An Efficient Architecture and High-Throughput Implementation of CCSDS-123.0-B-2 Hybrid Entropy Coder Targeting Space-Grade SRAM FPGA Technology

Nowadays, hyperspectral imaging is recognized as cornerstone remote sensing technology. The explosive growth in image data volume and instrument data rates, compete with limited on-board storage and downlink bandwidth, making hyperspectral data compression a mission critical task. Recently, the cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems Jg. 58; H. 6; S. 5470 - 5482
Hauptverfasser: Chatziantoniou, Panagiotis, Tsigkanos, Antonis, Theodoropoulos, Dimitris, Kranitis, Nektarios, Paschalis, Antonis
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9251, 1557-9603
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nowadays, hyperspectral imaging is recognized as cornerstone remote sensing technology. The explosive growth in image data volume and instrument data rates, compete with limited on-board storage and downlink bandwidth, making hyperspectral data compression a mission critical task. Recently, the consultative committee for space data systems (CCSDS) extended the previous issue of the CCSDS-123.0 Recommended Standard for multi/hyperspectral image compression to provide Near-Lossless compression functionality. A key feature of the CCSDS-123.0-B-2 is the improved Hybrid Entropy Coder providing substantially better compression performance than the Issue 1 entropy coders at low bit rates. In this paper, we introduce a high-throughput hardware implementation of the CCSDS-123.0-B-2 Hybrid Entropy Coder. The introduced architecture exploits the systolic design pattern providing modularity and latency insensitivity in a deep and elastic pipeline, achieving constant throughput of 1 sample/cycle with small field programmable gate array (FPGA) resource footprint. This architecture is described in portable VHDL register-transfer level (RTL) and implemented, validated and demonstrated on a commercially available Xilinx KCU105 development board hosting a Xilinx Kintex Ultrascale XCKU040 SRAM FPGA, and thus, is directly transferable to the Xilinx Radiation Tolerant Kintex UltraScale XQRKU060 space-grade devices. Moreover, state-of-the-art SpaceFibre (ECSS-E-ST-50-11C) serial link interface and test equipment were used in the validation platform to emulate an on-board deployment. The introduced CCSDS-123.0-B-2 Hybrid Entropy Coder achieves a constant throughput performance of 305 MSamples/s. To the best of our knowledge, this is the first published fully-compliant architecture and high-throughput implementation of the CCSDS-123.0-B-2 Hybrid Entropy Coder, targeting space-grade FPGA technology.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2022.3173583