Deep Adversarial Domain Adaptation Model for Bearing Fault Diagnosis

Fault diagnosis of rolling bearings is an essential process for improving the reliability and safety of the rotating machinery. It is always a major challenge to ensure fault diagnosis accuracy in particular under severe working conditions. In this article, a deep adversarial domain adaptation (DADA...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on systems, man, and cybernetics. Systems Ročník 51; číslo 7; s. 4217 - 4226
Hlavní autoři: Liu, Zhao-Hua, Lu, Bi-Liang, Wei, Hua-Liang, Chen, Lei, Li, Xiao-Hua, Ratsch, Matthias
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2216, 2168-2232
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Fault diagnosis of rolling bearings is an essential process for improving the reliability and safety of the rotating machinery. It is always a major challenge to ensure fault diagnosis accuracy in particular under severe working conditions. In this article, a deep adversarial domain adaptation (DADA) model is proposed for rolling bearing fault diagnosis. This model constructs an adversarial adaptation network to solve the commonly encountered problem in numerous real applications: the source domain and the target domain are inconsistent in their distribution. First, a deep stack autoencoder (DSAE) is combined with representative feature learning for dimensionality reduction, and such a combination provides an unsupervised learning method to effectively acquire fault features. Meanwhile, domain adaptation and recognition classification are implemented using a Softmax classifier to augment classification accuracy. Second, the effects of the number of hidden layers in the stack autoencoder network, the number of neurons in each hidden layer, and the hyperparameters of the proposed fault diagnosis algorithm are analyzed. Third, comprehensive analysis is performed on real data to validate the performance of the proposed method; the experimental results demonstrate that the new method outperforms the existing machine learning and deep learning methods, in terms of classification accuracy and generalization ability.
AbstractList Fault diagnosis of rolling bearings is an essential process for improving the reliability and safety of the rotating machinery. It is always a major challenge to ensure fault diagnosis accuracy in particular under severe working conditions. In this article, a deep adversarial domain adaptation (DADA) model is proposed for rolling bearing fault diagnosis. This model constructs an adversarial adaptation network to solve the commonly encountered problem in numerous real applications: the source domain and the target domain are inconsistent in their distribution. First, a deep stack autoencoder (DSAE) is combined with representative feature learning for dimensionality reduction, and such a combination provides an unsupervised learning method to effectively acquire fault features. Meanwhile, domain adaptation and recognition classification are implemented using a Softmax classifier to augment classification accuracy. Second, the effects of the number of hidden layers in the stack autoencoder network, the number of neurons in each hidden layer, and the hyperparameters of the proposed fault diagnosis algorithm are analyzed. Third, comprehensive analysis is performed on real data to validate the performance of the proposed method; the experimental results demonstrate that the new method outperforms the existing machine learning and deep learning methods, in terms of classification accuracy and generalization ability.
Author Liu, Zhao-Hua
Lu, Bi-Liang
Li, Xiao-Hua
Ratsch, Matthias
Chen, Lei
Wei, Hua-Liang
Author_xml – sequence: 1
  givenname: Zhao-Hua
  orcidid: 0000-0002-6597-4741
  surname: Liu
  fullname: Liu, Zhao-Hua
  email: zhaohualiu2009@hotmail.com
  organization: School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan, China
– sequence: 2
  givenname: Bi-Liang
  surname: Lu
  fullname: Lu, Bi-Liang
  email: 1197393632@qq.com
  organization: School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan, China
– sequence: 3
  givenname: Hua-Liang
  orcidid: 0000-0002-4704-7346
  surname: Wei
  fullname: Wei, Hua-Liang
  email: w.hualiang@sheffield.ac.uk
  organization: Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, U.K
– sequence: 4
  givenname: Lei
  orcidid: 0000-0002-8000-7872
  surname: Chen
  fullname: Chen, Lei
  email: chenlei@hnust.edu.cn
  organization: School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan, China
– sequence: 5
  givenname: Xiao-Hua
  orcidid: 0000-0001-8706-9964
  surname: Li
  fullname: Li, Xiao-Hua
  email: lixiaohua_0227@163.com
  organization: School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan, China
– sequence: 6
  givenname: Matthias
  surname: Ratsch
  fullname: Ratsch, Matthias
  email: matthias.raetsch@reutlingen-university.de
  organization: Image Understanding and Interactive Robotics Group, Reutlingen University, Reutlingen, Germany
BookMark eNp9kE9LwzAYh4NMcM59APFS8Nz5Jm3T5DhXp8KGB-c5JFk6MrqmJp3gtzejw4MHT3kJz_P--V2jUetag9AthhnGwB827-vFjADmM8IzAgAXaEwwZSkhGRn91pheoWkI-whgwmgGdIyqypgumW-_jA_SW9kklTtI28Yv2fWyt65N1m5rmqR2Pnk0kWl3yVIemz6prNy1Lthwgy5r2QQzPb8T9LF82ixe0tXb8-tivkp13KtPtWbG5IorBVCWrM6IwpwTCTo3oMusANC6rnO21QpKpRSVmENRA8MyYjyboPuhb-fd59GEXuzd0bdxpCBFjnNKS8YiVQ6U9i4Eb2qh7XBJ76VtBAZxSk2cUhOn1MQ5tWjiP2bn7UH673-du8GxxphfnjEoCMXZDxZFeNc
CODEN ITSMFE
CitedBy_id crossref_primary_10_1109_TII_2024_3396554
crossref_primary_10_1016_j_neucom_2020_11_063
crossref_primary_10_1088_1361_6501_acfdc1
crossref_primary_10_1007_s11071_024_10221_w
crossref_primary_10_1016_j_inffus_2024_102875
crossref_primary_10_1016_j_chemolab_2025_105423
crossref_primary_10_1109_TSMC_2020_3010505
crossref_primary_10_1109_TSMC_2022_3228934
crossref_primary_10_1016_j_ymssp_2021_108487
crossref_primary_10_1109_ACCESS_2023_3239784
crossref_primary_10_1007_s10489_022_04342_1
crossref_primary_10_1007_s44379_024_00011_x
crossref_primary_10_1109_TIM_2025_3550233
crossref_primary_10_1109_TSMC_2022_3226748
crossref_primary_10_1109_JSEN_2022_3163425
crossref_primary_10_1088_1361_6501_acf6d9
crossref_primary_10_1109_TSMC_2022_3218536
crossref_primary_10_1109_TSMC_2024_3389068
crossref_primary_10_1109_TMECH_2022_3191051
crossref_primary_10_1016_j_knosys_2023_111158
crossref_primary_10_1109_TSMC_2023_3346398
crossref_primary_10_1016_j_eswa_2023_120066
crossref_primary_10_1109_TII_2022_3228902
crossref_primary_10_1109_TSMC_2024_3427345
crossref_primary_10_3390_app14199116
crossref_primary_10_3390_s22124540
crossref_primary_10_1016_j_knosys_2022_110065
crossref_primary_10_1016_j_measurement_2022_112350
crossref_primary_10_3390_s22155507
crossref_primary_10_1177_09544062241274178
crossref_primary_10_1109_JSEN_2024_3403141
crossref_primary_10_1109_TIV_2024_3363232
crossref_primary_10_3390_e25081194
crossref_primary_10_1109_TIM_2021_3091489
crossref_primary_10_1109_ACCESS_2022_3233220
crossref_primary_10_1109_TIM_2022_3212542
crossref_primary_10_1109_TIM_2022_3157007
crossref_primary_10_1186_s40537_024_01006_4
crossref_primary_10_1016_j_ymssp_2023_110653
crossref_primary_10_1016_j_engappai_2022_105791
crossref_primary_10_1088_1361_6501_abd900
crossref_primary_10_1109_TIM_2025_3542867
crossref_primary_10_1109_TIM_2025_3541778
crossref_primary_10_1109_TSMC_2024_3408058
crossref_primary_10_1109_TGRS_2023_3328302
crossref_primary_10_1007_s40430_023_04426_0
crossref_primary_10_1016_j_engfailanal_2022_106573
crossref_primary_10_1016_j_knosys_2022_109846
crossref_primary_10_1109_TSMC_2023_3324735
crossref_primary_10_1109_TSMC_2022_3228314
crossref_primary_10_1088_1361_6501_addc01
crossref_primary_10_1109_TCYB_2024_3474651
crossref_primary_10_1109_TIM_2023_3271729
crossref_primary_10_1109_TSMC_2020_2997922
crossref_primary_10_1016_j_eswa_2024_124928
crossref_primary_10_1049_ipr2_70033
crossref_primary_10_1109_TIM_2025_3554898
crossref_primary_10_1109_TSMC_2024_3461668
crossref_primary_10_1016_j_eswa_2022_118802
crossref_primary_10_1186_s13634_023_01107_x
crossref_primary_10_1016_j_eswa_2024_124240
crossref_primary_10_1016_j_cja_2021_10_006
crossref_primary_10_1109_TFUZZ_2024_3367456
crossref_primary_10_1109_TIE_2022_3194654
crossref_primary_10_3390_s23167263
crossref_primary_10_1016_j_jmsy_2022_03_009
crossref_primary_10_1109_TIM_2024_3442849
crossref_primary_10_1109_TII_2023_3271734
crossref_primary_10_1109_TIM_2025_3551905
crossref_primary_10_1109_TMECH_2020_3046277
crossref_primary_10_1109_JIOT_2025_3565810
crossref_primary_10_1016_j_eswa_2025_126439
crossref_primary_10_1109_JSEN_2025_3546955
crossref_primary_10_1109_TIM_2024_3378258
crossref_primary_10_1088_1361_6501_adb2b1
crossref_primary_10_1109_JSEN_2023_3329468
crossref_primary_10_1109_TIM_2021_3122171
crossref_primary_10_1016_j_ces_2024_120884
crossref_primary_10_1109_JSEN_2022_3178137
crossref_primary_10_1088_1361_6501_ac3627
crossref_primary_10_1109_JSEN_2023_3342891
crossref_primary_10_3390_s21041417
crossref_primary_10_1088_1361_6501_ab9841
crossref_primary_10_1109_JSEN_2024_3365297
crossref_primary_10_1109_TIM_2022_3214624
crossref_primary_10_1109_TSMC_2023_3274878
crossref_primary_10_1177_10775463231222579
crossref_primary_10_1109_TIM_2022_3158996
crossref_primary_10_1109_TSMC_2022_3151185
crossref_primary_10_1002_cjce_25745
crossref_primary_10_1007_s10845_021_01777_0
crossref_primary_10_1109_TGRS_2022_3170316
crossref_primary_10_1109_ACCESS_2025_3537817
crossref_primary_10_1016_j_ymssp_2025_112771
Cites_doi 10.1109/TNN.2010.2091281
10.1109/TII.2017.2662215
10.1109/TKDE.2009.126
10.1109/TIE.2012.2192894
10.1109/TSMC.2017.2754287
10.1016/j.ymssp.2017.03.034
10.1109/TIE.2017.2745473
10.1109/TII.2012.2231084
10.1016/j.neuroimage.2018.07.043
10.1109/TSMC.2017.2746762
10.1109/ICPHM.2016.7542865
10.1109/CCDC.2015.7162328
10.1109/CVPR.2017.316
10.1109/TIE.2016.2627020
10.1109/TIE.2015.2416673
10.1109/TIE.2016.2519325
10.1109/ICPHM.2016.7542845
10.1109/TIM.2017.2759418
10.1109/TIA.2016.2519412
10.1109/TIM.2017.2669947
10.1016/j.eswa.2018.04.025
10.1109/TKDE.2012.75
10.1109/TIA.2009.2023566
10.1186/s40537-016-0043-6
10.1109/TKDE.2014.2373376
10.1109/TIE.2010.2058072
10.1016/j.measurement.2006.10.010
10.1109/TKDE.2009.191
10.1016/j.ymssp.2015.04.021
10.21595/jve.2016.16939
10.1038/nature14539
10.1109/TSMC.2016.2531692
10.1109/TIE.2015.2419013
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1109/TSMC.2019.2932000
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2232
EndPage 4226
ExternalDocumentID 10_1109_TSMC_2019_2932000
8805261
Genre orig-research
GrantInformation_xml – fundername: Hunan Provincial Hu-Xiang Young Talents Project of China
  grantid: 2018RS3095
– fundername: National Natural Science Foundation of China
  grantid: 61972443; 61503134; 61573299
  funderid: 10.13039/501100001809
– fundername: Hunan Provincial Natural Science Foundation of China
  grantid: 2018JJ2134
  funderid: 10.13039/501100004735
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-cc8ee4b9bb00778f32b1992a0c4e0c73500ccff48dcb07bbb6a1905f081a92a93
IEDL.DBID RIE
ISICitedReferencesCount 109
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000672729600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2216
IngestDate Sun Jun 29 16:16:58 EDT 2025
Sat Nov 29 03:45:35 EST 2025
Tue Nov 18 22:18:35 EST 2025
Wed Aug 27 02:50:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-cc8ee4b9bb00778f32b1992a0c4e0c73500ccff48dcb07bbb6a1905f081a92a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4704-7346
0000-0001-8706-9964
0000-0002-6597-4741
0000-0002-8000-7872
PQID 2541466788
PQPubID 75739
PageCount 10
ParticipantIDs crossref_primary_10_1109_TSMC_2019_2932000
proquest_journals_2541466788
ieee_primary_8805261
crossref_citationtrail_10_1109_TSMC_2019_2932000
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on systems, man, and cybernetics. Systems
PublicationTitleAbbrev TSMC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
goodfellow (ref29) 2014
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref38
ref16
ref19
ref18
loparo (ref39) 2013
ref23
ref26
ref25
ref20
pan (ref24) 2008
ref22
ref21
ref27
ref8
ref7
tan (ref35) 2015
ref9
ref4
ref3
ref6
ref5
van der maaten (ref40) 2008; 9
lecun (ref28) 2015; 521
References_xml – start-page: 4608
  year: 2015
  ident: ref35
  article-title: Fault diagnosis method study in roller bearing based on wavelet transform and stacked auto-encoder
  publication-title: Proc IEEE Conf 27th CCDC
– ident: ref22
  doi: 10.1109/TNN.2010.2091281
– ident: ref7
  doi: 10.1109/TII.2017.2662215
– ident: ref26
  doi: 10.1109/TKDE.2009.126
– ident: ref2
  doi: 10.1109/TIE.2012.2192894
– ident: ref21
  doi: 10.1109/TSMC.2017.2754287
– ident: ref37
  doi: 10.1016/j.ymssp.2017.03.034
– ident: ref16
  doi: 10.1109/TIE.2017.2745473
– ident: ref8
  doi: 10.1109/TII.2012.2231084
– ident: ref31
  doi: 10.1016/j.neuroimage.2018.07.043
– ident: ref5
  doi: 10.1109/TSMC.2017.2746762
– ident: ref36
  doi: 10.1109/ICPHM.2016.7542865
– ident: ref12
  doi: 10.1109/CCDC.2015.7162328
– ident: ref34
  doi: 10.1109/TIE.2012.2192894
– ident: ref30
  doi: 10.1109/CVPR.2017.316
– ident: ref23
  doi: 10.1109/TIE.2016.2627020
– ident: ref10
  doi: 10.1109/TIE.2015.2416673
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref40
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– ident: ref38
  doi: 10.1109/TIE.2016.2519325
– ident: ref20
  doi: 10.1109/ICPHM.2016.7542845
– ident: ref14
  doi: 10.1109/TIM.2017.2759418
– ident: ref6
  doi: 10.1109/TIA.2016.2519412
– ident: ref15
  doi: 10.1109/TIM.2017.2669947
– ident: ref9
  doi: 10.1016/j.eswa.2018.04.025
– year: 2013
  ident: ref39
  publication-title: Case Western Reserve University Bearing Data Center
– ident: ref27
  doi: 10.1109/TKDE.2012.75
– ident: ref3
  doi: 10.1109/TIA.2009.2023566
– ident: ref18
  doi: 10.1186/s40537-016-0043-6
– start-page: 677
  year: 2008
  ident: ref24
  article-title: Transfer learning via dimensionality reduction
  publication-title: Proc AAAI Conf Artif Intell (AAAI)
– ident: ref25
  doi: 10.1109/TKDE.2014.2373376
– ident: ref33
  doi: 10.1109/TIE.2010.2058072
– ident: ref11
  doi: 10.1016/j.measurement.2006.10.010
– ident: ref17
  doi: 10.1109/TKDE.2009.191
– ident: ref19
  doi: 10.1109/TIE.2016.2627020
– ident: ref1
  doi: 10.1016/j.ymssp.2015.04.021
– ident: ref13
  doi: 10.21595/jve.2016.16939
– volume: 521
  start-page: 436
  year: 2015
  ident: ref28
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 2672
  year: 2014
  ident: ref29
  article-title: Generative adversarial networks
  publication-title: Proc NIPS
– ident: ref4
  doi: 10.1109/TSMC.2016.2531692
– ident: ref32
  doi: 10.1109/TIE.2015.2419013
SSID ssj0001286306
Score 2.5185795
Snippet Fault diagnosis of rolling bearings is an essential process for improving the reliability and safety of the rotating machinery. It is always a major challenge...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4217
SubjectTerms Accuracy
Adaptation
Adversarial network
Algorithms
bearing
Classification
Data mining
Data models
Deep learning
deep neural networks
domain adaptation (DA)
Domains
Fault diagnosis
Feature extraction
Machine learning
Roller bearings
Rolling bearings
Rotating machinery
stack autoencoder (SAE)
Training
unsupervised learning
Title Deep Adversarial Domain Adaptation Model for Bearing Fault Diagnosis
URI https://ieeexplore.ieee.org/document/8805261
https://www.proquest.com/docview/2541466788
Volume 51
WOSCitedRecordID wos000672729600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2232
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286306
  issn: 2168-2216
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1dS8MwMMzhgz74NcXplDz4JHZLv9LmUTeHDzoEJ-ytJNcrDGY31s7fb5J2Y6IIvpTS3kFyd-3d5b4IuXElZKmLvgMiBCfgKnZUhq6Tad0oU-FjCra7_nM0GsWTiXhtkLtNLQwi2uQz7JpbG8tP57AyR2W92PTfN77OThTxqlZr6zwl5r4dpem5XDNfX-sgpstEb_z20jd5XKKr1ZupTvmmhuxclR8_Y6thhof_W9sROagtSXpfsf6YNDA_Iftb_QVbZDBAXFA7c7mQRtLoYP4hp7l-JBdVDJ6aYWgzqk1X-qCFXqPRoVzNSjqocvCmxSl5Hz6O-09OPTbBAb250gGIEQMllDK9euLM95TJMZUMAmQQ-SFjAFkWxCkoFimluNRWQZhp40BqMOGfkWY-z_GcUMFdCDF1I6X9SNcH_TrV9pKX-RyQcdEmbE3FBOqe4ma0xSyxvgUTiSF8Ygif1IRvk9sNyqJqqPEXcMtQegNYE7lNOmtWJfUnVyRmhQHXuje--B3rkux5JiHF5tp2SLNcrvCK7MJnOS2W11aavgA3PMZE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1dS8NALAwV1Ae_pjideg8-id2u68d6j7o5Jm5DcMLeyl2awmBuYx_-fu-u3Zgogi-ltAncJWmTXL4Abl2JaeKS56AI0PFDFTkqJddJtW6UifAoQdtdv1Pv9aLBQLwW4H5dC0NENvmMKubWxvKTCS7NUVk1Mv33ja-zHfh-jWfVWhsnKlHo2WGaNTfU7NfXPIzpclHtv3UbJpNLVLSCM_Up3xSRnazy43dsdUzr8H-rO4KD3JZkDxnzj6FA4xPY3-gwWIRmk2jK7NTluTSyxpqTDzkc60dymkXhmRmHNmLaeGWPWuw1GmvJ5WjBmlkW3nB-Cu-tp36j7eSDExzUm1s4iBGRr4RSpltPlHo1ZbJMJUefONa9gHPENPWjBBWvK6VCqe2CINXmgdRgwjuDrfFkTOfAROhiQIlbV9qTdD3UrxNtMdVSL0TioSgBX1ExxryruBluMYqtd8FFbAgfG8LHOeFLcLdGmWYtNf4CLhpKrwFzIpegvGJVnH9089is0A-19o0ufse6gd12v9uJO8-9l0vYyxIBTGZKGbYWsyVdwQ5-Lobz2bWVrC-00cmE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Adversarial+Domain+Adaptation+Model+for+Bearing+Fault+Diagnosis&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Liu%2C+Zhao-Hua&rft.au=Lu%2C+Bi-Liang&rft.au=Wei%2C+Hua-Liang&rft.au=Chen%2C+Lei&rft.date=2021-07-01&rft.issn=2168-2216&rft.eissn=2168-2232&rft.volume=51&rft.issue=7&rft.spage=4217&rft.epage=4226&rft_id=info:doi/10.1109%2FTSMC.2019.2932000&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSMC_2019_2932000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon