Asynchronous Approximation of a Single Component of the Solution to a Linear System
We present a distributed asynchronous algorithm for approximating a single component of the solution to a system of linear equations <inline-formula><tex-math notation="LaTeX">Ax = b</tex-math></inline-formula>, where <inline-formula><tex-math notation=&quo...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on network science and engineering Jg. 7; H. 3; S. 975 - 986 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2327-4697, 2334-329X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We present a distributed asynchronous algorithm for approximating a single component of the solution to a system of linear equations <inline-formula><tex-math notation="LaTeX">Ax = b</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">A</tex-math></inline-formula> is a positive definite real matrix and <inline-formula><tex-math notation="LaTeX">b \in \mathbb {R}^n</tex-math></inline-formula>. This can equivalently be formulated as solving for <inline-formula><tex-math notation="LaTeX">x_i</tex-math></inline-formula> in <inline-formula><tex-math notation="LaTeX">x = Gx + z</tex-math></inline-formula> for some <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">z</tex-math></inline-formula> such that the spectral radius of <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula> is less than 1. Our algorithm relies on the Neumann series characterization of the component <inline-formula><tex-math notation="LaTeX">x_i</tex-math></inline-formula>, and is based on residual updates. We analyze our algorithm within the context of a cloud computation model motivated by frameworks, such as Apache Spark, in which the computation is split into small update tasks performed by small processors with shared access to a distributed file system. We prove a robust asymptotic convergence result when the spectral radius <inline-formula><tex-math notation="LaTeX">\rho (|G|) < 1</tex-math></inline-formula>, regardless of the precise order and frequency in which the update tasks are performed. We provide convergence rate bounds that depend on the order of update tasks performed, analyzing both deterministic update rules via counting weighted random walks, as well as probabilistic update rules via concentration bounds. The probabilistic analysis requires analyzing the product of random matrices that are drawn from distributions that are time and path dependent. We specifically consider the setting where <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula> is large, yet <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula> is sparse, e.g., each row has at most <inline-formula><tex-math notation="LaTeX">d</tex-math></inline-formula> nonzero entries. This is motivated by applications in which <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula> is derived from the edge structure of an underlying graph. Our results prove that if the local neighborhood of the graph does not grow too quickly as a function of <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula>, our algorithm can provide significant reduction in computation cost as opposed to any algorithm that computes the global solution vector <inline-formula><tex-math notation="LaTeX">x</tex-math></inline-formula>. Our algorithm obtains an <inline-formula><tex-math notation="LaTeX">\epsilon \Vert x\Vert _2</tex-math></inline-formula> additive approximation for <inline-formula><tex-math notation="LaTeX">x_i</tex-math></inline-formula> in constant time with respect to the size of the matrix when the maximum row sparsity <inline-formula><tex-math notation="LaTeX">d = O(1)</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">1/(1-\Vert G\Vert _2) = O(1)</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">\Vert G\Vert _2</tex-math></inline-formula> is the induced matrix operator 2-norm. |
|---|---|
| AbstractList | We present a distributed asynchronous algorithm for approximating a single component of the solution to a system of linear equations <inline-formula><tex-math notation="LaTeX">Ax = b</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">A</tex-math></inline-formula> is a positive definite real matrix and <inline-formula><tex-math notation="LaTeX">b \in \mathbb {R}^n</tex-math></inline-formula>. This can equivalently be formulated as solving for <inline-formula><tex-math notation="LaTeX">x_i</tex-math></inline-formula> in <inline-formula><tex-math notation="LaTeX">x = Gx + z</tex-math></inline-formula> for some <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">z</tex-math></inline-formula> such that the spectral radius of <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula> is less than 1. Our algorithm relies on the Neumann series characterization of the component <inline-formula><tex-math notation="LaTeX">x_i</tex-math></inline-formula>, and is based on residual updates. We analyze our algorithm within the context of a cloud computation model motivated by frameworks, such as Apache Spark, in which the computation is split into small update tasks performed by small processors with shared access to a distributed file system. We prove a robust asymptotic convergence result when the spectral radius <inline-formula><tex-math notation="LaTeX">\rho (|G|) < 1</tex-math></inline-formula>, regardless of the precise order and frequency in which the update tasks are performed. We provide convergence rate bounds that depend on the order of update tasks performed, analyzing both deterministic update rules via counting weighted random walks, as well as probabilistic update rules via concentration bounds. The probabilistic analysis requires analyzing the product of random matrices that are drawn from distributions that are time and path dependent. We specifically consider the setting where <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula> is large, yet <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula> is sparse, e.g., each row has at most <inline-formula><tex-math notation="LaTeX">d</tex-math></inline-formula> nonzero entries. This is motivated by applications in which <inline-formula><tex-math notation="LaTeX">G</tex-math></inline-formula> is derived from the edge structure of an underlying graph. Our results prove that if the local neighborhood of the graph does not grow too quickly as a function of <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula>, our algorithm can provide significant reduction in computation cost as opposed to any algorithm that computes the global solution vector <inline-formula><tex-math notation="LaTeX">x</tex-math></inline-formula>. Our algorithm obtains an <inline-formula><tex-math notation="LaTeX">\epsilon \Vert x\Vert _2</tex-math></inline-formula> additive approximation for <inline-formula><tex-math notation="LaTeX">x_i</tex-math></inline-formula> in constant time with respect to the size of the matrix when the maximum row sparsity <inline-formula><tex-math notation="LaTeX">d = O(1)</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">1/(1-\Vert G\Vert _2) = O(1)</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">\Vert G\Vert _2</tex-math></inline-formula> is the induced matrix operator 2-norm. We present a distributed asynchronous algorithm for approximating a single component of the solution to a system of linear equations [Formula Omitted], where [Formula Omitted] is a positive definite real matrix and [Formula Omitted]. This can equivalently be formulated as solving for [Formula Omitted] in [Formula Omitted] for some [Formula Omitted] and [Formula Omitted] such that the spectral radius of [Formula Omitted] is less than 1. Our algorithm relies on the Neumann series characterization of the component [Formula Omitted], and is based on residual updates. We analyze our algorithm within the context of a cloud computation model motivated by frameworks, such as Apache Spark, in which the computation is split into small update tasks performed by small processors with shared access to a distributed file system. We prove a robust asymptotic convergence result when the spectral radius [Formula Omitted], regardless of the precise order and frequency in which the update tasks are performed. We provide convergence rate bounds that depend on the order of update tasks performed, analyzing both deterministic update rules via counting weighted random walks, as well as probabilistic update rules via concentration bounds. The probabilistic analysis requires analyzing the product of random matrices that are drawn from distributions that are time and path dependent. We specifically consider the setting where [Formula Omitted] is large, yet [Formula Omitted] is sparse, e.g., each row has at most [Formula Omitted] nonzero entries. This is motivated by applications in which [Formula Omitted] is derived from the edge structure of an underlying graph. Our results prove that if the local neighborhood of the graph does not grow too quickly as a function of [Formula Omitted], our algorithm can provide significant reduction in computation cost as opposed to any algorithm that computes the global solution vector [Formula Omitted]. Our algorithm obtains an [Formula Omitted] additive approximation for [Formula Omitted] in constant time with respect to the size of the matrix when the maximum row sparsity [Formula Omitted] and [Formula Omitted], where [Formula Omitted] is the induced matrix operator 2-norm. |
| Author | Ozdaglar, Asuman Yu, Christina Lee Shah, Devavrat |
| Author_xml | – sequence: 1 givenname: Asuman orcidid: 0000-0002-1827-1285 surname: Ozdaglar fullname: Ozdaglar, Asuman email: asuman@mit.edu organization: Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA, USA – sequence: 2 givenname: Devavrat surname: Shah fullname: Shah, Devavrat email: devavrat@mit.edu organization: Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA, USA – sequence: 3 givenname: Christina Lee orcidid: 0000-0002-2165-5220 surname: Yu fullname: Yu, Christina Lee email: cleeyu@cornell.edu organization: School of Operations Research and Information Engineering, Cornell University, Ithaca, NY, USA |
| BookMark | eNp9kE1LwzAYx4NMcM59APFS8NyZPEnT5jjGfIGhh07wVtI2dR1dUpMM3Lc33YYHD57yEH7_5-V3jUbaaIXQLcEzQrB4WL_myxlgImaQCSYEvkBjoJTFFMTHaKghjRkX6RWaOrfFGBPIOKV0jPK5O-hqY402exfN-96a73YnfWt0ZJpIRnmrPzsVLcyuD0O1H379RkW56fZHyptArVqtpI3yg_Nqd4MuG9k5NT2_E_T-uFwvnuPV29PLYr6KKxDUx1XJGihLmZZJBSqpEyl5XapSMEUaSnFaN0kCEO7KFKlLaHgqMi5ZBSA5T0o6QfenvmHpr71yvtiavdVhZAGMihQnjEOg0hNVWeOcVU1Rtf54oLey7QqCi0FiMUgsBonFWWJIkj_J3gY39vBv5u6UaZVSv3zGw0IM6A849H-Y |
| CODEN | ITNSD5 |
| CitedBy_id | crossref_primary_10_1002_cpa_70012 crossref_primary_10_1137_21M1422513 crossref_primary_10_1007_s00466_021_01975_w |
| Cites_doi | 10.1080/15427951.2014.971203 10.1007/s00041-008-9030-4 10.1145/2488608.2488724 10.2307/2002508 10.1109/ALLERTON.2016.7852323 10.1137/130904867 10.1109/FOCS.2011.85 10.1007/978-3-540-77004-6_12 10.1007/s10107-015-0892-3 10.1561/0400000054 10.1137/1012001 10.1109/TAC.2015.2414771 10.1515/MCMA.2009.015 10.1109/CDC.2013.6760740 10.1016/j.apm.2014.12.018 10.1007/BF01578388 10.2307/2002546 10.1145/1327452.1327492 10.1137/090771430 10.1007/978-3-642-18466-6_2 10.1515/mcma.2010.020 10.1287/moor.2013.0596 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TNSE.2019.2894990 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2334-329X |
| EndPage | 986 |
| ExternalDocumentID | 10_1109_TNSE_2019_2894990 8624342 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation grantid: CNS-1161964; CMMI-1462158; CMMI-1634259 funderid: 10.13039/100000001 – fundername: ONR grantid: N000141210997 – fundername: Air Force Office of Scientific Research; AFOSR grantid: FA9550-09-1-0538 funderid: 10.13039/100000181 – fundername: Defense Advanced Research Projects Agency; DARPA grantid: W911NF-16-1-055 funderid: 10.13039/100000185 – fundername: ARO grantid: W911NF-11-1-00365 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-cb4f2bba7b5c2e5d5aa6dbeb94e1f3307df55222018e1db2f67986a4c22a665b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000566353500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4697 |
| IngestDate | Mon Jun 30 09:58:09 EDT 2025 Sat Nov 29 04:55:49 EST 2025 Tue Nov 18 21:58:06 EST 2025 Wed Aug 27 02:32:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-cb4f2bba7b5c2e5d5aa6dbeb94e1f3307df55222018e1db2f67986a4c22a665b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1827-1285 0000-0002-2165-5220 |
| PQID | 2439705462 |
| PQPubID | 2040409 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_TNSE_2019_2894990 ieee_primary_8624342 proquest_journals_2439705462 crossref_primary_10_1109_TNSE_2019_2894990 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-01 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on network science and engineering |
| PublicationTitleAbbrev | TNSE |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 curtiss (ref16) 1954 ozdaglar (ref31) 0 ref30 lee (ref21) 2013 ref11 ref10 ref1 ref17 ref19 ref18 westlake (ref4) 1968; 767 bertsekas (ref5) 1989 ref24 ref23 ref26 ref20 ref22 ref28 ref27 borthakur (ref2) 0; 11 golub (ref6) 0 ref29 ref8 nutini (ref32) 2015; 37 ref7 ref9 lee (ref25) 2014 zaharia (ref3) 2010; 10 |
| References_xml | – ident: ref22 doi: 10.1080/15427951.2014.971203 – ident: ref26 doi: 10.1007/s00041-008-9030-4 – volume: 37 start-page: 1632 year: 2015 ident: ref32 article-title: Coordinate descent converges faster with the Gauss-Southwell rule than random selection publication-title: Proc Int Conf Int Conf Mach Learn – ident: ref10 doi: 10.1145/2488608.2488724 – year: 1954 ident: ref16 publication-title: A Theoretical Comparison of the Efficiencies of Two Classical Methods and a Monte Carlo Method for Computing One Component of the Solution of a Set of Linear Algebraic Equations – year: 1989 ident: ref5 publication-title: Parallel and Distributed Computation Numerical Methods – ident: ref14 doi: 10.2307/2002508 – ident: ref24 doi: 10.1109/ALLERTON.2016.7852323 – ident: ref20 doi: 10.1137/130904867 – ident: ref9 doi: 10.1109/FOCS.2011.85 – ident: ref23 doi: 10.1007/978-3-540-77004-6_12 – ident: ref7 doi: 10.1007/s10107-015-0892-3 – ident: ref11 doi: 10.1561/0400000054 – ident: ref18 doi: 10.1137/1012001 – ident: ref13 doi: 10.1109/TAC.2015.2414771 – ident: ref29 doi: 10.1515/MCMA.2009.015 – ident: ref12 doi: 10.1109/CDC.2013.6760740 – ident: ref17 doi: 10.1016/j.apm.2014.12.018 – year: 2014 ident: ref25 article-title: Asynchronous approximation of a single component of the solution to a linear system publication-title: arXiv 1411 2647 – ident: ref19 doi: 10.1007/BF01578388 – ident: ref15 doi: 10.2307/2002546 – ident: ref1 doi: 10.1145/1327452.1327492 – ident: ref8 doi: 10.1137/090771430 – year: 0 ident: ref6 publication-title: Matrix Computations (Johns Hopkins Studies in the Mathematical Sciences) – volume: 11 start-page: 21 year: 0 ident: ref2 article-title: The hadoop distributed file system: Architecture and design publication-title: Hadoop Project Website – volume: 767 year: 1968 ident: ref4 publication-title: A Handbook of Numerical Matrix Inversion and Solution of Linear Equations – start-page: 1376 year: 2013 ident: ref21 article-title: Computing the stationary distribution locally publication-title: Advances in Neural Information Processing Systems 26 – year: 0 ident: ref31 article-title: Supplement: Proof of results from asynchronous approximation of a single component of the solution to a linear system publication-title: arXiv 1411 2647 – ident: ref28 doi: 10.1007/978-3-642-18466-6_2 – volume: 10 start-page: 95 year: 2010 ident: ref3 article-title: Spark: Cluster computing with working sets publication-title: Proc HotCloud – ident: ref27 doi: 10.1515/mcma.2010.020 – ident: ref30 doi: 10.1287/moor.2013.0596 |
| SSID | ssj0001286333 |
| Score | 2.1620657 |
| Snippet | We present a distributed asynchronous algorithm for approximating a single component of the solution to a system of linear equations <inline-formula><tex-math... We present a distributed asynchronous algorithm for approximating a single component of the solution to a system of linear equations [Formula Omitted], where... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 975 |
| SubjectTerms | Algorithms Approximation Approximation algorithms asynchronous randomized algorithms Computation Computational modeling Convergence distributed algorithms Jacobian matrices Linear equations Linear system of equations local computation Mathematical analysis Mathematical model Matrix methods Operators (mathematics) Probabilistic analysis Random walk Symmetric matrices Task analysis Time dependence |
| Title | Asynchronous Approximation of a Single Component of the Solution to a Linear System |
| URI | https://ieeexplore.ieee.org/document/8624342 https://www.proquest.com/docview/2439705462 |
| Volume | 7 |
| WOSCitedRecordID | wos000566353500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2334-329X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286333 issn: 2327-4697 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61eNCDryrWFzl4ErfdzWZfxyItHqQIrdDbkscECmVX2q3ov3eS3ZaCIngLy2QJM5lXkvmGkHtItA5A-J6BQFhQ7cBLIRJeGhmmk1BkGTh0_ZdkPE5ns-y1RR63tTAA4B6fQc8O3V2-LtXaHpX1bTFDyNHg7iVJXNdq7ZynpHEYhs3FZeBn_el4MrRvt7IeJhXcWd0d1-N6qfwwwM6rjI7_t54TctREj3RQi_uUtKA4I4c7mIIdMhmsvgplIW8xp6cDCxn-Oa_rE2lpqKATJFsAtYagLPD_9itGgXRzQEarEqkwR0UdoDWg-Tl5Gw2nT89e0znBU-i-K09JbpiUIpGRYhDpSIhYS5AZh8CEqNbaRBh4IXNSCLRkxt7FxIIrxkQcRzK8IO0C13BJKGipUz_kIJjhBjiOIeECVRkTJw1pl_gbpuaqgRW33S0WuUsv_Cy3csitHPJGDl3ysJ3yXmNq_EXcsYzfEjY875KbjeTyRutWObPRFcagMbv6fdY1OWA2X3bPbW9Iu1qu4Zbsq49qvlreuQ31DYTCyvY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6KCurBt1itmoMncXU3m30di1gq1iK0grcl2UygUFrpQ_TfO8luS0ERvIVlsoSZzCvJfANwhYnWAUrfMxhIC6odeClG0ksjw3USyixDh67fSbrd9O0te6nBzbIWBhHd4zO8tUN3l6_Hxdweld3ZYoZQkMFdj4TgflmttXKiksZhGFZXl4Gf3fW7vQf7eiu7pbRCOLu74nxcN5UfJtj5ldbu_1a0BztV_MiapcD3oYajA9heQRU8hF5z-jUqLOgtZfWsaUHDPwdlhSIbGyZZj8iGyKwpGI_o__YrxYFscUTGZmOioiyVtICVkOZH8Np66N-3vap3gleQA595hRKGKyUTFRUcIx1JGWuFKhMYmJAUW5uIQi9iToqBVtzY25hYioJzGceRCo9hbURrOAGGWunUDwVKboRBQWNMhCRlptRJY1oHf8HUvKiAxW1_i2HuEgw_y60cciuHvJJDHa6XU95LVI2_iA8t45eEFc_r0FhILq_0bppzG19RFBrz099nXcJmu__cyTuP3acz2OI2e3aPbxuwNpvM8Rw2io_ZYDq5cJvrGzt6zj0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asynchronous+Approximation+of+a+Single+Component+of+the+Solution+to+a+Linear+System&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Ozdaglar%2C+Asuman&rft.au=Shah%2C+Devavrat&rft.au=Yu%2C+Christina+Lee&rft.date=2020-07-01&rft.pub=IEEE&rft.eissn=2334-329X&rft.volume=7&rft.issue=3&rft.spage=975&rft.epage=986&rft_id=info:doi/10.1109%2FTNSE.2019.2894990&rft.externalDocID=8624342 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon |