ParaLabel: Autonomous Parameter Learning for Cross-Domain Step Counting in Wearable Sensors

Wearable step counters, also referred to as activity trackers, have been developed for health and activity monitoring, as well as for step tracking. These trackers, however, produce unreliable measurements during slow walking and when walking with assistive devices (i.e., aided walking). To address...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal Jg. 20; H. 23; S. 13867 - 13879
Hauptverfasser: Alinia, Parastoo, Fallahzadeh, Ramin, Connolly, Christopher P., Ghasemzadeh, Hassan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1530-437X, 1558-1748
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Wearable step counters, also referred to as activity trackers, have been developed for health and activity monitoring, as well as for step tracking. These trackers, however, produce unreliable measurements during slow walking and when walking with assistive devices (i.e., aided walking). To address this challenge, in this article, we introduce, ParaLabel , a filter-based step counting algorithm that is reliable against various walking velocities and intensities. ParaLabel addresses this problem by learning a filter cut-off frequency autonomously in a new domain without the need for collecting sensor data and manually tuning the algorithm parameter for a different velocity and/or pattern of walking. We formulate this problem as a transfer learning problem in which the new filter cut-off frequency is transferred from a bank containing previously fine-tuned parameters from different domain(s). Our extensive analysis using real data collected from 15 participants while wearing an accelerometer sensor on their chest, wrist, or left pocket demonstrates the superiority of ParaLabel to two commercially available trackers worn on the same body location, and state-of-the-art techniques. ParaLabel achieves 96.3% − 99.9% accuracy during walking on a treadmill at three different velocities, 98.2% − 99.9% accuracy during walking with a shopping cart, and 89.3% − 97.3% accuracy while walking with the aid of a walker.
AbstractList Wearable step counters, also referred to as activity trackers, have been developed for health and activity monitoring, as well as for step tracking. These trackers, however, produce unreliable measurements during slow walking and when walking with assistive devices (i.e., aided walking). To address this challenge, in this article, we introduce, ParaLabel , a filter-based step counting algorithm that is reliable against various walking velocities and intensities. ParaLabel addresses this problem by learning a filter cut-off frequency autonomously in a new domain without the need for collecting sensor data and manually tuning the algorithm parameter for a different velocity and/or pattern of walking. We formulate this problem as a transfer learning problem in which the new filter cut-off frequency is transferred from a bank containing previously fine-tuned parameters from different domain(s). Our extensive analysis using real data collected from 15 participants while wearing an accelerometer sensor on their chest, wrist, or left pocket demonstrates the superiority of ParaLabel to two commercially available trackers worn on the same body location, and state-of-the-art techniques. ParaLabel achieves 96.3% − 99.9% accuracy during walking on a treadmill at three different velocities, 98.2% − 99.9% accuracy during walking with a shopping cart, and 89.3% − 97.3% accuracy while walking with the aid of a walker.
Author Fallahzadeh, Ramin
Connolly, Christopher P.
Ghasemzadeh, Hassan
Alinia, Parastoo
Author_xml – sequence: 1
  givenname: Parastoo
  orcidid: 0000-0001-8201-3005
  surname: Alinia
  fullname: Alinia, Parastoo
  email: parastoo.alinia@wsu.edu
  organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA
– sequence: 2
  givenname: Ramin
  surname: Fallahzadeh
  fullname: Fallahzadeh, Ramin
  organization: School of Medicine, Stanford University, Stanford, CA, USA
– sequence: 3
  givenname: Christopher P.
  surname: Connolly
  fullname: Connolly, Christopher P.
  organization: Department of Kinesiology and Educational Psychology, Pullman, Washington State University, WA, USA
– sequence: 4
  givenname: Hassan
  orcidid: 0000-0002-1844-1416
  surname: Ghasemzadeh
  fullname: Ghasemzadeh, Hassan
  organization: School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA
BookMark eNp9UEtLxDAQDqLg7uoPEC8Bz12TJmkbb0tdXxQVVlHwENJ2Kl26yZqkB_-9Lbt48CBzmOF7zDDfFB0aawChM0rmlBJ5-bBaPs5jEpM5I0TGjB6gCRUii2jKs8NxZiTiLH0_RlPv14RQmYp0gj6etdOFLqG7wos-WGM3tvd4RDcQwOECtDOt-cSNdTh31vvo2m50a_AqwBbntjdhpAfgbZDqsgO8AuOt8yfoqNGdh9N9n6HXm-VLfhcVT7f3-aKIqliyEFVVzVnFMxaDLrWGSjRZIpisslrKBkpexyIhdVoznpYMMhCCNgkVpchKVnPNZuhit3fr7FcPPqi17Z0ZTqqYJ4SKobJBle5U1fiEg0ZVbdChtSY43XaKEjUmqcYk1Zik2ic5OOkf59a1G-2-__Wc7zwtAPzqJWVSDuwPOQaBXg
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_JSEN_2021_3099860
crossref_primary_10_1007_s43926_025_00186_6
crossref_primary_10_3390_s22113989
crossref_primary_10_1109_JSEN_2021_3058127
crossref_primary_10_1109_JSEN_2021_3059636
crossref_primary_10_1016_j_mtcomm_2023_106250
crossref_primary_10_1109_ACCESS_2024_3422256
Cites_doi 10.1145/2638728.2641313
10.1109/THMS.2013.2296875
10.1109/ICCCN.2009.5235366
10.1589/jpts.29.613
10.3390/s18072034
10.1109/APCCAS.2012.6419104
10.1109/IEMBS.2011.6091084
10.12968/ijtr.2012.19.7.387
10.1097/JCN.0b013e318283ba14
10.1186/1756-0500-7-952
10.1007/978-3-540-70994-7_14
10.3390/s151027230
10.1145/2493432.2493449
10.1145/3266157.3266212
10.1016/j.gaitpost.2013.10.009
10.3390/s16091423
10.1109/ICSEngT.2012.6339316
10.1109/JSEN.2016.2603163
10.1109/TPAMI.2002.1017616
10.1145/2971648.2971742
10.1186/s12984-016-0145-6
10.1109/CCDC.2015.7161816
10.1123/jab.15.3.318
10.3390/s18010297
10.1145/3299876
10.3390/s151229858
10.5120/17195-7390
10.1123/japa.2014-0033
10.1529/biophysj.107.110601
10.2196/mhealth.6321
10.1186/s13102-015-0018-5
10.1109/JSTSP.2016.2569472
10.1109/JIOT.2016.2553100
10.5081/jgps.3.1.273
10.1109/IEMBS.2006.260770
10.1007/s12553-012-0035-2
10.1109/IPIN.2011.6071935
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2020.3009231
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 13879
ExternalDocumentID 10_1109_JSEN_2020_3009231
9139931
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CNS-1750679
  funderid: 10.13039/100000001
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-ccd43c4832eabaaec5f86539c8d99feb4d2560d7d347b3e8e551f615b58b3d4a3
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000589257300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 10:14:13 EDT 2025
Tue Nov 18 20:44:37 EST 2025
Sat Nov 29 05:43:03 EST 2025
Wed Aug 27 06:02:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-ccd43c4832eabaaec5f86539c8d99feb4d2560d7d347b3e8e551f615b58b3d4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8201-3005
0000-0002-1844-1416
PQID 2460151518
PQPubID 75733
PageCount 13
ParticipantIDs proquest_journals_2460151518
ieee_primary_9139931
crossref_primary_10_1109_JSEN_2020_3009231
crossref_citationtrail_10_1109_JSEN_2020_3009231
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
jayalath (ref9) 2013; 28
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
chen (ref26) 2015; 23
ref2
ref39
ref17
ref38
ref16
ref19
ref18
mammen (ref4) 2012; 5
lee (ref5) 2013
dontje (ref1) 2014; 29
ref24
ref45
ref25
ref42
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
alinia (ref34) 2020
ref3
dirican (ref23) 2017; 8
ref6
arcidiacono (ref20) 2017; 53
ref40
zhongshen (ref41) 2003; 3
References_xml – ident: ref36
  doi: 10.1145/2638728.2641313
– ident: ref27
  doi: 10.1109/THMS.2013.2296875
– ident: ref32
  doi: 10.1109/ICCCN.2009.5235366
– ident: ref2
  doi: 10.1589/jpts.29.613
– ident: ref16
  doi: 10.3390/s18072034
– ident: ref29
  doi: 10.1109/APCCAS.2012.6419104
– volume: 5
  start-page: 9
  year: 2012
  ident: ref4
  article-title: Is this bit fit? Measuring the quality of the fitbit step-counter
  publication-title: Health Fit J Can
– year: 2013
  ident: ref5
  article-title: Validity of consumer-based physical activity monitors and calibration of smartphone for prediction of physical activity energy expenditure
– ident: ref31
  doi: 10.1109/IEMBS.2011.6091084
– ident: ref13
  doi: 10.12968/ijtr.2012.19.7.387
– volume: 29
  start-page: 218
  year: 2014
  ident: ref1
  article-title: Daily physical activity in stable heart failure patients
  publication-title: European Journal of Cardiovascular Nursing
  doi: 10.1097/JCN.0b013e318283ba14
– ident: ref3
  doi: 10.1186/1756-0500-7-952
– ident: ref10
  doi: 10.1007/978-3-540-70994-7_14
– ident: ref45
  doi: 10.3390/s151027230
– ident: ref6
  doi: 10.1145/2493432.2493449
– volume: 23
  start-page: 315
  year: 2015
  ident: ref26
  article-title: Pedometer method based on adaptive peak detection algorithm
  publication-title: J Chin Inert Technol
– ident: ref15
  doi: 10.1145/3266157.3266212
– ident: ref17
  doi: 10.1016/j.gaitpost.2013.10.009
– ident: ref30
  doi: 10.3390/s16091423
– ident: ref40
  doi: 10.1109/ICSEngT.2012.6339316
– ident: ref18
  doi: 10.1109/JSEN.2016.2603163
– ident: ref37
  doi: 10.1109/TPAMI.2002.1017616
– ident: ref25
  doi: 10.1145/2971648.2971742
– ident: ref11
  doi: 10.1186/s12984-016-0145-6
– ident: ref14
  doi: 10.1109/CCDC.2015.7161816
– year: 2020
  ident: ref34
  article-title: ActiLabel: A combinatorial transfer learning framework for activity recognition
  publication-title: arXiv 2003 07415
– volume: 53
  start-page: 109
  year: 2017
  ident: ref20
  article-title: A threshold-based algorithm for the development of inertial sensor-based systems to perform real-time cow step counting in free-stall barns
  publication-title: Syst Eng
– ident: ref42
  doi: 10.1123/jab.15.3.318
– ident: ref19
  doi: 10.3390/s18010297
– ident: ref38
  doi: 10.1145/3299876
– volume: 8
  start-page: 175
  year: 2017
  ident: ref23
  article-title: Step counting using smartphone accelerometer and fast Fourier transform
  publication-title: Sigma J Eng Nat Sci
– ident: ref35
  doi: 10.3390/s151229858
– ident: ref43
  doi: 10.5120/17195-7390
– ident: ref12
  doi: 10.1123/japa.2014-0033
– volume: 3
  start-page: 17
  year: 2003
  ident: ref41
  article-title: The design of Butterworth lowpass filter based on MATLAB
  publication-title: Heilongjiang Electronic Technique
– ident: ref7
  doi: 10.1529/biophysj.107.110601
– ident: ref39
  doi: 10.2196/mhealth.6321
– volume: 28
  start-page: 31
  year: 2013
  ident: ref9
  article-title: A gyroscope based accurate pedometer algorithm
  publication-title: Proc Int Conf Indoor Positioning Indoor Navigat
– ident: ref44
  doi: 10.1186/s13102-015-0018-5
– ident: ref33
  doi: 10.1109/JSTSP.2016.2569472
– ident: ref24
  doi: 10.1109/JIOT.2016.2553100
– ident: ref22
  doi: 10.5081/jgps.3.1.273
– ident: ref28
  doi: 10.1109/IEMBS.2006.260770
– ident: ref8
  doi: 10.1007/s12553-012-0035-2
– ident: ref21
  doi: 10.1109/IPIN.2011.6071935
SSID ssj0019757
Score 2.340042
Snippet Wearable step counters, also referred to as activity trackers, have been developed for health and activity monitoring, as well as for step tracking. These...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13867
SubjectTerms Accelerometers
Accuracy
Algorithms
cross-subject transfer learning
Domains
Feature extraction
frequency components
K-nearest neighbor
Learning
Legged locomotion
low-pass filter
Low-pass filters
Machine learning algorithms
Nearest neighbor methods
Parameters
peak detection
Sensors
Step counting
time-domain features
Tracking devices
Treadmills
wearable sensors
Wearable technology
Wrist
Title ParaLabel: Autonomous Parameter Learning for Cross-Domain Step Counting in Wearable Sensors
URI https://ieeexplore.ieee.org/document/9139931
https://www.proquest.com/docview/2460151518
Volume 20
WOSCitedRecordID wos000589257300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5UBPXgW6xWycGTuLptsm7irVRFRIqgYsHDkqcWtJU-BP-9M9tYFEXwtoQkLPvtbL7ZmfkGYC-EVAWqbtdZCIlAa0qQhWSJ5Me8nhtnjXVls4m81ZLttrqegoNJLYz3vkw-84d0WcbyXc-O6FfZEUlYKiqans7z43Gt1iRioPJS1RMNOE0Ez9sxgllL1dHlzVkLPcE6OqgkMcRr386gsqnKjy9xebycL_3vxpZhMdJI1hjjvgJTvrsKC1_EBVdhLvY3f3pfg4dr3ddX2vjnE9YYDamQAT1-RqMvlA_DoszqI0MOy5p018lp70V3uozSwFgzdpRgOHCPU6neit2gB9zrD9bh7vzstnmRxLYKicWzfZhY6wS3Ak3Za6O1t1mQJFBrpVMqeCMc0SCXOy5yw730SKoCEh-TScOd0HwDZrq9rt8EJkig3tm69JoCgN7IgJsrm4mQaa6zCqSfD7qwUXOcWl88F6XvkaqCsCkImyJiU4H9yZLXseDGX5PXCIzJxIhDBaqfaBbRJAdFXaDvieytJrd-X7UN87T3OFelCjPD_sjvwKx9G3YG_d3ybfsAeLLSPw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxtBEB4kFawPVWOLaWO7D30Sr7nc7vV2fQsxojUNgpYG-nDszyqYRPJD8L_vzGUTWloKvh3L7t1x383tNzcz3wB8DCFVgarbdR5CItCaEmQheSL5Z54VxlljXdVsohgM5HCorjbgeF0L472vks_8JzqsYvluYhf0q6xFEpaKiqZf5EJk6bJaax0zUEWl64kmnCaCF8MYw2ynqvXlujdAXzBDF5VEhnj7j12oaqvy17e42mDOdp53a7vwKhJJ1lkivwcbflyH7d_kBeuwFTuc3z7tw48rPdV9bfz9Cess5lTKgD4_o9ERZcSwKLT6kyGLZV266-R0MtJ3Y0aJYKwbe0owHPiOU6niil2jDzyZzl7Dt7PeTfc8iY0VEou7-zyx1gluBRqz10Zrb_MgSaLWSqdU8EY4IkKucFwUhnvpkVYFpD4ml4Y7ofkbqI0nY38ATJBEvbOZ9JpCgN7IgCdXNhch11znDUhXD7q0UXWcml_cl5X3kaqSsCkJmzJi04Cj9ZKHpeTG_ybvExjriRGHBjRXaJbRKGdlJtD7RP7Wlm__veoDbJ3ffO2X_YvB5Tt4SddZZq40oTafLvwhbNrH-d1s-r56834BkO3Vhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ParaLabel%3A+Autonomous+Parameter+Learning+for+Cross-Domain+Step+Counting+in+Wearable+Sensors&rft.jtitle=IEEE+sensors+journal&rft.au=Alinia%2C+Parastoo&rft.au=Fallahzadeh%2C+Ramin&rft.au=Connolly%2C+Christopher+P&rft.au=Ghasemzadeh%2C+Hassan&rft.date=2020-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=20&rft.issue=23&rft.spage=13867&rft_id=info:doi/10.1109%2FJSEN.2020.3009231&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon