Asynchronous Approximation of a Single Component of the Solution to a Linear System

We present a distributed asynchronous algorithm for approximating a single component of the solution to a system of linear equations <inline-formula><tex-math notation="LaTeX">Ax = b</tex-math></inline-formula>, where <inline-formula><tex-math notation=&quo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on network science and engineering Jg. 7; H. 3; S. 975 - 986
Hauptverfasser: Ozdaglar, Asuman, Shah, Devavrat, Yu, Christina Lee
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2327-4697, 2334-329X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We present a distributed asynchronous algorithm for approximating a single component of the solution to a system of linear equations <inline-formula><tex-math notation="LaTeX">Ax = b</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">A</tex-math></inline-formula> is a positive definite real matrix and <inline-formula><tex-math notation="LaTeX">b \in \mathbb {R}^n</tex-math></inline-formula>. This can equivalently be formulated as solving for <inline-formula><tex-math notation="LaTeX">x_i</tex-math></inline-formula> in <inline-formula><tex-math notation="LaTeX">x = Gx + z</tex-math></inline-formula> for some <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">z</tex-math></inline-formula> such that the spectral radius of <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula> is less than 1. Our algorithm relies on the Neumann series characterization of the component <inline-formula><tex-math notation="LaTeX">x_i</tex-math></inline-formula>, and is based on residual updates. We analyze our algorithm within the context of a cloud computation model motivated by frameworks, such as Apache Spark, in which the computation is split into small update tasks performed by small processors with shared access to a distributed file system. We prove a robust asymptotic convergence result when the spectral radius <inline-formula><tex-math notation="LaTeX">\rho (|G|) < 1</tex-math></inline-formula>, regardless of the precise order and frequency in which the update tasks are performed. We provide convergence rate bounds that depend on the order of update tasks performed, analyzing both deterministic update rules via counting weighted random walks, as well as probabilistic update rules via concentration bounds. The probabilistic analysis requires analyzing the product of random matrices that are drawn from distributions that are time and path dependent. We specifically consider the setting where <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula> is large, yet <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula> is sparse, e.g., each row has at most <inline-formula><tex-math notation="LaTeX">d</tex-math></inline-formula> nonzero entries. This is motivated by applications in which <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula> is derived from the edge structure of an underlying graph. Our results prove that if the local neighborhood of the graph does not grow too quickly as a function of <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula>, our algorithm can provide significant reduction in computation cost as opposed to any algorithm that computes the global solution vector <inline-formula><tex-math notation="LaTeX">x</tex-math></inline-formula>. Our algorithm obtains an <inline-formula><tex-math notation="LaTeX">\epsilon \Vert x\Vert _2</tex-math></inline-formula> additive approximation for <inline-formula><tex-math notation="LaTeX">x_i</tex-math></inline-formula> in constant time with respect to the size of the matrix when the maximum row sparsity <inline-formula><tex-math notation="LaTeX">d = O(1)</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">1/(1-\Vert G\Vert _2) = O(1)</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">\Vert G\Vert _2</tex-math></inline-formula> is the induced matrix operator 2-norm.
AbstractList We present a distributed asynchronous algorithm for approximating a single component of the solution to a system of linear equations <inline-formula><tex-math notation="LaTeX">Ax = b</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">A</tex-math></inline-formula> is a positive definite real matrix and <inline-formula><tex-math notation="LaTeX">b \in \mathbb {R}^n</tex-math></inline-formula>. This can equivalently be formulated as solving for <inline-formula><tex-math notation="LaTeX">x_i</tex-math></inline-formula> in <inline-formula><tex-math notation="LaTeX">x = Gx + z</tex-math></inline-formula> for some <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">z</tex-math></inline-formula> such that the spectral radius of <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula> is less than 1. Our algorithm relies on the Neumann series characterization of the component <inline-formula><tex-math notation="LaTeX">x_i</tex-math></inline-formula>, and is based on residual updates. We analyze our algorithm within the context of a cloud computation model motivated by frameworks, such as Apache Spark, in which the computation is split into small update tasks performed by small processors with shared access to a distributed file system. We prove a robust asymptotic convergence result when the spectral radius <inline-formula><tex-math notation="LaTeX">\rho (|G|) < 1</tex-math></inline-formula>, regardless of the precise order and frequency in which the update tasks are performed. We provide convergence rate bounds that depend on the order of update tasks performed, analyzing both deterministic update rules via counting weighted random walks, as well as probabilistic update rules via concentration bounds. The probabilistic analysis requires analyzing the product of random matrices that are drawn from distributions that are time and path dependent. We specifically consider the setting where <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula> is large, yet <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula> is sparse, e.g., each row has at most <inline-formula><tex-math notation="LaTeX">d</tex-math></inline-formula> nonzero entries. This is motivated by applications in which <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula> is derived from the edge structure of an underlying graph. Our results prove that if the local neighborhood of the graph does not grow too quickly as a function of <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula>, our algorithm can provide significant reduction in computation cost as opposed to any algorithm that computes the global solution vector <inline-formula><tex-math notation="LaTeX">x</tex-math></inline-formula>. Our algorithm obtains an <inline-formula><tex-math notation="LaTeX">\epsilon \Vert x\Vert _2</tex-math></inline-formula> additive approximation for <inline-formula><tex-math notation="LaTeX">x_i</tex-math></inline-formula> in constant time with respect to the size of the matrix when the maximum row sparsity <inline-formula><tex-math notation="LaTeX">d = O(1)</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">1/(1-\Vert G\Vert _2) = O(1)</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">\Vert G\Vert _2</tex-math></inline-formula> is the induced matrix operator 2-norm.
We present a distributed asynchronous algorithm for approximating a single component of the solution to a system of linear equations [Formula Omitted], where [Formula Omitted] is a positive definite real matrix and [Formula Omitted]. This can equivalently be formulated as solving for [Formula Omitted] in [Formula Omitted] for some [Formula Omitted] and [Formula Omitted] such that the spectral radius of [Formula Omitted] is less than 1. Our algorithm relies on the Neumann series characterization of the component [Formula Omitted], and is based on residual updates. We analyze our algorithm within the context of a cloud computation model motivated by frameworks, such as Apache Spark, in which the computation is split into small update tasks performed by small processors with shared access to a distributed file system. We prove a robust asymptotic convergence result when the spectral radius [Formula Omitted], regardless of the precise order and frequency in which the update tasks are performed. We provide convergence rate bounds that depend on the order of update tasks performed, analyzing both deterministic update rules via counting weighted random walks, as well as probabilistic update rules via concentration bounds. The probabilistic analysis requires analyzing the product of random matrices that are drawn from distributions that are time and path dependent. We specifically consider the setting where [Formula Omitted] is large, yet [Formula Omitted] is sparse, e.g., each row has at most [Formula Omitted] nonzero entries. This is motivated by applications in which [Formula Omitted] is derived from the edge structure of an underlying graph. Our results prove that if the local neighborhood of the graph does not grow too quickly as a function of [Formula Omitted], our algorithm can provide significant reduction in computation cost as opposed to any algorithm that computes the global solution vector [Formula Omitted]. Our algorithm obtains an [Formula Omitted] additive approximation for [Formula Omitted] in constant time with respect to the size of the matrix when the maximum row sparsity [Formula Omitted] and [Formula Omitted], where [Formula Omitted] is the induced matrix operator 2-norm.
Author Ozdaglar, Asuman
Yu, Christina Lee
Shah, Devavrat
Author_xml – sequence: 1
  givenname: Asuman
  orcidid: 0000-0002-1827-1285
  surname: Ozdaglar
  fullname: Ozdaglar, Asuman
  email: asuman@mit.edu
  organization: Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 2
  givenname: Devavrat
  surname: Shah
  fullname: Shah, Devavrat
  email: devavrat@mit.edu
  organization: Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 3
  givenname: Christina Lee
  orcidid: 0000-0002-2165-5220
  surname: Yu
  fullname: Yu, Christina Lee
  email: cleeyu@cornell.edu
  organization: School of Operations Research and Information Engineering, Cornell University, Ithaca, NY, USA
BookMark eNp9kE1LwzAYx4NMcM59APFS8NyZPEnT5jjGfIGhh07wVtI2dR1dUpMM3Lc33YYHD57yEH7_5-V3jUbaaIXQLcEzQrB4WL_myxlgImaQCSYEvkBjoJTFFMTHaKghjRkX6RWaOrfFGBPIOKV0jPK5O-hqY402exfN-96a73YnfWt0ZJpIRnmrPzsVLcyuD0O1H379RkW56fZHyptArVqtpI3yg_Nqd4MuG9k5NT2_E_T-uFwvnuPV29PLYr6KKxDUx1XJGihLmZZJBSqpEyl5XapSMEUaSnFaN0kCEO7KFKlLaHgqMi5ZBSA5T0o6QfenvmHpr71yvtiavdVhZAGMihQnjEOg0hNVWeOcVU1Rtf54oLey7QqCi0FiMUgsBonFWWJIkj_J3gY39vBv5u6UaZVSv3zGw0IM6A849H-Y
CODEN ITNSD5
CitedBy_id crossref_primary_10_1002_cpa_70012
crossref_primary_10_1137_21M1422513
crossref_primary_10_1007_s00466_021_01975_w
Cites_doi 10.1080/15427951.2014.971203
10.1007/s00041-008-9030-4
10.1145/2488608.2488724
10.2307/2002508
10.1109/ALLERTON.2016.7852323
10.1137/130904867
10.1109/FOCS.2011.85
10.1007/978-3-540-77004-6_12
10.1007/s10107-015-0892-3
10.1561/0400000054
10.1137/1012001
10.1109/TAC.2015.2414771
10.1515/MCMA.2009.015
10.1109/CDC.2013.6760740
10.1016/j.apm.2014.12.018
10.1007/BF01578388
10.2307/2002546
10.1145/1327452.1327492
10.1137/090771430
10.1007/978-3-642-18466-6_2
10.1515/mcma.2010.020
10.1287/moor.2013.0596
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNSE.2019.2894990
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2334-329X
EndPage 986
ExternalDocumentID 10_1109_TNSE_2019_2894990
8624342
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CNS-1161964; CMMI-1462158; CMMI-1634259
  funderid: 10.13039/100000001
– fundername: ONR
  grantid: N000141210997
– fundername: Air Force Office of Scientific Research; AFOSR
  grantid: FA9550-09-1-0538
  funderid: 10.13039/100000181
– fundername: Defense Advanced Research Projects Agency; DARPA
  grantid: W911NF-16-1-055
  funderid: 10.13039/100000185
– fundername: ARO
  grantid: W911NF-11-1-00365
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IEDLZ
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-cb4f2bba7b5c2e5d5aa6dbeb94e1f3307df55222018e1db2f67986a4c22a665b3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000566353500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4697
IngestDate Mon Jun 30 09:58:09 EDT 2025
Sat Nov 29 04:55:49 EST 2025
Tue Nov 18 21:58:06 EST 2025
Wed Aug 27 02:32:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-cb4f2bba7b5c2e5d5aa6dbeb94e1f3307df55222018e1db2f67986a4c22a665b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1827-1285
0000-0002-2165-5220
PQID 2439705462
PQPubID 2040409
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TNSE_2019_2894990
ieee_primary_8624342
proquest_journals_2439705462
crossref_primary_10_1109_TNSE_2019_2894990
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on network science and engineering
PublicationTitleAbbrev TNSE
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
curtiss (ref16) 1954
ozdaglar (ref31) 0
ref30
lee (ref21) 2013
ref11
ref10
ref1
ref17
ref19
ref18
westlake (ref4) 1968; 767
bertsekas (ref5) 1989
ref24
ref23
ref26
ref20
ref22
ref28
ref27
borthakur (ref2) 0; 11
golub (ref6) 0
ref29
ref8
nutini (ref32) 2015; 37
ref7
ref9
lee (ref25) 2014
zaharia (ref3) 2010; 10
References_xml – ident: ref22
  doi: 10.1080/15427951.2014.971203
– ident: ref26
  doi: 10.1007/s00041-008-9030-4
– volume: 37
  start-page: 1632
  year: 2015
  ident: ref32
  article-title: Coordinate descent converges faster with the Gauss-Southwell rule than random selection
  publication-title: Proc Int Conf Int Conf Mach Learn
– ident: ref10
  doi: 10.1145/2488608.2488724
– year: 1954
  ident: ref16
  publication-title: A Theoretical Comparison of the Efficiencies of Two Classical Methods and a Monte Carlo Method for Computing One Component of the Solution of a Set of Linear Algebraic Equations
– year: 1989
  ident: ref5
  publication-title: Parallel and Distributed Computation Numerical Methods
– ident: ref14
  doi: 10.2307/2002508
– ident: ref24
  doi: 10.1109/ALLERTON.2016.7852323
– ident: ref20
  doi: 10.1137/130904867
– ident: ref9
  doi: 10.1109/FOCS.2011.85
– ident: ref23
  doi: 10.1007/978-3-540-77004-6_12
– ident: ref7
  doi: 10.1007/s10107-015-0892-3
– ident: ref11
  doi: 10.1561/0400000054
– ident: ref18
  doi: 10.1137/1012001
– ident: ref13
  doi: 10.1109/TAC.2015.2414771
– ident: ref29
  doi: 10.1515/MCMA.2009.015
– ident: ref12
  doi: 10.1109/CDC.2013.6760740
– ident: ref17
  doi: 10.1016/j.apm.2014.12.018
– year: 2014
  ident: ref25
  article-title: Asynchronous approximation of a single component of the solution to a linear system
  publication-title: arXiv 1411 2647
– ident: ref19
  doi: 10.1007/BF01578388
– ident: ref15
  doi: 10.2307/2002546
– ident: ref1
  doi: 10.1145/1327452.1327492
– ident: ref8
  doi: 10.1137/090771430
– year: 0
  ident: ref6
  publication-title: Matrix Computations (Johns Hopkins Studies in the Mathematical Sciences)
– volume: 11
  start-page: 21
  year: 0
  ident: ref2
  article-title: The hadoop distributed file system: Architecture and design
  publication-title: Hadoop Project Website
– volume: 767
  year: 1968
  ident: ref4
  publication-title: A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
– start-page: 1376
  year: 2013
  ident: ref21
  article-title: Computing the stationary distribution locally
  publication-title: Advances in Neural Information Processing Systems 26
– year: 0
  ident: ref31
  article-title: Supplement: Proof of results from asynchronous approximation of a single component of the solution to a linear system
  publication-title: arXiv 1411 2647
– ident: ref28
  doi: 10.1007/978-3-642-18466-6_2
– volume: 10
  start-page: 95
  year: 2010
  ident: ref3
  article-title: Spark: Cluster computing with working sets
  publication-title: Proc HotCloud
– ident: ref27
  doi: 10.1515/mcma.2010.020
– ident: ref30
  doi: 10.1287/moor.2013.0596
SSID ssj0001286333
Score 2.1620657
Snippet We present a distributed asynchronous algorithm for approximating a single component of the solution to a system of linear equations <inline-formula><tex-math...
We present a distributed asynchronous algorithm for approximating a single component of the solution to a system of linear equations [Formula Omitted], where...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 975
SubjectTerms Algorithms
Approximation
Approximation algorithms
asynchronous randomized algorithms
Computation
Computational modeling
Convergence
distributed algorithms
Jacobian matrices
Linear equations
Linear system of equations
local computation
Mathematical analysis
Mathematical model
Matrix methods
Operators (mathematics)
Probabilistic analysis
Random walk
Symmetric matrices
Task analysis
Time dependence
Title Asynchronous Approximation of a Single Component of the Solution to a Linear System
URI https://ieeexplore.ieee.org/document/8624342
https://www.proquest.com/docview/2439705462
Volume 7
WOSCitedRecordID wos000566353500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2334-329X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286333
  issn: 2327-4697
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61eNCDryrWFzl4ErfdzWZfxyItHqQIrdDbkscECmVX2q3ov3eS3ZaCIngLy2QJM5lXkvmGkHtItA5A-J6BQFhQ7cBLIRJeGhmmk1BkGTh0_ZdkPE5ns-y1RR63tTAA4B6fQc8O3V2-LtXaHpX1bTFDyNHg7iVJXNdq7ZynpHEYhs3FZeBn_el4MrRvt7IeJhXcWd0d1-N6qfwwwM6rjI7_t54TctREj3RQi_uUtKA4I4c7mIIdMhmsvgplIW8xp6cDCxn-Oa_rE2lpqKATJFsAtYagLPD_9itGgXRzQEarEqkwR0UdoDWg-Tl5Gw2nT89e0znBU-i-K09JbpiUIpGRYhDpSIhYS5AZh8CEqNbaRBh4IXNSCLRkxt7FxIIrxkQcRzK8IO0C13BJKGipUz_kIJjhBjiOIeECVRkTJw1pl_gbpuaqgRW33S0WuUsv_Cy3csitHPJGDl3ysJ3yXmNq_EXcsYzfEjY875KbjeTyRutWObPRFcagMbv6fdY1OWA2X3bPbW9Iu1qu4Zbsq49qvlreuQ31DYTCyvY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6KCurBt1itmoMncXU3m30di1gq1iK0grcl2UygUFrpQ_TfO8luS0ERvIVlsoSZzCvJfANwhYnWAUrfMxhIC6odeClG0ksjw3USyixDh67fSbrd9O0te6nBzbIWBhHd4zO8tUN3l6_Hxdweld3ZYoZQkMFdj4TgflmttXKiksZhGFZXl4Gf3fW7vQf7eiu7pbRCOLu74nxcN5UfJtj5ldbu_1a0BztV_MiapcD3oYajA9heQRU8hF5z-jUqLOgtZfWsaUHDPwdlhSIbGyZZj8iGyKwpGI_o__YrxYFscUTGZmOioiyVtICVkOZH8Np66N-3vap3gleQA595hRKGKyUTFRUcIx1JGWuFKhMYmJAUW5uIQi9iToqBVtzY25hYioJzGceRCo9hbURrOAGGWunUDwVKboRBQWNMhCRlptRJY1oHf8HUvKiAxW1_i2HuEgw_y60cciuHvJJDHa6XU95LVI2_iA8t45eEFc_r0FhILq_0bppzG19RFBrz099nXcJmu__cyTuP3acz2OI2e3aPbxuwNpvM8Rw2io_ZYDq5cJvrGzt6zj0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asynchronous+Approximation+of+a+Single+Component+of+the+Solution+to+a+Linear+System&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Ozdaglar%2C+Asuman&rft.au=Shah%2C+Devavrat&rft.au=Yu%2C+Christina+Lee&rft.date=2020-07-01&rft.pub=IEEE&rft.eissn=2334-329X&rft.volume=7&rft.issue=3&rft.spage=975&rft.epage=986&rft_id=info:doi/10.1109%2FTNSE.2019.2894990&rft.externalDocID=8624342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon