CoEdge: Cooperative DNN Inference With Adaptive Workload Partitioning Over Heterogeneous Edge Devices

Recent advances in artificial intelligence have driven increasing intelligent applications at the network edge, such as smart home, smart factory, and smart city. To deploy computationally intensive Deep Neural Networks (DNNs) on resource-constrained edge devices, traditional approaches have relied...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE/ACM transactions on networking Ročník 29; číslo 2; s. 595 - 608
Hlavní autori: Zeng, Liekang, Chen, Xu, Zhou, Zhi, Yang, Lei, Zhang, Junshan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1063-6692, 1558-2566
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Recent advances in artificial intelligence have driven increasing intelligent applications at the network edge, such as smart home, smart factory, and smart city. To deploy computationally intensive Deep Neural Networks (DNNs) on resource-constrained edge devices, traditional approaches have relied on either offloading workload to the remote cloud or optimizing computation at the end device locally. However, the cloud-assisted approaches suffer from the unreliable and delay-significant wide-area network, and the local computing approaches are limited by the constrained computing capability. Towards high-performance edge intelligence, the cooperative execution mechanism offers a new paradigm, which has attracted growing research interest recently. In this paper, we propose CoEdge, a distributed DNN computing system that orchestrates cooperative DNN inference over heterogeneous edge devices. CoEdge utilizes available computation and communication resources at the edge and dynamically partitions the DNN inference workload adaptive to devices' computing capabilities and network conditions. Experimental evaluations based on a realistic prototype show that CoEdge outperforms status-quo approaches in saving energy with close inference latency, achieving up to 25.5% ~ 66.9% energy reduction for four widely-adopted CNN models.
AbstractList Recent advances in artificial intelligence have driven increasing intelligent applications at the network edge, such as smart home, smart factory, and smart city. To deploy computationally intensive Deep Neural Networks (DNNs) on resource-constrained edge devices, traditional approaches have relied on either offloading workload to the remote cloud or optimizing computation at the end device locally. However, the cloud-assisted approaches suffer from the unreliable and delay-significant wide-area network, and the local computing approaches are limited by the constrained computing capability. Towards high-performance edge intelligence, the cooperative execution mechanism offers a new paradigm, which has attracted growing research interest recently. In this paper, we propose CoEdge, a distributed DNN computing system that orchestrates cooperative DNN inference over heterogeneous edge devices. CoEdge utilizes available computation and communication resources at the edge and dynamically partitions the DNN inference workload adaptive to devices’ computing capabilities and network conditions. Experimental evaluations based on a realistic prototype show that CoEdge outperforms status-quo approaches in saving energy with close inference latency, achieving up to 25.5% ~ 66.9% energy reduction for four widely-adopted CNN models.
Author Zhang, Junshan
Yang, Lei
Zhou, Zhi
Chen, Xu
Zeng, Liekang
Author_xml – sequence: 1
  givenname: Liekang
  orcidid: 0000-0003-4800-8768
  surname: Zeng
  fullname: Zeng, Liekang
  email: zenglk3@mail2.sysu.edu.cn
  organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
– sequence: 2
  givenname: Xu
  orcidid: 0000-0001-9943-6020
  surname: Chen
  fullname: Chen, Xu
  email: chenxu35@mail.sysu.edu.cn
  organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
– sequence: 3
  givenname: Zhi
  orcidid: 0000-0002-0987-9344
  surname: Zhou
  fullname: Zhou, Zhi
  email: zhouzhi9@mail.sysu.edu.cn
  organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
– sequence: 4
  givenname: Lei
  orcidid: 0000-0002-5176-003X
  surname: Yang
  fullname: Yang, Lei
  email: leiy@unr.edu
  organization: Department of Computer Science and Engineering, University of Nevada, Reno, NV, USA
– sequence: 5
  givenname: Junshan
  orcidid: 0000-0002-3840-1753
  surname: Zhang
  fullname: Zhang, Junshan
  email: junshan.zhang@asu.edu
  organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA
BookMark eNp9kE9PwkAQxTcGExH9AMbLJp6L-7-tNwIoJAQ8NOHYLNspLmK3bhcSv72tEA8enMtMMu83L_OuUa9yFSB0R8mQUpI-ZstpNmSEkSEngnFGLlCfSplETCrVa2eieKRUyq7QddPsCKGcMNVHMHbTYgtPeOxcDV4HewQ8WS7xvCrBQ2UAr214w6NC1z-7tfPve6cL_Kp9sMG6ylZbvDqCxzMI4N0WKnCHBndn8QSO1kBzgy5LvW_g9twHKHueZuNZtFi9zMejRWRYykNkQGihYlKStjZcbIyMZSlLSGPBdSqKDSmESUiZiDSOheTU6EQVJZVCAig-QA-ns7V3nwdoQr5zB1-1jjmTVLZETGmroieV8a5pPJR57e2H9l85JXkXZt6FmXdh5ucwWyb-wxgbdPd98Nru_yXvT6QFgF-nlKVKKsK_AfSqg1c
CODEN IEANEP
CitedBy_id crossref_primary_10_1016_j_vlsi_2024_102299
crossref_primary_10_1109_JIOT_2023_3323293
crossref_primary_10_1109_TIFS_2025_3556349
crossref_primary_10_1109_JIOT_2023_3237572
crossref_primary_10_1109_JIOT_2024_3382682
crossref_primary_10_1109_TNET_2023_3297876
crossref_primary_10_1109_TCE_2023_3280484
crossref_primary_10_1016_j_future_2024_107679
crossref_primary_10_1016_j_future_2022_10_033
crossref_primary_10_1109_ACCESS_2023_3241096
crossref_primary_10_1002_spe_3383
crossref_primary_10_1109_JSAC_2022_3229422
crossref_primary_10_1109_TMC_2024_3376550
crossref_primary_10_1016_j_jpdc_2024_104927
crossref_primary_10_3390_app15031097
crossref_primary_10_1109_TCE_2024_3378509
crossref_primary_10_1109_ACCESS_2021_3084689
crossref_primary_10_1109_TAI_2024_3366880
crossref_primary_10_1016_j_sysarc_2023_103052
crossref_primary_10_1109_TWC_2024_3404811
crossref_primary_10_1109_TFUZZ_2024_3412971
crossref_primary_10_1109_COMST_2024_3482978
crossref_primary_10_1109_TSC_2024_3466848
crossref_primary_10_3389_fcomp_2024_1447745
crossref_primary_10_1109_ACCESS_2024_3492921
crossref_primary_10_1109_TETC_2024_3404551
crossref_primary_10_1109_TCC_2023_3258982
crossref_primary_10_1109_TNSE_2025_3551148
crossref_primary_10_3390_s23041911
crossref_primary_10_1109_TMC_2025_3574695
crossref_primary_10_3390_a15070244
crossref_primary_10_1109_TMC_2024_3484158
crossref_primary_10_1109_TNET_2023_3279512
crossref_primary_10_1145_3714983_3714991
crossref_primary_10_1109_JSAC_2022_3213343
crossref_primary_10_1109_TNET_2024_3363916
crossref_primary_10_1109_JIOT_2025_3578605
crossref_primary_10_3390_s21134494
crossref_primary_10_1007_s11633_022_1391_7
crossref_primary_10_1109_JIOT_2022_3205410
crossref_primary_10_1016_j_comnet_2024_110823
crossref_primary_10_1109_ACCESS_2023_3314381
crossref_primary_10_1145_3656041
crossref_primary_10_1016_j_future_2025_107715
crossref_primary_10_1145_3701997
crossref_primary_10_1109_JIOT_2023_3313514
crossref_primary_10_1109_TNSM_2022_3220521
crossref_primary_10_1145_3701995
crossref_primary_10_1016_j_future_2024_107535
crossref_primary_10_1109_JIOT_2023_3279579
crossref_primary_10_1109_TCE_2025_3564777
crossref_primary_10_1016_j_future_2025_108084
crossref_primary_10_1109_ACCESS_2025_3578009
crossref_primary_10_1109_JPROC_2022_3226481
crossref_primary_10_1109_TSC_2025_3536311
crossref_primary_10_1109_MWC_004_2300479
crossref_primary_10_1109_TMC_2024_3419831
crossref_primary_10_1109_TVT_2025_3556459
crossref_primary_10_1109_ACCESS_2024_3477293
crossref_primary_10_1109_TMC_2025_3549399
crossref_primary_10_1109_TMC_2025_3559919
crossref_primary_10_3390_s24010240
crossref_primary_10_1109_TNSE_2022_3180632
crossref_primary_10_1109_MNET_012_2000659
crossref_primary_10_1016_j_cja_2025_103564
crossref_primary_10_1109_JIOT_2024_3443289
crossref_primary_10_1109_TCAD_2023_3314388
crossref_primary_10_1109_TPDS_2022_3222509
crossref_primary_10_1109_JPROC_2024_3437365
crossref_primary_10_1016_j_future_2022_10_006
crossref_primary_10_3390_s24134176
crossref_primary_10_1109_JIOT_2024_3488076
crossref_primary_10_1007_s11227_024_06605_9
crossref_primary_10_1016_j_comnet_2024_110825
crossref_primary_10_1109_MWC_017_2300119
crossref_primary_10_1109_TSC_2024_3359148
crossref_primary_10_1145_3522741
crossref_primary_10_1049_cmu2_70048
crossref_primary_10_1109_JIOT_2023_3323520
crossref_primary_10_1016_j_engappai_2025_111090
crossref_primary_10_1016_j_jnca_2023_103720
crossref_primary_10_3233_JHS_220690
crossref_primary_10_1109_TMC_2025_3564314
crossref_primary_10_1109_JSAC_2024_3431526
crossref_primary_10_1109_JPROC_2022_3153408
crossref_primary_10_1109_TMC_2024_3457793
crossref_primary_10_1109_TSC_2022_3190375
crossref_primary_10_1109_JIOT_2025_3546577
crossref_primary_10_1109_TC_2024_3354033
crossref_primary_10_1109_JIOT_2023_3279271
crossref_primary_10_1109_JIOT_2022_3146461
crossref_primary_10_1109_COMST_2023_3319952
crossref_primary_10_1007_s41870_024_01767_4
crossref_primary_10_1109_ACCESS_2023_3298810
crossref_primary_10_1016_j_sysarc_2025_103536
crossref_primary_10_3390_su16041599
crossref_primary_10_1007_s11265_022_01814_y
crossref_primary_10_1109_TNET_2023_3293052
crossref_primary_10_1109_JIOT_2023_3280746
crossref_primary_10_1109_TCAD_2024_3443706
crossref_primary_10_1109_JIOT_2023_3304318
crossref_primary_10_1007_s00521_024_10718_w
crossref_primary_10_1016_j_comnet_2025_111437
crossref_primary_10_1109_JIOT_2023_3285877
crossref_primary_10_1016_j_comnet_2022_109380
crossref_primary_10_1109_TMC_2023_3265111
crossref_primary_10_1109_JIOT_2022_3222461
crossref_primary_10_1016_j_cose_2023_103278
crossref_primary_10_1109_TMC_2023_3312304
crossref_primary_10_1109_ACCESS_2024_3409057
crossref_primary_10_1109_JSTSP_2022_3221850
crossref_primary_10_1109_TMC_2024_3357874
crossref_primary_10_1109_TMC_2024_3427420
crossref_primary_10_1109_TC_2025_3533098
crossref_primary_10_1145_3765961
crossref_primary_10_1109_JIOT_2023_3235993
crossref_primary_10_1109_TMC_2024_3366186
crossref_primary_10_1109_TVT_2025_3542499
crossref_primary_10_1016_j_future_2024_107606
crossref_primary_10_3390_computers14010029
crossref_primary_10_1109_TMC_2024_3438155
Cites_doi 10.1109/TWC.2019.2946140
10.1109/WF-IoT.2014.6803166
10.23919/DATE.2017.7927211
10.1109/MNET.2018.1700145
10.1109/INFOCOMWKSHPS50562.2020.9162899
10.1145/3274783.3274840
10.1145/3316781.3324696
10.1109/JIOT.2020.3002427
10.1016/j.compbiomed.2017.08.022
10.1109/TCAD.2018.2858384
10.1109/ICASSP.2013.6639344
10.1109/ISCA.2012.6237004
10.1109/LRA.2018.2856261
10.1109/JPROC.2017.2761740
10.1109/TNSE.2020.3008337
10.1109/JPROC.2019.2918951
10.1145/2906388.2906396
10.1109/JIOT.2020.2972000
10.1109/MNET.001.1800506
10.1109/IEEM.2014.7058728
10.1145/3093337.3037698
10.1145/3243176.3243180
10.1109/CCNC.2015.7158084
10.1109/JSAC.2018.2869954
10.1109/CVPR.2015.7298594
10.1109/IoTDI49375.2020.00023
10.1109/LRA.2020.2998414
10.1145/3316781.3322474
10.1109/TNET.2017.2650964
10.1109/TVT.2020.2990979
10.1145/79173.79181
10.1109/CVPR.2016.90
10.1145/3286062.3286070
10.1016/j.jclepro.2016.10.006
10.1109/INFCOM.2012.6195685
10.1109/ICDCS.2017.226
10.1109/CVPR.2009.5206848
10.1145/3318216.3363312
10.15607/RSS.2019.XV.063
10.1145/3267809.3267828
10.1109/INFOCOM41043.2020.9155237
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNET.2020.3042320
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2566
EndPage 608
ExternalDocumentID 10_1109_TNET_2020_3042320
9296560
Genre orig-research
GrantInformation_xml – fundername: Guangdong Provincial Pearl River Talents Program; Pearl River Talent Recruitment Program
  grantid: 2017GC010465
  funderid: 10.13039/100016691
– fundername: National Science Foundation of China
  grantid: U20A20159; U1711265; 61972432
  funderid: 10.13039/501100001809
– fundername: U.S. National Science Foundation
  grantid: IIS-1838024; EEC-1801727; CNS-1950485
  funderid: 10.13039/100000001
– fundername: Program for Guangdong Introducing Innovative and Entrepreneurial Teams
  grantid: 2017ZT07X355
GroupedDBID -DZ
-~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
85S
8US
97E
9M8
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABPPZ
ABQJQ
ABVLG
ACGFS
ACGOD
ACIWK
ACM
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENSD
AETEA
AETIX
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AIKLT
AKJIK
AKQYR
AKRVB
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
D0L
EBS
EJD
FEDTE
GUFHI
HF~
HGAVV
HZ~
H~9
I07
ICLAB
IEDLZ
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
LHSKQ
M43
MVM
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNS
ROL
TN5
UPT
UQL
VH1
XOL
YR2
ZCA
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-ce4a4670f0000b34bc575f5fe9743a94db0d4c80f849774531ca86df1545ee63
IEDL.DBID RIE
ISICitedReferencesCount 197
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000641964600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6692
IngestDate Sun Nov 09 06:13:05 EST 2025
Sat Nov 29 03:05:24 EST 2025
Tue Nov 18 22:11:20 EST 2025
Wed Aug 27 02:30:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-ce4a4670f0000b34bc575f5fe9743a94db0d4c80f849774531ca86df1545ee63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9943-6020
0000-0002-5176-003X
0000-0002-0987-9344
0000-0002-3840-1753
0000-0003-4800-8768
PQID 2515745711
PQPubID 32020
PageCount 14
ParticipantIDs crossref_primary_10_1109_TNET_2020_3042320
crossref_citationtrail_10_1109_TNET_2020_3042320
proquest_journals_2515745711
ieee_primary_9296560
PublicationCentury 2000
PublicationDate 2021-April
2021-4-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-April
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE/ACM transactions on networking
PublicationTitleAbbrev TNET
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References cao (ref58) 2019
ref57
ref13
ref56
ref12
ref59
ref14
ref53
ref52
ref11
(ref36) 2009; 46
ref10
dantzig (ref35) 1998; 48
ref18
(ref16) 2019
ref46
ref45
ref48
ref47
ref42
lin (ref23) 2014
ref41
ref44
ref43
ref49
ref8
ref7
(ref22) 2019
ref4
ref3
simonyan (ref9) 2014
(ref17) 2019
ref6
(ref37) 2019
ref5
ref40
ref34
han (ref51) 2015
kim (ref50) 2019
ref31
krizhevsky (ref19) 2012
ref30
ref33
ref32
ref2
ref1
ref38
(ref54) 2020
miettinen (ref26) 2010; 10
ref24
(ref15) 2019
ref25
ref21
(ref20) 2019
(ref60) 2020
ref28
ref27
(ref55) 2020
ref29
howard (ref39) 2017
References_xml – ident: ref10
  doi: 10.1109/TWC.2019.2946140
– ident: ref3
  doi: 10.1109/WF-IoT.2014.6803166
– year: 2017
  ident: ref39
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv 1704 04861
– ident: ref40
  doi: 10.23919/DATE.2017.7927211
– year: 2019
  ident: ref20
  publication-title: Tensorflow benchmark tool
– ident: ref12
  doi: 10.1109/MNET.2018.1700145
– ident: ref31
  doi: 10.1109/INFOCOMWKSHPS50562.2020.9162899
– year: 2020
  ident: ref54
  publication-title: Arm ML Processor
– ident: ref27
  doi: 10.1145/3274783.3274840
– ident: ref52
  doi: 10.1145/3316781.3324696
– ident: ref32
  doi: 10.1109/JIOT.2020.3002427
– ident: ref6
  doi: 10.1016/j.compbiomed.2017.08.022
– ident: ref14
  doi: 10.1109/TCAD.2018.2858384
– ident: ref8
  doi: 10.1109/ICASSP.2013.6639344
– ident: ref33
  doi: 10.1109/ISCA.2012.6237004
– ident: ref18
  doi: 10.1109/LRA.2018.2856261
– ident: ref7
  doi: 10.1109/JPROC.2017.2761740
– ident: ref46
  doi: 10.1109/TNSE.2020.3008337
– ident: ref13
  doi: 10.1109/JPROC.2019.2918951
– ident: ref41
  doi: 10.1145/2906388.2906396
– start-page: 1
  year: 2019
  ident: ref50
  article-title: $\mu$ layer: Low latency on-device inference using cooperative single-layer acceleration and processor-friendly quantization
  publication-title: Proc 14th EuroSys Conf
– ident: ref57
  doi: 10.1109/JIOT.2020.2972000
– ident: ref43
  doi: 10.1109/MNET.001.1800506
– year: 2020
  ident: ref60
  publication-title: Intel movidius neural compute stick
– ident: ref2
  doi: 10.1109/IEEM.2014.7058728
– volume: 10
  start-page: 19
  year: 2010
  ident: ref26
  article-title: Energy efficiency of mobile clients in cloud computing
  publication-title: Proc HotCloud
– ident: ref42
  doi: 10.1145/3093337.3037698
– year: 2019
  ident: ref37
  publication-title: gPRC-A RPC Library and Framework
– ident: ref53
  doi: 10.1145/3243176.3243180
– start-page: 1
  year: 2014
  ident: ref23
  article-title: Network in network
  publication-title: Proc Int Conf Learn Represent
– ident: ref4
  doi: 10.1109/CCNC.2015.7158084
– volume: 48
  year: 1998
  ident: ref35
  publication-title: Linear Programming and Extensions
– ident: ref11
  doi: 10.1109/JSAC.2018.2869954
– ident: ref38
  doi: 10.1109/CVPR.2015.7298594
– year: 2014
  ident: ref9
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– ident: ref56
  doi: 10.1109/IoTDI49375.2020.00023
– year: 2019
  ident: ref17
  publication-title: High voltage power monitor
– ident: ref49
  doi: 10.1109/LRA.2020.2998414
– start-page: 1097
  year: 2012
  ident: ref19
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2019
  ident: ref15
  publication-title: Raspberry Pi 3
– ident: ref59
  doi: 10.1145/3316781.3322474
– ident: ref29
  doi: 10.1109/TNET.2017.2650964
– ident: ref5
  doi: 10.1109/TVT.2020.2990979
– ident: ref34
  doi: 10.1145/79173.79181
– year: 2019
  ident: ref22
  publication-title: Tc-Show/Manipulate Traffic Control Settings
– ident: ref24
  doi: 10.1109/CVPR.2016.90
– ident: ref47
  doi: 10.1145/3286062.3286070
– ident: ref1
  doi: 10.1016/j.jclepro.2016.10.006
– ident: ref28
  doi: 10.1109/INFCOM.2012.6195685
– start-page: 1
  year: 2019
  ident: ref58
  article-title: An edge-centric scalable intelligent framework to collaboratively execute DNN
  publication-title: Proc Demo SysML Conf
– ident: ref44
  doi: 10.1109/ICDCS.2017.226
– ident: ref21
  doi: 10.1109/CVPR.2009.5206848
– ident: ref25
  doi: 10.1145/3318216.3363312
– ident: ref48
  doi: 10.15607/RSS.2019.XV.063
– year: 2020
  ident: ref55
  publication-title: Google Edge TPU
– ident: ref45
  doi: 10.1145/3267809.3267828
– volume: 46
  start-page: 157
  year: 2009
  ident: ref36
  publication-title: V12 1 User's Manual for CPLEX
– year: 2015
  ident: ref51
  article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding
  publication-title: arXiv 1510 00149 [cs]
– ident: ref30
  doi: 10.1109/INFOCOM41043.2020.9155237
– year: 2019
  ident: ref16
  publication-title: NVidia Jetson TX1
SSID ssj0013026
Score 2.6960282
Snippet Recent advances in artificial intelligence have driven increasing intelligent applications at the network edge, such as smart home, smart factory, and smart...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 595
SubjectTerms Adaptive control
Artificial intelligence
Artificial neural networks
Cloud computing
Computational modeling
cooperative DNN inference
distributed computing
Edge intelligence
Electronic devices
energy efficiency
Feature extraction
Image edge detection
Inference
Network latency
Performance evaluation
Runtime
Smart buildings
Smart homes
Task analysis
Wide area networks
Workload
Workloads
Title CoEdge: Cooperative DNN Inference With Adaptive Workload Partitioning Over Heterogeneous Edge Devices
URI https://ieeexplore.ieee.org/document/9296560
https://www.proquest.com/docview/2515745711
Volume 29
WOSCitedRecordID wos000641964600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2566
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013026
  issn: 1063-6692
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYAcYADr4EYL-XACVGW9bG03NDYNC5lh0lwq5rEhUnTOu3B78fOuoEEQuJWqUkV9XPsz45jA1wTqZBBnsReVMTWC5XKvdgien5C7NVGvla5ds0mVJrGr69JfwNu13dhENEln-EdP7qzfFuaBYfKGmTKuVbMJmwqpZZ3tb5ODKRrrUYeTuC1WolfnWA2ZdIYpJ0BeYI-OaicBcKtvb_ZINdU5Ycmdualu_-_hR3AXkUjxcMS90PYwPER7H4rLlgDbJcd-4b3ol2WE1wW-BaPaSqeVnf8xMtw_i4ebD5x7zhuPipzK_osTlWgVjyTrIseJ82UJGtYLmaCPyse0emYYxh0O4N2z6uaKniGLPvcMxjmpBxlwZZKB6E2RNgKTjkjLpEnodXShiaWRRwyNaQtavK4ZQumWoit4AS2xuUYT0EUGEutfYmhtqHiummWfLdAGm3J1Y2adZCrv5yZquA4970YZc7xkEnGwGQMTFYBU4eb9ZTJstrGX4NrjMR6YAVCHS5WUGbVfpxlxOIiWpNqNs9-n3UOOz5nq7icnAvYmk8XeAnb5mM-nE2vnKh9AhDHz-8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4xNmnjgR-DiQ4YfuBpWlYncZpkb1UpKgICD5HGWxTbF6hUNRVt-fu5c9NSCTRpb5FiR1a-89135_MdwBmRChmWaeJFVWI9Fcell1hEL0iJvdoo0HGpXbOJOMuS-_v0bgN-re7CIKJLPsPf_OjO8m1t5hwqa5Mp51oxH-BjpFTgL25rvZ4ZSNdcjXyc0Ot00qA5w_Rl2s6zfk6-YEAuKueBcHPvNSvk2qq80cXOwFzs_N_SdmG7IZKiu0B-DzZw_BW21soL7gP26r59wD-iV9cTXJT4FudZJi6Xt_zE3-HsUXRtOXHvOHI-qksr7ligmlCtuCVpFwNOm6lJ2rCeTwV_Vpyj0zIHkF_0897Aa9oqeIZs-8wzqEpSj7JiW6VDpQ1RtoqTzohNlKmyWlplElkliskhbVJTJh1bMdlC7ITfYHNcj_EQRIWJ1DqQqLRVMVdOs-S9hdJoS85u5LdALv9yYZqS49z5YlQ410OmBQNTMDBFA0wLfq6mTBb1Nv41eJ-RWA1sQGjB8RLKotmR04J4XERrin3_-_uzTuHzIL-5Lq4vs6sj-BJw7orL0DmGzdnTHE_gk3meDadPP5zYvQALvdM2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CoEdge%3A+Cooperative+DNN+Inference+With+Adaptive+Workload+Partitioning+Over+Heterogeneous+Edge+Devices&rft.jtitle=IEEE%2FACM+transactions+on+networking&rft.au=Zeng%2C+Liekang&rft.au=Chen%2C+Xu&rft.au=Zhou%2C+Zhi&rft.au=Yang%2C+Lei&rft.date=2021-04-01&rft.issn=1063-6692&rft.eissn=1558-2566&rft.volume=29&rft.issue=2&rft.spage=595&rft.epage=608&rft_id=info:doi/10.1109%2FTNET.2020.3042320&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNET_2020_3042320
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6692&client=summon