engineering, Tongji University, Shanghai, China
– sequence: 3
  givenname: Liang
  surname: Zhang
  fullname: Zhang, Liang
  email: rainbow_zhli@tongji.edu.cn
  organization: Department of Control Science and Engineering, Tongji University, Shanghai, China
– sequence: 4
  givenname: MengChu
  orcidid: 0000-0002-5408-8752
  surname: Zhou
  fullname: Zhou, MengChu
  email: zhou@njit.edu
  organization: ECE Department, New Jersey Institute of Technology, Newark, NJ, USA
– sequence: 5
  givenname: Jing
  orcidid: 0000-0002-3946-3526
  surname: An
  fullname: An, Jing
  email: anjing_tj@163.com
  organization: School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai, China
BookMark eNp9kEtLw0AUhQepoK3-AHEz4Dp1Hs1jlrXUKlQqtIq7cDO50SlpJk6mQgX_u4kVBReu7oN77uF8fdKrbIWEnHE25Jypy9X0cTIUTIih5FGU8PCAHHM14gFjIuq1PUtUEMfJ0xHpN82aMT4KuTomH4tsjdqbN6TLGjQGV9BgTu9tvS3BG1vRGVbo9q23dKw1lt2MdPpmy223B7ej4_LZOuNfNg0trKNzcM8YLDWUSO-g2gW_Novam415__p4Qg4LKBs8_a4D8nA9XU1ugvlidjsZzwMtlPRBzrXIgHENssj1qM2XjXLgElQWJaFkRUuA6Ri1hgw5QiLjTAsd5ZDHKpcgB-Ri_7d29nWLjU_Xduuq1jIVsZKCJaEI2yu-v9LONo3DIq2d2bTpUs7SjnLaUU47yuk35VYT_9Fo47-yeQem_Fd5vlcaRPxxUnEkhEjkJ7AJj4Y
CODEN ITEVF5
CitedBy_id crossref_primary_10_32604_cmes_2023_026671
crossref_primary_10_1109_TASE_2024_3490039
crossref_primary_10_1016_j_ins_2023_119867
crossref_primary_10_1109_JIOT_2023_3326567
crossref_primary_10_1109_JIOT_2024_3352658
crossref_primary_10_3390_app13010602
crossref_primary_10_1109_TCYB_2024_3390947
crossref_primary_10_1007_s40747_025_01835_7
crossref_primary_10_1016_j_ins_2024_121077
crossref_primary_10_1016_j_eswa_2024_126060
crossref_primary_10_1109_JAS_2025_125111
crossref_primary_10_1016_j_eswa_2023_122465
crossref_primary_10_1016_j_ins_2025_121973
crossref_primary_10_1016_j_swevo_2025_102149
crossref_primary_10_1109_TIV_2023_3336964
crossref_primary_10_1109_TITS_2024_3486152
crossref_primary_10_1016_j_swevo_2024_101752
crossref_primary_10_1109_TEVC_2024_3355221
crossref_primary_10_1002_cpe_7530
crossref_primary_10_1016_j_eswa_2025_129328
crossref_primary_10_1109_TASE_2024_3440169
crossref_primary_10_1109_JIOT_2023_3291367
crossref_primary_10_1109_THMS_2025_3528629
crossref_primary_10_1002_cpe_7131
crossref_primary_10_1109_TASE_2024_3394715
crossref_primary_10_1109_TASE_2025_3527479
crossref_primary_10_1109_TIV_2023_3238023
crossref_primary_10_1016_j_iot_2025_101596
crossref_primary_10_1109_TSMC_2024_3454051
crossref_primary_10_1016_j_swevo_2024_101622
crossref_primary_10_1007_s10462_022_10230_4
crossref_primary_10_1109_TASE_2025_3553115
crossref_primary_10_1016_j_swevo_2023_101466
Cites_doi 10.1109/TEVC.2014.2373386
10.1609/aaai.v31i1.10664
10.1109/TCYB.2018.2849569
10.1016/j.csda.2004.11.011
10.1109/ACCESS.2019.2906121
10.1109/TEVC.2021.3113923
10.1109/CEC.2001.934314
10.1007/s10489-017-1133-7
10.1109/TEVC.2021.3119933
10.1109/TEVC.2004.826069
10.1109/KSE.2011.16
10.1109/TEVC.2020.2981949
10.1109/TEVC.2020.2978158
10.1109/TEVC.2011.2112662
10.1109/ICDCS.2018.00031
10.1007/11539117_147
10.1016/j.ins.2008.02.017
10.1109/TEVC.2013.2281533
10.1109/TNNLS.2018.2846646
10.1007/3-540-58484-6_269
10.1109/TEVC.2021.3118593
10.1109/MCI.2017.2742868
10.1016/j.swevo.2020.100684
10.1109/TCYB.2019.2906383
10.1109/TEVC.2017.2694221
10.1109/TEVC.2017.2704782
10.1080/01621459.1961.10482090
10.1109/TEVC.2007.892759
10.1023/A:1014463014150
10.1109/TCYB.2020.2979930
10.1109/TCYB.2016.2600577
10.1109/TCSS.2021.3055823
10.1109/TEVC.2015.2455812
10.1109/TEVC.2016.2600642
10.1109/4235.996017
10.1016/j.asoc.2020.106120
10.1109/TEVC.2008.925798
10.1109/JAS.2021.1003817
10.3390/en11123526
10.1016/j.ins.2020.03.111
10.1109/TEVC.2019.2896002
10.1109/TEVC.2015.2395073
10.1109/TII.2017.2676000
10.1016/j.ins.2018.10.007
10.1007/s40747-018-0080-1
10.1007/978-3-642-15871-1_31
10.1162/EVCO_a_00128
10.1109/TSMC.2015.2507161
10.1109/JAS.2021.1004129
10.1109/CEC.2010.5586127
10.1109/TSMCB.2003.817095
10.1109/CEC.2013.6557903
10.1109/TEVC.2013.2281535
10.1109/CEC.2007.4424929
10.1007/s00500-019-03875-x
10.1109/TEVC.2021.3063606
10.1109/TEVC.2013.2281543
10.1016/j.swevo.2011.02.002
10.1007/978-3-319-15934-8_9
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2022.3166815
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 340
ExternalDocumentID 10_1109_TEVC_2022_3166815
9762228
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51775385; 61703279
  funderid: 10.13039/501100001809
– fundername: Shanghai Municipal Science and Technology Major Project
  grantid: 2021SHZDZX0100
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 10.13039/501100012226
– fundername: Shanghai Industrial Collaborative Science and Technology Innovation Project
  grantid: 2021-cyxt2-kj10
– fundername: Strategy Research Project of Artificial Intelligence Algorithms of Ministry of Education of China
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-d1c2ba01ca3fdc4668b4da13a9b68530f1090c7eccabe1ea837bc2c6dad79d3a3
IEDL.DBID RIE
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001011410900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Mon Jun 30 02:23:41 EDT 2025
Tue Nov 18 22:18:52 EST 2025
Sat Nov 29 03:13:49 EST 2025
Wed Aug 27 02:49:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-d1c2ba01ca3fdc4668b4da13a9b68530f1090c7eccabe1ea837bc2c6dad79d3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5408-8752
0000-0003-3154-6711
0000-0001-7128-6913
0000-0002-3946-3526
PQID 2793208525
PQPubID 85418
PageCount 15
ParticipantIDs crossref_primary_10_1109_TEVC_2022_3166815
ieee_primary_9762228
proquest_journals_2793208525
crossref_citationtrail_10_1109_TEVC_2022_3166815
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref53
ref52
ref11
ref10
ref54
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
Bellman (ref9) 1957
ref43
Cai (ref17) 2002; 33
ref49
ref8
ref7
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Deng (ref55) 2022
Zhang (ref58) 2008
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref11
  doi: 10.1109/TEVC.2014.2373386
– year: 2008
  ident: ref58
  article-title: Multiobjective optimization test instances for the CEC 2009 special session and competition
– ident: ref38
  doi: 10.1609/aaai.v31i1.10664
– ident: ref31
  doi: 10.1109/TCYB.2018.2849569
– ident: ref25
  doi: 10.1016/j.csda.2004.11.011
– ident: ref33
  doi: 10.1109/ACCESS.2019.2906121
– ident: ref5
  doi: 10.1109/TEVC.2021.3113923
– ident: ref8
  doi: 10.1109/CEC.2001.934314
– ident: ref52
  doi: 10.1007/s10489-017-1133-7
– ident: ref40
  doi: 10.1109/TEVC.2021.3119933
– ident: ref18
  doi: 10.1109/TEVC.2004.826069
– ident: ref29
  doi: 10.1109/KSE.2011.16
– ident: ref13
  doi: 10.1109/TEVC.2020.2981949
– ident: ref14
  doi: 10.1109/TEVC.2020.2978158
– ident: ref19
  doi: 10.1109/TEVC.2011.2112662
– ident: ref44
  doi: 10.1109/ICDCS.2018.00031
– volume-title: Dynamic Programming
  year: 1957
  ident: ref9
– ident: ref20
  doi: 10.1007/11539117_147
– ident: ref23
  doi: 10.1016/j.ins.2008.02.017
– ident: ref12
  doi: 10.1109/TEVC.2013.2281533
– volume-title: Supplementary Material of ‘Swarm-Intelligence-and-Evolutionary-Computation
  year: 2022
  ident: ref55
– ident: ref62
  doi: 10.1109/TNNLS.2018.2846646
– ident: ref15
  doi: 10.1007/3-540-58484-6_269
– ident: ref48
  doi: 10.1109/TEVC.2021.3118593
– ident: ref57
  doi: 10.1109/MCI.2017.2742868
– ident: ref37
  doi: 10.1016/j.swevo.2020.100684
– ident: ref47
  doi: 10.1109/TCYB.2019.2906383
– ident: ref27
  doi: 10.1109/TEVC.2017.2694221
– ident: ref35
  doi: 10.1109/TEVC.2017.2704782
– ident: ref60
  doi: 10.1080/01621459.1961.10482090
– ident: ref10
  doi: 10.1109/TEVC.2007.892759
– volume: 33
  start-page: 61
  issue: 1
  year: 2002
  ident: ref17
  article-title: Cooperative coevolutionary adaptive genetic algorithm in path planning of cooperative multi-mobile robot systems
  publication-title: J. Intell. Robot Syst.
  doi: 10.1023/A:1014463014150
– ident: ref39
  doi: 10.1109/TCYB.2020.2979930
– ident: ref61
  doi: 10.1109/TCYB.2016.2600577
– ident: ref2
  doi: 10.1109/TCSS.2021.3055823
– ident: ref41
  doi: 10.1109/TEVC.2015.2455812
– ident: ref42
  doi: 10.1109/TEVC.2016.2600642
– ident: ref3
  doi: 10.1109/4235.996017
– ident: ref43
  doi: 10.1016/j.asoc.2020.106120
– ident: ref56
  doi: 10.1109/TEVC.2008.925798
– ident: ref7
  doi: 10.1109/JAS.2021.1003817
– ident: ref32
  doi: 10.3390/en11123526
– ident: ref53
  doi: 10.1016/j.ins.2020.03.111
– ident: ref36
  doi: 10.1109/TEVC.2019.2896002
– ident: ref50
  doi: 10.1109/TEVC.2015.2395073
– ident: ref28
  doi: 10.1109/TII.2017.2676000
– ident: ref45
  doi: 10.1016/j.ins.2018.10.007
– ident: ref49
  doi: 10.1007/s40747-018-0080-1
– ident: ref26
  doi: 10.1007/978-3-642-15871-1_31
– ident: ref54
  doi: 10.1162/EVCO_a_00128
– ident: ref1
  doi: 10.1109/TSMC.2015.2507161
– ident: ref6
  doi: 10.1109/JAS.2021.1004129
– ident: ref24
  doi: 10.1109/CEC.2010.5586127
– ident: ref30
  doi: 10.1109/TSMCB.2003.817095
– ident: ref16
  doi: 10.1109/CEC.2013.6557903
– ident: ref4
  doi: 10.1109/TEVC.2013.2281535
– ident: ref21
  doi: 10.1109/CEC.2007.4424929
– ident: ref34
  doi: 10.1007/s00500-019-03875-x
– ident: ref46
  doi: 10.1109/TEVC.2021.3063606
– ident: ref22
  doi: 10.1109/TEVC.2013.2281543
– ident: ref59
  doi: 10.1016/j.swevo.2011.02.002
– ident: ref51
  doi: 10.1007/978-3-319-15934-8_9
SSID ssj0014519
Score 2.6193097
Snippet The generation and updating of solutions, e.g., crossover and mutation, of many existing evolutionary algorithms directly operate on decision variables. The...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 326
SubjectTerms Approximation algorithms
Convergence
Decision variables decomposition
Evolutionary algorithms
Evolutionary computation
Genetic algorithms
Inverse problems
large-scale evolution
many-objective evolution
Multiple objective analysis
objective space mapping
Optimization
Sociology
Statistics
Title Objective Space-Based Population Generation to Accelerate Evolutionary Algorithms for Large-Scale Many-Objective Optimization
URI https://ieeexplore.ieee.org/document/9762228
https://www.proquest.com/docview/2793208525
Volume 27
WOSCitedRecordID wos001011410900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH6oeNCD1apYN3LwJEYzW6ZzrFLx4AYu9DZkGxe0lVoLHvzvvjeTjoIiCHPIIWEC31uTl_cB7AjnishIyZ3UMUdNTLhKHaq7lG0dxpEsClGSTaTn5-1eL7ucgr36LYxzriw-c_s0LO_y7cC80VHZAbpOOrCYhuk0ldVbrfrGgNqkVMX0GUaM7Z6_wQxEdnDdvT3CTDAMMUHFLRAD7jcfVJKq_LDEpXs5bvxvY4uw4MNI1qlwX4Ip129CY0LRwLzGNmH-W7_BJsxRaFl1Zl6Gjwv9WFk7doWJs-OH6NAsu6wZvVjVkrocjgasYwy6KOoswbpjL7Bq-M46T3eD4cPo_vmVYQDMTqm0nF8h9I6doaXhX7-5QPP07N99rsDNcff66IR7MgZuMCIYcRuYUCsRGBUV1sQEZWxVEKlMS3T5oqAKT5OSRGgXOIWJrzahkVbZNLORilZhpj_ouzVgIjFOZDbDUCiOTVJoIRVFohi54ZfoFogJPLnxncqJMOMpLzMWkeWEaE6I5h7RFuzWS16qNh1_TV4mCOuJHr0WbE5kIPeK_JqHaL-IxjRM1n9ftQFzxEBfFfNswsxo-Oa2YNaMEc7hdimjn6xU5hg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4FqAQcoA0gUmjrQ0-oBu_LyR4DCqJqCEiEKreVX0uL8kAhIHHof2dm11kiUSEh7cEHW2vpm6c9ng_gu3Auj4yU3Ekdc9TEhKumQ3WXsqXDOJJ5LgqyiWav1xoM0ssa_KjewjjniuIzd0jD4i7fTswDHZUdoeukA4slWEniOBTla63qzoAapZTl9CnGjK2Bv8MMRHrU7_w-wVwwDDFFxU0QB-6CFypoVV7Z4sLBnG6-b2sfYcMHkqxdIv8Jam5ch805SQPzOluH9YWOg3VYo-Cy7M28Bf8u9G1p79gVps6OH6NLs-yy4vRiZVPqYjibsLYx6KSotwTrPHqRVdMn1h7eTKZ_Z39G9wxDYNal4nJ-heA7do62hr_85gIN1Mi__NyG69NO_-SMezoGbjAmmHEbmFArERgV5dbEBGZsVRCpVEt0-iKnGk_TJJnQLnAKU19tQiOtss3URirageXxZOx2gYnEOJHaFIOhODZJroVUFIti7IZfohsg5vBkxvcqJ8qMYVbkLCLNCNGMEM08og04qJbclY063pq8RRBWEz16Ddify0DmVfk-C9GCEZFpmHz-_6pvsHrWP-9m3Z-9X3uwRnz0ZWnPPizPpg_uC3wwjwjt9Gshr8_Fwulf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Objective+Space-Based+Population+Generation+to+Accelerate+Evolutionary+Algorithms+for+Large-Scale+Many-Objective+Optimization&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Deng%2C+Qi&rft.au=Kang%2C+Qi&rft.au=Zhang%2C+Liang&rft.au=Zhou%2C+MengChu&rft.date=2023-04-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=27&rft.issue=2&rft.spage=326&rft.epage=340&rft_id=info:doi/10.1109%2FTEVC.2022.3166815&rft.externalDocID=9762228
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon