Pseudospectral Convex Optimization based Model Predictive Static Programming for Constrained Guidance

This paper presents a pseudospectral convex optimization-based model predictive static programming (PCMPSP) for the constrained guidance problem. First, the sensitivity relation between the state increment and control correction is reformulated using Legendre-Gauss (LG) and Legendre-Gauss-Radau (LGR...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on aerospace and electronic systems Vol. 59; no. 3; pp. 1 - 16
Main Authors: Liu, Xu, Li, Shuang, Xin, Ming
Format: Journal Article
Language:English
Published: New York IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9251, 1557-9603
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents a pseudospectral convex optimization-based model predictive static programming (PCMPSP) for the constrained guidance problem. First, the sensitivity relation between the state increment and control correction is reformulated using Legendre-Gauss (LG) and Legendre-Gauss-Radau (LGR) pseudospectral transcriptions. Second, the convex optimal control problem associated with the trajectory optimization is defined by introducing the quadratic performance index. Third, modifications to the initial guess solution and reference trajectory update are introduced to enhance the accuracy and robustness of the algorithm. Finally, a model predictive guidance law is designed based on the proposed PCMPSP algorithm for the air-to-surface missile guidance with impact angle constraint. The simulation results show that the PCMPSP has lower sensitivity to the initial guess trajectory, higher accuracy, as well as faster convergence speed than existing convex programming methods. Moreover, the robustness of the proposed guidance law to uncertainties is demonstrated through the Monte Carlo campaign.
AbstractList This paper presents a pseudospectral convex optimization-based model predictive static programming (PCMPSP) for the constrained guidance problem. First, the sensitivity relation between the state increment and control correction is reformulated using Legendre-Gauss (LG) and Legendre-Gauss-Radau (LGR) pseudospectral transcriptions. Second, the convex optimal control problem associated with the trajectory optimization is defined by introducing the quadratic performance index. Third, modifications to the initial guess solution and reference trajectory update are introduced to enhance the accuracy and robustness of the algorithm. Finally, a model predictive guidance law is designed based on the proposed PCMPSP algorithm for the air-to-surface missile guidance with impact angle constraint. The simulation results show that the PCMPSP has lower sensitivity to the initial guess trajectory, higher accuracy, as well as faster convergence speed than existing convex programming methods. Moreover, the robustness of the proposed guidance law to uncertainties is demonstrated through the Monte Carlo campaign.
This article presents a pseudospectral convex optimization-based model predictive static programming (PCMPSP) for the constrained guidance problem. First, the sensitivity relation between the state increment and control correction is reformulated using Legendre–Gauss and Legendre–Gauss–Radau pseudospectral transcriptions. Second, the convex optimal control problem associated with the trajectory optimization is defined by introducing the quadratic performance index. Third, modifications to the initial guess solution and reference trajectory update are introduced to enhance the accuracy and robustness of the algorithm. Finally, a model predictive guidance law is designed based on the proposed PCMPSP algorithm for the air-to-surface missile guidance with impact angle constraint. The simulation results show that the PCMPSP has lower sensitivity to the initial guess trajectory, higher accuracy, as well as faster convergence speed than existing convex programming methods. Moreover, the robustness of the proposed guidance law to uncertainties is demonstrated through the Monte Carlo campaign.
Author Xin, Ming
Liu, Xu
Li, Shuang
Author_xml – sequence: 1
  givenname: Xu
  orcidid: 0000-0003-0317-5976
  surname: Liu
  fullname: Liu, Xu
  organization: College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 2
  givenname: Shuang
  orcidid: 0000-0001-9142-5036
  surname: Li
  fullname: Li, Shuang
  organization: College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 3
  givenname: Ming
  orcidid: 0000-0002-9947-6986
  surname: Xin
  fullname: Xin, Ming
  organization: Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, USA
BookMark eNp9kE1Lw0AQhhdRsK3-APES8Jy6X0k2x1JqFSottJ7DZjMpW5Js3E2K-uvd2OLBg6dhZ-d5h3nG6LIxDSB0R_CUEJw-7maL7ZRiSqeMEkJ5dIFGJIqSMI0xu0QjjIkIUxqRazR27uCfXHA2QrBx0BfGtaA6K6tgbpojfATrttO1_pKdNk2QSwdF8GoKqIKNhUKrTh8h2Hb-W_mO2VtZ17rZB6WxQ4LzUbrxzLLXhWwU3KCrUlYObs91gt6eFrv5c7haL1_ms1WoaMq6UEkmYiFLnvOCQsxwiqNYCc5zVUAJUkiVy1LmXCoWyZxArlSieEwgTViMEzZBD6fc1pr3HlyXHUxvG78yo4JybyohsZ8ipylljXMWyqy1upb2MyM4G2xmg81ssJmdbXom-cMo3f3oGW6t_iXvT6QGgN9NaYoTQTH7BtA4hqE
CODEN IEARAX
CitedBy_id crossref_primary_10_1109_TAES_2024_3431511
crossref_primary_10_1109_TAES_2025_3539639
crossref_primary_10_1016_j_ast_2025_110121
crossref_primary_10_1016_j_asr_2025_01_072
crossref_primary_10_1016_j_actaastro_2024_06_002
crossref_primary_10_1109_TAES_2023_3318883
crossref_primary_10_1177_09544100251345165
crossref_primary_10_1016_j_ast_2024_109768
crossref_primary_10_1109_TAES_2024_3419073
crossref_primary_10_3390_math11132990
crossref_primary_10_1109_TAES_2024_3405899
Cites_doi 10.1007/978-3-540-71041-7
10.1016/j.ast.2020.106134
10.1007/s11081-011-9176-9
10.2514/1.G005529
10.2514/1.G004590
10.1109/TAES.2020.3008576
10.1109/TAES.2021.3054074
10.2514/6.2021-0862
10.1109/TAES.2021.3131140
10.2514/1.53647
10.2514/1.G003766
10.2514/1.G003518
10.2514/6.2020-1350
10.23919/ECC.2013.6669541
10.1109/TAES.2018.2890375
10.1016/j.actaastro.2020.03.025
10.2514/6.2019-0925
10.2514/1.47202
10.2514/1.G000038
10.1007/s11071-017-3626-7
10.1016/j.ast.2015.09.008
10.1007/s10957-021-01953-5
10.1109/CACSD.2004.1393890
10.1016/j.ifacol.2017.08.789
10.1016/j.ast.2018.06.031
10.2514/1.G003931
10.2514/1.G003731
10.2514/1.G002150
10.1109/TAES.2021.3069285
10.1109/TAES.2016.150741
10.1115/1.4048488
10.2514/1.G004549
10.1109/CDC.2016.7798816
10.1109/TAES.2021.3128869
10.1007/s42064-017-0003-8
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
DOI 10.1109/TAES.2022.3211245
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9603
EndPage 16
ExternalDocumentID 10_1109_TAES_2022_3211245
9907820
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c293t-ca3868af4b4d2e6309056c844bcdefea8acbafab4ac35ab1ebcc7c461e9736073
IEDL.DBID RIE
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001006747500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9251
IngestDate Mon Jun 30 10:19:54 EDT 2025
Sat Nov 29 01:51:34 EST 2025
Tue Nov 18 22:20:17 EST 2025
Wed Aug 27 02:29:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-ca3868af4b4d2e6309056c844bcdefea8acbafab4ac35ab1ebcc7c461e9736073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9947-6986
0000-0003-0317-5976
0000-0001-9142-5036
PQID 2824110716
PQPubID 85477
PageCount 16
ParticipantIDs ieee_primary_9907820
crossref_citationtrail_10_1109_TAES_2022_3211245
crossref_primary_10_1109_TAES_2022_3211245
proquest_journals_2824110716
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on aerospace and electronic systems
PublicationTitleAbbrev T-AES
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref21
aps (ref35) 2021
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
marco (ref11) 2021; 117
arnab (ref22) 2014; 37
References_xml – ident: ref30
  doi: 10.1007/978-3-540-71041-7
– ident: ref29
  doi: 10.1016/j.ast.2020.106134
– ident: ref37
  doi: 10.1007/s11081-011-9176-9
– ident: ref17
  doi: 10.2514/1.G005529
– ident: ref13
  doi: 10.2514/1.G004590
– ident: ref18
  doi: 10.1109/TAES.2020.3008576
– ident: ref26
  doi: 10.1109/TAES.2021.3054074
– ident: ref10
  doi: 10.2514/6.2021-0862
– ident: ref4
  doi: 10.1109/TAES.2021.3131140
– ident: ref21
  doi: 10.2514/1.53647
– year: 2021
  ident: ref35
  article-title: MOSEK optimization toolbox for MATLAB
– ident: ref19
  doi: 10.2514/1.G003766
– ident: ref31
  doi: 10.2514/1.G003518
– ident: ref20
  doi: 10.2514/6.2020-1350
– ident: ref36
  doi: 10.23919/ECC.2013.6669541
– ident: ref23
  doi: 10.1109/TAES.2018.2890375
– ident: ref16
  doi: 10.1016/j.actaastro.2020.03.025
– ident: ref12
  doi: 10.2514/6.2019-0925
– ident: ref14
  doi: 10.2514/1.47202
– volume: 37
  start-page: 1897
  year: 2014
  ident: ref22
  article-title: Generalized model predictive static programming and angle-constrained guidance of Air-to-Ground missiles
  publication-title: J Guid Control Dyn
  doi: 10.2514/1.G000038
– ident: ref5
  doi: 10.1007/s11071-017-3626-7
– ident: ref15
  doi: 10.1016/j.ast.2015.09.008
– volume: 117
  year: 2021
  ident: ref11
  article-title: Optimal drag-energy entry guidance via pseudospectral convex optimization
  publication-title: Aerosp Sci Technol
– ident: ref27
  doi: 10.1007/s10957-021-01953-5
– ident: ref34
  doi: 10.1109/CACSD.2004.1393890
– ident: ref2
  doi: 10.1016/j.ifacol.2017.08.789
– ident: ref25
  doi: 10.1016/j.ast.2018.06.031
– ident: ref32
  doi: 10.2514/1.G003931
– ident: ref7
  doi: 10.2514/1.G003731
– ident: ref3
  doi: 10.2514/1.G002150
– ident: ref24
  doi: 10.1109/TAES.2021.3069285
– ident: ref33
  doi: 10.1109/TAES.2016.150741
– ident: ref28
  doi: 10.1115/1.4048488
– ident: ref9
  doi: 10.2514/1.G004549
– ident: ref6
  doi: 10.1109/CDC.2016.7798816
– ident: ref8
  doi: 10.1109/TAES.2021.3128869
– ident: ref1
  doi: 10.1007/s42064-017-0003-8
SSID ssj0014843
Score 2.4864793
Snippet This paper presents a pseudospectral convex optimization-based model predictive static programming (PCMPSP) for the constrained guidance problem. First, the...
This article presents a pseudospectral convex optimization-based model predictive static programming (PCMPSP) for the constrained guidance problem. First, the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Aerodynamics
Air to surface missiles
Air-to-surface missile
Algorithms
Computational geometry
Constrained guidance
Convexity
Guidance (motion)
Guidance systems
Mathematical programming
Missile control
Model predictive static programming
Nonlinear dynamical systems
Optimal control
Optimization
Performance analysis
Performance indices
Predictive models
Pseudospectral convex optimization
Robustness
Sensitivity
Trajectory
Trajectory optimization
Title Pseudospectral Convex Optimization based Model Predictive Static Programming for Constrained Guidance
URI https://ieeexplore.ieee.org/document/9907820
https://www.proquest.com/docview/2824110716
Volume 59
WOSCitedRecordID wos001006747500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014843
  issn: 0018-9251
  databaseCode: RIE
  dateStart: 19650101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6qeNCDb7G-2IMncXUf6SZ7FPFxqgUVvC3JJIGCttKH-POdSdMiKIK3ZZkJYb9kHjsvgFNvNKKTMu2U3FRbFSZVPtepr5zIlEVfKgzDJmS3q15e6l4Lzhe1MM65kHzmLvgxxPLtEKf8q-ySJCe3d1uCJSmrWa3WImIgVMyQy-kCk9KOEcw8qy-frm4eyRMsiouS3J2CK5e-6aAwVOWHJA7q5XbjfxvbhPVoRiZXM9y3oOUG27D2rbngDrje2E3tMJRSjoj2mvPLP5MHkhFvsfgyYR1mE56H9pr0RhyzYemXsAXaR3oTcrfeaLmEbFteYRxGShDP3bRv-cDswvPtzdP1fRqHKqRImn2Soi5VpbQXRtjCVWVWkwmESgiD1nmnlUajvTZCY9nRJncGUaKoclfLsiKBsAfLg-HA7UNiyLn1wte2MLWohDSZkabU1pCN1yky24Zs_pkbjB3HeZevTfA8srphZBpGponItOFswfI-a7fxF_EOQ7EgjCi04WiOZRMv5Lghz1Kwq5tXB79zHcIqT5KfZYEdwfJkNHXHsIIfk_54dBLO2hcXZtQU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEC7UFdSD6xNH3bUPnsTWfmS608dBdF3UccARvDVJJYEBnZF5LPvzrcpkBkERvDVNVQj9JfXoegEcO60QbVnGzZybastMx9KlKnaFFYk06HKJfthE2W7Lp6eqswCn81oYa61PPrNn_Ohj-WaAE_5Vdk6Sk9u7LcKPphBZMq3WmscMhAw5cildYVLbIYaZJtV5t3X5QL5glp3l5PBkXLv0Tgv5sSofZLFXMFc_v7e1DVgPhmTUmiK_CQu2vwVr79oLboPtjOzEDHwx5ZBoLzjD_H90T1LiJZRfRqzFTMQT0Z6jzpCjNiz_IrZBe0hvfPbWCy0XkXXLK4z8UAni-TPpGT4yO_B4ddm9uI7DWIUYSbePY1S5LKRyQguT2SJPKjKCUAqh0VhnlVSolVNaKMybSqdWI5YoitRWZV6QSNiFpf6gb_cg0uTeOuEqk-lKFKLUiS51rowmK6-ZJaYByewz1xh6jvMun2vveyRVzcjUjEwdkGnAyZzlddpw4yvibYZiThhQaMDhDMs6XMlRTb6lYGc3LfY_5zqClevu3W19-7d9cwCrPFd-mhN2CEvj4cT-gmX8N-6Nhr_9uXsDRa3XWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudospectral+Convex+Optimization+Based+Model+Predictive+Static+Programming+for+Constrained+Guidance&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Liu%2C+Xu&rft.au=Li%2C+Shuang&rft.au=Xin%2C+Ming&rft.date=2023-06-01&rft.issn=0018-9251&rft.eissn=1557-9603&rft.volume=59&rft.issue=3&rft.spage=2232&rft.epage=2244&rft_id=info:doi/10.1109%2FTAES.2022.3211245&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAES_2022_3211245
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon