Robust Privacy-Preserving Motion Detection and Object Tracking in Encrypted Streaming Video

Video privacy leakage is becoming an increasingly severe public problem, especially in cloud-based video surveillance systems. It leads to the new need for secure cloud-based video applications, where the video is encrypted for privacy protection. Despite some methods that have been proposed for enc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information forensics and security Jg. 16; S. 5381 - 5396
Hauptverfasser: Tian, Xianhao, Zheng, Peijia, Huang, Jiwu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1556-6013, 1556-6021
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Video privacy leakage is becoming an increasingly severe public problem, especially in cloud-based video surveillance systems. It leads to the new need for secure cloud-based video applications, where the video is encrypted for privacy protection. Despite some methods that have been proposed for encrypted video moving object detection and tracking, none has robust performance against complex and dynamic scenes. In this paper, we propose an efficient and robust privacy-preserving motion detection and multiple object tracking scheme for encrypted surveillance video bitstreams. By analyzing the properties of the video codec and format-compliant encryption schemes, we propose a new compressed-domain feature to capture motion information in complex surveillance scenarios. Based on this feature, we design an adaptive clustering algorithm for moving object segmentation with an accuracy of <inline-formula> <tex-math notation="LaTeX">4\times 4 </tex-math></inline-formula> pixels. We then propose a multiple object tracking scheme that uses Kalman filter estimation and adaptive measurement refinement. The proposed scheme does not require video decryption or full decompression and has a very low computation load. The experimental results demonstrate that our scheme achieves the best detection and tracking performance compared with existing works in the encrypted and compressed domain. Our scheme can be effectively used in complex surveillance scenarios with different challenges, such as camera movement/jitter, dynamic background, and shadows.
AbstractList Video privacy leakage is becoming an increasingly severe public problem, especially in cloud-based video surveillance systems. It leads to the new need for secure cloud-based video applications, where the video is encrypted for privacy protection. Despite some methods that have been proposed for encrypted video moving object detection and tracking, none has robust performance against complex and dynamic scenes. In this paper, we propose an efficient and robust privacy-preserving motion detection and multiple object tracking scheme for encrypted surveillance video bitstreams. By analyzing the properties of the video codec and format-compliant encryption schemes, we propose a new compressed-domain feature to capture motion information in complex surveillance scenarios. Based on this feature, we design an adaptive clustering algorithm for moving object segmentation with an accuracy of [Formula Omitted] pixels. We then propose a multiple object tracking scheme that uses Kalman filter estimation and adaptive measurement refinement. The proposed scheme does not require video decryption or full decompression and has a very low computation load. The experimental results demonstrate that our scheme achieves the best detection and tracking performance compared with existing works in the encrypted and compressed domain. Our scheme can be effectively used in complex surveillance scenarios with different challenges, such as camera movement/jitter, dynamic background, and shadows.
Video privacy leakage is becoming an increasingly severe public problem, especially in cloud-based video surveillance systems. It leads to the new need for secure cloud-based video applications, where the video is encrypted for privacy protection. Despite some methods that have been proposed for encrypted video moving object detection and tracking, none has robust performance against complex and dynamic scenes. In this paper, we propose an efficient and robust privacy-preserving motion detection and multiple object tracking scheme for encrypted surveillance video bitstreams. By analyzing the properties of the video codec and format-compliant encryption schemes, we propose a new compressed-domain feature to capture motion information in complex surveillance scenarios. Based on this feature, we design an adaptive clustering algorithm for moving object segmentation with an accuracy of <inline-formula> <tex-math notation="LaTeX">4\times 4 </tex-math></inline-formula> pixels. We then propose a multiple object tracking scheme that uses Kalman filter estimation and adaptive measurement refinement. The proposed scheme does not require video decryption or full decompression and has a very low computation load. The experimental results demonstrate that our scheme achieves the best detection and tracking performance compared with existing works in the encrypted and compressed domain. Our scheme can be effectively used in complex surveillance scenarios with different challenges, such as camera movement/jitter, dynamic background, and shadows.
Author Huang, Jiwu
Zheng, Peijia
Tian, Xianhao
Author_xml – sequence: 1
  givenname: Xianhao
  orcidid: 0000-0002-2485-8365
  surname: Tian
  fullname: Tian, Xianhao
  organization: Guangdong Key Laboratory of Intelligent Information Processing and Shenzhen Key Laboratory of Media Security, Shenzhen University, Shenzhen, China
– sequence: 2
  givenname: Peijia
  orcidid: 0000-0003-0979-8613
  surname: Zheng
  fullname: Zheng, Peijia
  email: zhpj@mail.sysu.edu.cn
  organization: School of Computer Science and Engineering and the Guangdong Province Key Laboratory of Information Security Technology, Sun Yat-sen University, Guangzhou, China
– sequence: 3
  givenname: Jiwu
  orcidid: 0000-0002-7625-5689
  surname: Huang
  fullname: Huang, Jiwu
  email: jwhuang@szu.edu.cn
  organization: Guangdong Key Laboratory of Intelligent Information Processing and Shenzhen Key Laboratory of Media Security, Shenzhen University, Shenzhen, China
BookMark eNp9kF9LwzAUxYMouE0_gPhS8LkzaZqkeZS56WCy4aYvPpQ0uZXMLZ1pNti3t3VjDz4IF-4fzrkHfl107ioHCN0Q3CcEy_vFeDTvJzghfUqSLCPiDHUIYzzmze38NBN6ibp1vcQ4TQnPOujjtSq2dYhm3u6U3sczDzX4nXWf0UsVbOWiRwigfyflTDQtls0WLbzSX63IumjotN9vAphoHjyodXt-twaqK3RRqlUN18feQ2-j4WLwHE-mT-PBwyTWiaQh1tqILDEcjCyIwakUkDHDhEzSjCeUlYyaVFMFMgMsecGA8ZQaIUoigZeC9tDd4e_GV99bqEO-rLbeNZF5wrHIhGCYNypyUGlf1bWHMt94u1Z-nxOctwzzlmHeMsyPDBuP-OPRNqgWRvDKrv513h6cFgBOSZIT0RT9AaJQgNc
CODEN ITIFA6
CitedBy_id crossref_primary_10_1016_j_engappai_2023_106988
crossref_primary_10_1109_TMC_2024_3504721
crossref_primary_10_1145_3744248
crossref_primary_10_1109_TDSC_2023_3318975
crossref_primary_10_1109_MNET_2024_3368457
crossref_primary_10_3390_app142210254
crossref_primary_10_1109_TIFS_2023_3245984
crossref_primary_10_1109_TITS_2022_3213548
crossref_primary_10_1109_JIOT_2022_3212464
crossref_primary_10_1109_TII_2024_3495789
crossref_primary_10_3390_s25103113
crossref_primary_10_1016_j_neucom_2024_128714
crossref_primary_10_1109_JIOT_2023_3336394
crossref_primary_10_1145_3625825
crossref_primary_10_1145_3698400
crossref_primary_10_1016_j_knosys_2023_110872
crossref_primary_10_1109_TCE_2022_3228679
crossref_primary_10_1016_j_asej_2024_103245
Cites_doi 10.1007/s11042-016-3578-9
10.1109/TIP.2012.2204272
10.1016/j.cviu.2016.08.005
10.1109/TCSVT.2016.2645616
10.1145/2633600
10.1109/TIP.2016.2568460
10.1109/TCSVT.2013.2255416
10.1109/TCSVT.2017.2742023
10.1145/2886777
10.1109/ICIP.2014.7025068
10.1109/INFOCOM.2017.8056953
10.1109/TIFS.2014.2302899
10.1109/TDSC.2019.2913422
10.1109/CVPRW.2012.6238919
10.1109/TPAMI.2016.2577031
10.1145/2502081.2502105
10.1007/978-3-642-03168-7_14
10.1109/TCSVT.2015.2433194
10.1109/MSP.2012.2219653
10.1109/TIFS.2013.2262273
10.1109/ICINFA.2010.5512258
10.1109/TMM.2017.2777470
10.1109/CVPR.2016.90
10.1145/2502081.2502157
10.1109/TIP.2014.2378053
10.1109/TPDS.2017.2712148
10.1016/j.jvcir.2009.05.001
10.1109/TMM.2012.2187777
10.1016/j.jvcir.2006.03.004
10.1109/TIFS.2016.2590944
10.1109/CVPR.2011.5995586
10.1109/TMM.2013.2281029
10.1109/CVPR.2013.312
10.1007/3-540-48910-X_16
10.1109/CVPRW.2012.6238922
10.1109/TIP.2012.2214049
10.1109/TCSVT.2019.2929855
10.1109/CVPR.2016.91
10.1109/TCSVT.2011.2129090
10.1109/TCSVT.2019.2924910
10.1007/978-3-319-27671-7_47
10.1109/ICCV.2009.5459370
10.1109/34.120329
10.1145/3131342
10.3390/e20010060
10.1109/CVPR.1999.784637
10.1007/11767831_15
10.1109/FG47880.2020.00021
10.1007/s13369-013-0887-4
10.1109/ICIP.2018.8451279
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TIFS.2021.3128817
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) Online
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1556-6021
EndPage 5396
ExternalDocumentID 10_1109_TIFS_2021_3128817
9617617
Genre orig-research
GrantInformation_xml – fundername: Science and Technology Projects in Guangzhou
  grantid: 202102080354
– fundername: Key-Area Research and Development Program of Guangdong Province
  grantid: 2019B010139003
– fundername: Shenzhen Research and Development Program
  grantid: JCYJ20200109105008228; 20200813110043002
  funderid: 10.13039/501100017622
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: U19B2022; 61802262
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Guangdong
  grantid: 2019A1515010746
  funderid: 10.13039/501100003453
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-ccd782d6ed9b1d0497e85d5792486235f53d4c3ae98e096b5e5643d77f19e6f73
IEDL.DBID RIE
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000728138100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1556-6013
IngestDate Sun Nov 30 05:06:09 EST 2025
Sat Nov 29 03:49:42 EST 2025
Tue Nov 18 21:25:32 EST 2025
Wed Aug 27 05:11:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-ccd782d6ed9b1d0497e85d5792486235f53d4c3ae98e096b5e5643d77f19e6f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0979-8613
0000-0002-7625-5689
0000-0002-2485-8365
PQID 2607877506
PQPubID 85506
PageCount 16
ParticipantIDs ieee_primary_9617617
crossref_primary_10_1109_TIFS_2021_3128817
proquest_journals_2607877506
crossref_citationtrail_10_1109_TIFS_2021_3128817
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information forensics and security
PublicationTitleAbbrev TIFS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
ref14
ref52
ref55
ref11
ref10
ref17
ref16
hsu (ref35) 2012; 21
huang (ref58) 2007
ref19
ref18
davis (ref48) 2007
milan (ref50) 2016
ref51
ref46
ref45
ref47
ref42
ref41
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
(ref53) 2021
ref40
cheng (ref31) 2021; 18
ref34
ref37
ref36
ref30
ref33
ref2
ref1
ref38
ester (ref32) 1996; 96
(ref54) 2020
hao (ref63) 2019
simonyan (ref59) 2014
welch (ref44) 1995
ref24
ref23
ref26
ref25
fisher (ref49) 2004
ref20
zeng (ref22) 2010
ref21
ref28
ref27
(ref39) 2003
ref29
ref60
ref62
ref61
References_xml – year: 2003
  ident: ref39
  publication-title: Advanced video coding for generic audiovisual services
– ident: ref25
  doi: 10.1007/s11042-016-3578-9
– volume: 21
  start-page: 4593
  year: 2012
  ident: ref35
  article-title: Image feature extraction in encrypted domain with privacy-preserving SIFT
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2012.2204272
– ident: ref46
  doi: 10.1016/j.cviu.2016.08.005
– volume: 18
  start-page: 1456
  year: 2021
  ident: ref31
  article-title: Person re-identification over encrypted outsourced surveillance videos
  publication-title: IEEE Trans Dependable Secure Comput
– ident: ref20
  doi: 10.1109/TCSVT.2016.2645616
– ident: ref3
  doi: 10.1145/2633600
– ident: ref7
  doi: 10.1109/TIP.2016.2568460
– ident: ref19
  doi: 10.1109/TCSVT.2013.2255416
– ident: ref9
  doi: 10.1109/TCSVT.2017.2742023
– year: 2019
  ident: ref63
  article-title: A utility-preserving GAN for face obscuration
  publication-title: arXiv 1906 11979
– ident: ref8
  doi: 10.1145/2886777
– ident: ref57
  doi: 10.1109/ICIP.2014.7025068
– ident: ref36
  doi: 10.1109/INFOCOM.2017.8056953
– ident: ref27
  doi: 10.1109/TIFS.2014.2302899
– year: 2020
  ident: ref54
  publication-title: Derf's Test Media Collection
– year: 2021
  ident: ref53
  publication-title: Block Ciphers
– year: 2007
  ident: ref48
  publication-title: OTCBVS Benchmark Dataset Collection
– ident: ref11
  doi: 10.1109/TDSC.2019.2913422
– volume: 96
  start-page: 226
  year: 1996
  ident: ref32
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proc KDD
– year: 1995
  ident: ref44
  article-title: An introduction to the Kalman filter
– ident: ref47
  doi: 10.1109/CVPRW.2012.6238919
– ident: ref16
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref4
  doi: 10.1145/2502081.2502105
– ident: ref5
  doi: 10.1007/978-3-642-03168-7_14
– ident: ref10
  doi: 10.1109/TCSVT.2015.2433194
– ident: ref1
  doi: 10.1109/MSP.2012.2219653
– ident: ref6
  doi: 10.1109/TIFS.2013.2262273
– ident: ref45
  doi: 10.1109/ICINFA.2010.5512258
– year: 2007
  ident: ref58
  article-title: Labeled faces in the wild: A database for studying face recognition in unconstrained environments
– ident: ref34
  doi: 10.1109/TMM.2017.2777470
– start-page: 86
  year: 2010
  ident: ref22
  article-title: Object detection in encryption-based surveillance system
  publication-title: Proc APSIPA Annu Summit Conf
– ident: ref60
  doi: 10.1109/CVPR.2016.90
– ident: ref23
  doi: 10.1145/2502081.2502157
– ident: ref15
  doi: 10.1109/TIP.2014.2378053
– ident: ref37
  doi: 10.1109/TPDS.2017.2712148
– ident: ref40
  doi: 10.1016/j.jvcir.2009.05.001
– ident: ref41
  doi: 10.1109/TMM.2012.2187777
– ident: ref43
  doi: 10.1016/j.jvcir.2006.03.004
– ident: ref38
  doi: 10.1109/TIFS.2016.2590944
– ident: ref52
  doi: 10.1109/CVPR.2011.5995586
– ident: ref29
  doi: 10.1109/TMM.2013.2281029
– ident: ref51
  doi: 10.1109/CVPR.2013.312
– ident: ref2
  doi: 10.1007/3-540-48910-X_16
– ident: ref14
  doi: 10.1109/CVPRW.2012.6238922
– ident: ref18
  doi: 10.1109/TIP.2012.2214049
– ident: ref30
  doi: 10.1109/TCSVT.2019.2929855
– ident: ref17
  doi: 10.1109/CVPR.2016.91
– ident: ref33
  doi: 10.1109/TCSVT.2011.2129090
– ident: ref55
  doi: 10.1109/TCSVT.2019.2924910
– ident: ref24
  doi: 10.1007/978-3-319-27671-7_47
– year: 2016
  ident: ref50
  article-title: MOT16: A benchmark for multi-object tracking
  publication-title: arXiv 1603 00831 [cs]
– ident: ref21
  doi: 10.1109/ICCV.2009.5459370
– ident: ref12
  doi: 10.1109/34.120329
– ident: ref26
  doi: 10.1145/3131342
– year: 2004
  ident: ref49
  publication-title: CAVIAR Test Case Scenarios
– ident: ref62
  doi: 10.3390/e20010060
– ident: ref13
  doi: 10.1109/CVPR.1999.784637
– ident: ref61
  doi: 10.1007/11767831_15
– ident: ref56
  doi: 10.1109/FG47880.2020.00021
– ident: ref42
  doi: 10.1007/s13369-013-0887-4
– year: 2014
  ident: ref59
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– ident: ref28
  doi: 10.1109/ICIP.2018.8451279
SSID ssj0044168
Score 2.4543755
Snippet Video privacy leakage is becoming an increasingly severe public problem, especially in cloud-based video surveillance systems. It leads to the new need for...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5381
SubjectTerms Adaptive algorithms
boldsymbol Encrypted video processing
Cloud computing
Clustering
Codec
compressed-domain feature
Cryptography
Domains
Encryption
Feature extraction
Kalman filters
Motion detection
Motion perception
Moving object recognition
Multiple target tracking
object tracking
Privacy
Robustness
Segmentation
Servers
Streaming media
Surveillance
Surveillance systems
Vibration
Video compression
video surveillance
Title Robust Privacy-Preserving Motion Detection and Object Tracking in Encrypted Streaming Video
URI https://ieeexplore.ieee.org/document/9617617
https://www.proquest.com/docview/2607877506
Volume 16
WOSCitedRecordID wos000728138100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1556-6021
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044168
  issn: 1556-6013
  databaseCode: RIE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Bb9MwFH7qKg5woLAx0a0gHzghzOrEjpPjBKvgQKlgoEkcoth-mSpBUrVppf77PTtJQQJNQsohiuwo8he_975n-30Ar7BMnK9TxqPYIJdYGm50kfJUSVNG2gqpbBCb0PN5enOTLQbw5nAWBhHD5jN862_DWr6r7danyi4ycrd0HcGR1kl7Vqu3uuTV22NvSiWcSEbcrWCKaXZx_XH2lZhgJIigRmkatMl--6AgqvKXJQ7uZTb6vw97Ao-7MJJdtrg_hQFWxzDqJRpYN2OP4dEf9QZP4MeX2mw3DVusl7vC7rnff-FtRXXLPgU1H_Yem7A3q2JF5dhn47M0jPyZ9Rl1tqzYVWXX-xWFqcyvZxe__OPvS4f1M_g2u7p-94F36grckotvuLWOogOXoMuMcEQUNKbKKU2EjFhOrEoVO2njArMUiecYhYqiF6d1KTJMSh2fwrCqK3wOTBorI6kzYaWRGCVGoJiirzMjnIhsOYZpP9657UqPewWMn3mgINMs9xDlHqK8g2gMrw9dVm3djfsan3hMDg07OMYw6UHNu5m5yYm_kY2iOCk5-3evc3jo392mWSYwbNZbfAEP7K5ZbtYvw093B95k1CU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB6sFWofav1RvNbWffCpuJpNdrPJY2k9FPUqehXBh5DdnZQDzcldTvC_7-wmdxVaCoU8hLBLwn7Zmflmd-cD2MMqdb5OGY8Tg1xiZbjRZcYzJU0VayukskFsQg8G2c1NfrEE-4uzMIgYNp_hgb8Na_lubGc-VXaYk7ul6wW8VFLGUXtaa253ya-3B9-USjnRjKRbwxRRfjg86V8RF4wFUdQ4y4I62W8vFGRV_rDFwcH01_7v097Cmy6QZF9a5NdhCesNWJuLNLBuzm7A62cVBzfh9nJsZtOGXUxGj6V94n4HhrcW9U92HvR82Ddswu6smpW1Y9-Nz9Mw8mjW59TZqGZHtZ08PVCgyvyKdnnvH1-PHI634Ef_aPj1mHf6CtySk2-4tY7iA5eiy41wRBU0ZsopTZSMeE6iKpU4aZMS8wyJ6RiFiuIXp3UlckwrnbyD5Xpc4zYwaayMpc6FlUZinBqBIkJfaUY4EduqB9F8vAvbFR_3Ghh3RSAhUV54iAoPUdFB1IPPiy4PbeWNfzXe9JgsGnZw9GBnDmrRzc1pQQyOrBRFSun7v_fahVfHw_Oz4uxkcPoBVv172qTLDiw3kxl-hBX72Iymk0_hB_wFEK3XbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Privacy-Preserving+Motion+Detection+and+Object+Tracking+in+Encrypted+Streaming+Video&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Tian%2C+Xianhao&rft.au=Zheng%2C+Peijia&rft.au=Huang%2C+Jiwu&rft.date=2021&rft.issn=1556-6013&rft.eissn=1556-6021&rft.volume=16&rft.spage=5381&rft.epage=5396&rft_id=info:doi/10.1109%2FTIFS.2021.3128817&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIFS_2021_3128817
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon