Deep Adversarial Domain Adaptation Model for Bearing Fault Diagnosis
Fault diagnosis of rolling bearings is an essential process for improving the reliability and safety of the rotating machinery. It is always a major challenge to ensure fault diagnosis accuracy in particular under severe working conditions. In this article, a deep adversarial domain adaptation (DADA...
Uloženo v:
| Vydáno v: | IEEE transactions on systems, man, and cybernetics. Systems Ročník 51; číslo 7; s. 4217 - 4226 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2168-2216, 2168-2232 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Fault diagnosis of rolling bearings is an essential process for improving the reliability and safety of the rotating machinery. It is always a major challenge to ensure fault diagnosis accuracy in particular under severe working conditions. In this article, a deep adversarial domain adaptation (DADA) model is proposed for rolling bearing fault diagnosis. This model constructs an adversarial adaptation network to solve the commonly encountered problem in numerous real applications: the source domain and the target domain are inconsistent in their distribution. First, a deep stack autoencoder (DSAE) is combined with representative feature learning for dimensionality reduction, and such a combination provides an unsupervised learning method to effectively acquire fault features. Meanwhile, domain adaptation and recognition classification are implemented using a Softmax classifier to augment classification accuracy. Second, the effects of the number of hidden layers in the stack autoencoder network, the number of neurons in each hidden layer, and the hyperparameters of the proposed fault diagnosis algorithm are analyzed. Third, comprehensive analysis is performed on real data to validate the performance of the proposed method; the experimental results demonstrate that the new method outperforms the existing machine learning and deep learning methods, in terms of classification accuracy and generalization ability. |
|---|---|
| AbstractList | Fault diagnosis of rolling bearings is an essential process for improving the reliability and safety of the rotating machinery. It is always a major challenge to ensure fault diagnosis accuracy in particular under severe working conditions. In this article, a deep adversarial domain adaptation (DADA) model is proposed for rolling bearing fault diagnosis. This model constructs an adversarial adaptation network to solve the commonly encountered problem in numerous real applications: the source domain and the target domain are inconsistent in their distribution. First, a deep stack autoencoder (DSAE) is combined with representative feature learning for dimensionality reduction, and such a combination provides an unsupervised learning method to effectively acquire fault features. Meanwhile, domain adaptation and recognition classification are implemented using a Softmax classifier to augment classification accuracy. Second, the effects of the number of hidden layers in the stack autoencoder network, the number of neurons in each hidden layer, and the hyperparameters of the proposed fault diagnosis algorithm are analyzed. Third, comprehensive analysis is performed on real data to validate the performance of the proposed method; the experimental results demonstrate that the new method outperforms the existing machine learning and deep learning methods, in terms of classification accuracy and generalization ability. |
| Author | Liu, Zhao-Hua Lu, Bi-Liang Li, Xiao-Hua Ratsch, Matthias Chen, Lei Wei, Hua-Liang |
| Author_xml | – sequence: 1 givenname: Zhao-Hua orcidid: 0000-0002-6597-4741 surname: Liu fullname: Liu, Zhao-Hua email: zhaohualiu2009@hotmail.com organization: School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan, China – sequence: 2 givenname: Bi-Liang surname: Lu fullname: Lu, Bi-Liang email: 1197393632@qq.com organization: School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan, China – sequence: 3 givenname: Hua-Liang orcidid: 0000-0002-4704-7346 surname: Wei fullname: Wei, Hua-Liang email: w.hualiang@sheffield.ac.uk organization: Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, U.K – sequence: 4 givenname: Lei orcidid: 0000-0002-8000-7872 surname: Chen fullname: Chen, Lei email: chenlei@hnust.edu.cn organization: School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan, China – sequence: 5 givenname: Xiao-Hua orcidid: 0000-0001-8706-9964 surname: Li fullname: Li, Xiao-Hua email: lixiaohua_0227@163.com organization: School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan, China – sequence: 6 givenname: Matthias surname: Ratsch fullname: Ratsch, Matthias email: matthias.raetsch@reutlingen-university.de organization: Image Understanding and Interactive Robotics Group, Reutlingen University, Reutlingen, Germany |
| BookMark | eNp9kE9LwzAYh4NMcM59APFS8Nz5Jm3T5DhXp8KGB-c5JFk6MrqmJp3gtzejw4MHT3kJz_P--V2jUetag9AthhnGwB827-vFjADmM8IzAgAXaEwwZSkhGRn91pheoWkI-whgwmgGdIyqypgumW-_jA_SW9kklTtI28Yv2fWyt65N1m5rmqR2Pnk0kWl3yVIemz6prNy1Lthwgy5r2QQzPb8T9LF82ixe0tXb8-tivkp13KtPtWbG5IorBVCWrM6IwpwTCTo3oMusANC6rnO21QpKpRSVmENRA8MyYjyboPuhb-fd59GEXuzd0bdxpCBFjnNKS8YiVQ6U9i4Eb2qh7XBJ76VtBAZxSk2cUhOn1MQ5tWjiP2bn7UH673-du8GxxphfnjEoCMXZDxZFeNc |
| CODEN | ITSMFE |
| CitedBy_id | crossref_primary_10_1109_TII_2024_3396554 crossref_primary_10_1016_j_neucom_2020_11_063 crossref_primary_10_1088_1361_6501_acfdc1 crossref_primary_10_1007_s11071_024_10221_w crossref_primary_10_1016_j_inffus_2024_102875 crossref_primary_10_1016_j_chemolab_2025_105423 crossref_primary_10_1109_TSMC_2020_3010505 crossref_primary_10_1109_TSMC_2022_3228934 crossref_primary_10_1016_j_ymssp_2021_108487 crossref_primary_10_1109_ACCESS_2023_3239784 crossref_primary_10_1007_s10489_022_04342_1 crossref_primary_10_1007_s44379_024_00011_x crossref_primary_10_1109_TIM_2025_3550233 crossref_primary_10_1109_TSMC_2022_3226748 crossref_primary_10_1109_JSEN_2022_3163425 crossref_primary_10_1088_1361_6501_acf6d9 crossref_primary_10_1109_TSMC_2022_3218536 crossref_primary_10_1109_TSMC_2024_3389068 crossref_primary_10_1109_TMECH_2022_3191051 crossref_primary_10_1016_j_knosys_2023_111158 crossref_primary_10_1109_TSMC_2023_3346398 crossref_primary_10_1016_j_eswa_2023_120066 crossref_primary_10_1109_TII_2022_3228902 crossref_primary_10_1109_TSMC_2024_3427345 crossref_primary_10_3390_app14199116 crossref_primary_10_3390_s22124540 crossref_primary_10_1016_j_knosys_2022_110065 crossref_primary_10_1016_j_measurement_2022_112350 crossref_primary_10_3390_s22155507 crossref_primary_10_1177_09544062241274178 crossref_primary_10_1109_JSEN_2024_3403141 crossref_primary_10_1109_TIV_2024_3363232 crossref_primary_10_3390_e25081194 crossref_primary_10_1109_TIM_2021_3091489 crossref_primary_10_1109_ACCESS_2022_3233220 crossref_primary_10_1109_TIM_2022_3212542 crossref_primary_10_1109_TIM_2022_3157007 crossref_primary_10_1186_s40537_024_01006_4 crossref_primary_10_1016_j_ymssp_2023_110653 crossref_primary_10_1016_j_engappai_2022_105791 crossref_primary_10_1088_1361_6501_abd900 crossref_primary_10_1109_TIM_2025_3542867 crossref_primary_10_1109_TIM_2025_3541778 crossref_primary_10_1109_TSMC_2024_3408058 crossref_primary_10_1109_TGRS_2023_3328302 crossref_primary_10_1007_s40430_023_04426_0 crossref_primary_10_1016_j_engfailanal_2022_106573 crossref_primary_10_1016_j_knosys_2022_109846 crossref_primary_10_1109_TSMC_2023_3324735 crossref_primary_10_1109_TSMC_2022_3228314 crossref_primary_10_1088_1361_6501_addc01 crossref_primary_10_1109_TCYB_2024_3474651 crossref_primary_10_1109_TIM_2023_3271729 crossref_primary_10_1109_TSMC_2020_2997922 crossref_primary_10_1016_j_eswa_2024_124928 crossref_primary_10_1049_ipr2_70033 crossref_primary_10_1109_TIM_2025_3554898 crossref_primary_10_1109_TSMC_2024_3461668 crossref_primary_10_1016_j_eswa_2022_118802 crossref_primary_10_1186_s13634_023_01107_x crossref_primary_10_1016_j_eswa_2024_124240 crossref_primary_10_1016_j_cja_2021_10_006 crossref_primary_10_1109_TFUZZ_2024_3367456 crossref_primary_10_1109_TIE_2022_3194654 crossref_primary_10_3390_s23167263 crossref_primary_10_1016_j_jmsy_2022_03_009 crossref_primary_10_1109_TIM_2024_3442849 crossref_primary_10_1109_TII_2023_3271734 crossref_primary_10_1109_TIM_2025_3551905 crossref_primary_10_1109_TMECH_2020_3046277 crossref_primary_10_1109_JIOT_2025_3565810 crossref_primary_10_1016_j_eswa_2025_126439 crossref_primary_10_1109_JSEN_2025_3546955 crossref_primary_10_1109_TIM_2024_3378258 crossref_primary_10_1088_1361_6501_adb2b1 crossref_primary_10_1109_JSEN_2023_3329468 crossref_primary_10_1109_TIM_2021_3122171 crossref_primary_10_1016_j_ces_2024_120884 crossref_primary_10_1109_JSEN_2022_3178137 crossref_primary_10_1088_1361_6501_ac3627 crossref_primary_10_1109_JSEN_2023_3342891 crossref_primary_10_3390_s21041417 crossref_primary_10_1088_1361_6501_ab9841 crossref_primary_10_1109_JSEN_2024_3365297 crossref_primary_10_1109_TIM_2022_3214624 crossref_primary_10_1109_TSMC_2023_3274878 crossref_primary_10_1177_10775463231222579 crossref_primary_10_1109_TIM_2022_3158996 crossref_primary_10_1109_TSMC_2022_3151185 crossref_primary_10_1002_cjce_25745 crossref_primary_10_1007_s10845_021_01777_0 crossref_primary_10_1109_TGRS_2022_3170316 crossref_primary_10_1109_ACCESS_2025_3537817 crossref_primary_10_1016_j_ymssp_2025_112771 |
| Cites_doi | 10.1109/TNN.2010.2091281 10.1109/TII.2017.2662215 10.1109/TKDE.2009.126 10.1109/TIE.2012.2192894 10.1109/TSMC.2017.2754287 10.1016/j.ymssp.2017.03.034 10.1109/TIE.2017.2745473 10.1109/TII.2012.2231084 10.1016/j.neuroimage.2018.07.043 10.1109/TSMC.2017.2746762 10.1109/ICPHM.2016.7542865 10.1109/CCDC.2015.7162328 10.1109/CVPR.2017.316 10.1109/TIE.2016.2627020 10.1109/TIE.2015.2416673 10.1109/TIE.2016.2519325 10.1109/ICPHM.2016.7542845 10.1109/TIM.2017.2759418 10.1109/TIA.2016.2519412 10.1109/TIM.2017.2669947 10.1016/j.eswa.2018.04.025 10.1109/TKDE.2012.75 10.1109/TIA.2009.2023566 10.1186/s40537-016-0043-6 10.1109/TKDE.2014.2373376 10.1109/TIE.2010.2058072 10.1016/j.measurement.2006.10.010 10.1109/TKDE.2009.191 10.1016/j.ymssp.2015.04.021 10.21595/jve.2016.16939 10.1038/nature14539 10.1109/TSMC.2016.2531692 10.1109/TIE.2015.2419013 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
| DOI | 10.1109/TSMC.2019.2932000 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2168-2232 |
| EndPage | 4226 |
| ExternalDocumentID | 10_1109_TSMC_2019_2932000 8805261 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Hunan Provincial Hu-Xiang Young Talents Project of China grantid: 2018RS3095 – fundername: National Natural Science Foundation of China grantid: 61972443; 61503134; 61573299 funderid: 10.13039/501100001809 – fundername: Hunan Provincial Natural Science Foundation of China grantid: 2018JJ2134 funderid: 10.13039/501100004735 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-cc8ee4b9bb00778f32b1992a0c4e0c73500ccff48dcb07bbb6a1905f081a92a93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 109 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000672729600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2216 |
| IngestDate | Sun Jun 29 16:16:58 EDT 2025 Sat Nov 29 03:45:35 EST 2025 Tue Nov 18 22:18:35 EST 2025 Wed Aug 27 02:50:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-cc8ee4b9bb00778f32b1992a0c4e0c73500ccff48dcb07bbb6a1905f081a92a93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4704-7346 0000-0001-8706-9964 0000-0002-6597-4741 0000-0002-8000-7872 |
| PQID | 2541466788 |
| PQPubID | 75739 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1109_TSMC_2019_2932000 proquest_journals_2541466788 ieee_primary_8805261 crossref_citationtrail_10_1109_TSMC_2019_2932000 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on systems, man, and cybernetics. Systems |
| PublicationTitleAbbrev | TSMC |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 goodfellow (ref29) 2014 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref38 ref16 ref19 ref18 loparo (ref39) 2013 ref23 ref26 ref25 ref20 pan (ref24) 2008 ref22 ref21 ref27 ref8 ref7 tan (ref35) 2015 ref9 ref4 ref3 ref6 ref5 van der maaten (ref40) 2008; 9 lecun (ref28) 2015; 521 |
| References_xml | – start-page: 4608 year: 2015 ident: ref35 article-title: Fault diagnosis method study in roller bearing based on wavelet transform and stacked auto-encoder publication-title: Proc IEEE Conf 27th CCDC – ident: ref22 doi: 10.1109/TNN.2010.2091281 – ident: ref7 doi: 10.1109/TII.2017.2662215 – ident: ref26 doi: 10.1109/TKDE.2009.126 – ident: ref2 doi: 10.1109/TIE.2012.2192894 – ident: ref21 doi: 10.1109/TSMC.2017.2754287 – ident: ref37 doi: 10.1016/j.ymssp.2017.03.034 – ident: ref16 doi: 10.1109/TIE.2017.2745473 – ident: ref8 doi: 10.1109/TII.2012.2231084 – ident: ref31 doi: 10.1016/j.neuroimage.2018.07.043 – ident: ref5 doi: 10.1109/TSMC.2017.2746762 – ident: ref36 doi: 10.1109/ICPHM.2016.7542865 – ident: ref12 doi: 10.1109/CCDC.2015.7162328 – ident: ref34 doi: 10.1109/TIE.2012.2192894 – ident: ref30 doi: 10.1109/CVPR.2017.316 – ident: ref23 doi: 10.1109/TIE.2016.2627020 – ident: ref10 doi: 10.1109/TIE.2015.2416673 – volume: 9 start-page: 2579 year: 2008 ident: ref40 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – ident: ref38 doi: 10.1109/TIE.2016.2519325 – ident: ref20 doi: 10.1109/ICPHM.2016.7542845 – ident: ref14 doi: 10.1109/TIM.2017.2759418 – ident: ref6 doi: 10.1109/TIA.2016.2519412 – ident: ref15 doi: 10.1109/TIM.2017.2669947 – ident: ref9 doi: 10.1016/j.eswa.2018.04.025 – year: 2013 ident: ref39 publication-title: Case Western Reserve University Bearing Data Center – ident: ref27 doi: 10.1109/TKDE.2012.75 – ident: ref3 doi: 10.1109/TIA.2009.2023566 – ident: ref18 doi: 10.1186/s40537-016-0043-6 – start-page: 677 year: 2008 ident: ref24 article-title: Transfer learning via dimensionality reduction publication-title: Proc AAAI Conf Artif Intell (AAAI) – ident: ref25 doi: 10.1109/TKDE.2014.2373376 – ident: ref33 doi: 10.1109/TIE.2010.2058072 – ident: ref11 doi: 10.1016/j.measurement.2006.10.010 – ident: ref17 doi: 10.1109/TKDE.2009.191 – ident: ref19 doi: 10.1109/TIE.2016.2627020 – ident: ref1 doi: 10.1016/j.ymssp.2015.04.021 – ident: ref13 doi: 10.21595/jve.2016.16939 – volume: 521 start-page: 436 year: 2015 ident: ref28 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – start-page: 2672 year: 2014 ident: ref29 article-title: Generative adversarial networks publication-title: Proc NIPS – ident: ref4 doi: 10.1109/TSMC.2016.2531692 – ident: ref32 doi: 10.1109/TIE.2015.2419013 |
| SSID | ssj0001286306 |
| Score | 2.5185795 |
| Snippet | Fault diagnosis of rolling bearings is an essential process for improving the reliability and safety of the rotating machinery. It is always a major challenge... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4217 |
| SubjectTerms | Accuracy Adaptation Adversarial network Algorithms bearing Classification Data mining Data models Deep learning deep neural networks domain adaptation (DA) Domains Fault diagnosis Feature extraction Machine learning Roller bearings Rolling bearings Rotating machinery stack autoencoder (SAE) Training unsupervised learning |
| Title | Deep Adversarial Domain Adaptation Model for Bearing Fault Diagnosis |
| URI | https://ieeexplore.ieee.org/document/8805261 https://www.proquest.com/docview/2541466788 |
| Volume | 51 |
| WOSCitedRecordID | wos000672729600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2232 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286306 issn: 2168-2216 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5q8aAHX1WsVtmDJzHtpkmTzVFbiwctglV6C7ubDRRqWprU3-_MJpaKIngJIexA8s1uZnbn8QFcuZIrHmrjuDpMHF8lniO1Fo5QItEoY4SN4L89hqORmEyi5xrcrGthjDE2-cy06dbG8pO5XtFRWUdQ_33a62yFYVDWam2cp4jAs1SaXTdA5eO1CmK6POqMX576lMcVtdG8UXXKNzNkeVV-_IythRnu_-_dDmCv8iTZban6Q6iZ7Ah2N_oLNmAwMGbBLOdyLmmmscH8XU4zfCQXZQyeERnajKHryu5w0qMYG8rVrGCDMgdvmh_D6_B-3H9wKtoER-PHFQ5CbYyvIqWoV49Iva6iHFPJtW-4Dr0e51qnqU_K4KFSKpDoFfRSdA4kDou8E6hn88ycAvMS6veneRrpHvpVAW7WfEX9X6g-1_V1E_gXirGueooTtcUstnsLHsUEfEzAxxXwTbheiyzKhhp_DW4Q0uuBFchNaH2pKq6WXB53idA8QNsrzn6XOoedLiWk2FzbFtSL5cpcwLb-KKb58tLOpk_KOMWW |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_GFNQHv6Y4nZoHn8Ru6cfa9FE3x8RtCE7ZW0nSFAazG1vn328u7cZEEXwppeSg_V3Su-Q-fgA3NqeCBlJZtgxiyxOxa3EpmcUEi6WWUcxE8N97wWDARqPwpQR361oYpZRJPlN1vDWx_Hgql3hU1mDYfx_3OltNz3NoXq21caLCfNeQaTq2r9Wvr0UY06ZhY_jab2EmV1jXBg7rU74ZIsOs8uN3bGxM5-B_b3cI-4UvSe5z5R9BSaXHsLfRYbAC7bZSM2JYlxcc5xppTz_4ONWP-CyPwhOkQ5sQ7bySBz3ttRjp8OUkI-08C2-8OIG3zuOw1bUK4gRL6o_LLA22Up4IhcBuPSxxHYFZppxKT1EZuE1KpUwSD9VBAyGEz7Vf0Ey0e8D1sNA9hXI6TdUZEDfGjn-SJqFsas_K19s1T2AHGKzQtT1ZBbpCMZJFV3Ekt5hEZndBwwiBjxD4qAC-CrdrkVneUuOvwRVEej2wALkKtZWqomLRLSIHKc19bX3Z-e9S17DTHfZ7Ue9p8HwBuw6mp5jM2xqUs_lSXcK2_MzGi_mVmVlfQKPI3Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Adversarial+Domain+Adaptation+Model+for+Bearing+Fault+Diagnosis&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Zhao-Hua%2C+Liu&rft.au=Bi-Liang%2C+Lu&rft.au=Hua-Liang%2C+Wei&rft.au=Chen%2C+Lei&rft.date=2021-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2216&rft.eissn=2168-2232&rft.volume=51&rft.issue=7&rft.spage=4217&rft_id=info:doi/10.1109%2FTSMC.2019.2932000&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon |