Pseudospectral Convex Optimization based Model Predictive Static Programming for Constrained Guidance
This paper presents a pseudospectral convex optimization-based model predictive static programming (PCMPSP) for the constrained guidance problem. First, the sensitivity relation between the state increment and control correction is reformulated using Legendre-Gauss (LG) and Legendre-Gauss-Radau (LGR...
Saved in:
| Published in: | IEEE transactions on aerospace and electronic systems Vol. 59; no. 3; pp. 1 - 16 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9251, 1557-9603 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper presents a pseudospectral convex optimization-based model predictive static programming (PCMPSP) for the constrained guidance problem. First, the sensitivity relation between the state increment and control correction is reformulated using Legendre-Gauss (LG) and Legendre-Gauss-Radau (LGR) pseudospectral transcriptions. Second, the convex optimal control problem associated with the trajectory optimization is defined by introducing the quadratic performance index. Third, modifications to the initial guess solution and reference trajectory update are introduced to enhance the accuracy and robustness of the algorithm. Finally, a model predictive guidance law is designed based on the proposed PCMPSP algorithm for the air-to-surface missile guidance with impact angle constraint. The simulation results show that the PCMPSP has lower sensitivity to the initial guess trajectory, higher accuracy, as well as faster convergence speed than existing convex programming methods. Moreover, the robustness of the proposed guidance law to uncertainties is demonstrated through the Monte Carlo campaign. |
|---|---|
| AbstractList | This paper presents a pseudospectral convex optimization-based model predictive static programming (PCMPSP) for the constrained guidance problem. First, the sensitivity relation between the state increment and control correction is reformulated using Legendre-Gauss (LG) and Legendre-Gauss-Radau (LGR) pseudospectral transcriptions. Second, the convex optimal control problem associated with the trajectory optimization is defined by introducing the quadratic performance index. Third, modifications to the initial guess solution and reference trajectory update are introduced to enhance the accuracy and robustness of the algorithm. Finally, a model predictive guidance law is designed based on the proposed PCMPSP algorithm for the air-to-surface missile guidance with impact angle constraint. The simulation results show that the PCMPSP has lower sensitivity to the initial guess trajectory, higher accuracy, as well as faster convergence speed than existing convex programming methods. Moreover, the robustness of the proposed guidance law to uncertainties is demonstrated through the Monte Carlo campaign. This article presents a pseudospectral convex optimization-based model predictive static programming (PCMPSP) for the constrained guidance problem. First, the sensitivity relation between the state increment and control correction is reformulated using Legendre–Gauss and Legendre–Gauss–Radau pseudospectral transcriptions. Second, the convex optimal control problem associated with the trajectory optimization is defined by introducing the quadratic performance index. Third, modifications to the initial guess solution and reference trajectory update are introduced to enhance the accuracy and robustness of the algorithm. Finally, a model predictive guidance law is designed based on the proposed PCMPSP algorithm for the air-to-surface missile guidance with impact angle constraint. The simulation results show that the PCMPSP has lower sensitivity to the initial guess trajectory, higher accuracy, as well as faster convergence speed than existing convex programming methods. Moreover, the robustness of the proposed guidance law to uncertainties is demonstrated through the Monte Carlo campaign. |
| Author | Xin, Ming Liu, Xu Li, Shuang |
| Author_xml | – sequence: 1 givenname: Xu orcidid: 0000-0003-0317-5976 surname: Liu fullname: Liu, Xu organization: College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 2 givenname: Shuang orcidid: 0000-0001-9142-5036 surname: Li fullname: Li, Shuang organization: College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 3 givenname: Ming orcidid: 0000-0002-9947-6986 surname: Xin fullname: Xin, Ming organization: Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, USA |
| BookMark | eNp9kE1Lw0AQhhdRsK3-APES8Jy6X0k2x1JqFSottJ7DZjMpW5Js3E2K-uvd2OLBg6dhZ-d5h3nG6LIxDSB0R_CUEJw-7maL7ZRiSqeMEkJ5dIFGJIqSMI0xu0QjjIkIUxqRazR27uCfXHA2QrBx0BfGtaA6K6tgbpojfATrttO1_pKdNk2QSwdF8GoKqIKNhUKrTh8h2Hb-W_mO2VtZ17rZB6WxQ4LzUbrxzLLXhWwU3KCrUlYObs91gt6eFrv5c7haL1_ms1WoaMq6UEkmYiFLnvOCQsxwiqNYCc5zVUAJUkiVy1LmXCoWyZxArlSieEwgTViMEzZBD6fc1pr3HlyXHUxvG78yo4JybyohsZ8ipylljXMWyqy1upb2MyM4G2xmg81ssJmdbXom-cMo3f3oGW6t_iXvT6QGgN9NaYoTQTH7BtA4hqE |
| CODEN | IEARAX |
| CitedBy_id | crossref_primary_10_1109_TAES_2024_3431511 crossref_primary_10_1109_TAES_2025_3539639 crossref_primary_10_1016_j_ast_2025_110121 crossref_primary_10_1016_j_asr_2025_01_072 crossref_primary_10_1016_j_actaastro_2024_06_002 crossref_primary_10_1109_TAES_2023_3318883 crossref_primary_10_1177_09544100251345165 crossref_primary_10_1016_j_ast_2024_109768 crossref_primary_10_1109_TAES_2024_3419073 crossref_primary_10_3390_math11132990 crossref_primary_10_1109_TAES_2024_3405899 |
| Cites_doi | 10.1007/978-3-540-71041-7 10.1016/j.ast.2020.106134 10.1007/s11081-011-9176-9 10.2514/1.G005529 10.2514/1.G004590 10.1109/TAES.2020.3008576 10.1109/TAES.2021.3054074 10.2514/6.2021-0862 10.1109/TAES.2021.3131140 10.2514/1.53647 10.2514/1.G003766 10.2514/1.G003518 10.2514/6.2020-1350 10.23919/ECC.2013.6669541 10.1109/TAES.2018.2890375 10.1016/j.actaastro.2020.03.025 10.2514/6.2019-0925 10.2514/1.47202 10.2514/1.G000038 10.1007/s11071-017-3626-7 10.1016/j.ast.2015.09.008 10.1007/s10957-021-01953-5 10.1109/CACSD.2004.1393890 10.1016/j.ifacol.2017.08.789 10.1016/j.ast.2018.06.031 10.2514/1.G003931 10.2514/1.G003731 10.2514/1.G002150 10.1109/TAES.2021.3069285 10.1109/TAES.2016.150741 10.1115/1.4048488 10.2514/1.G004549 10.1109/CDC.2016.7798816 10.1109/TAES.2021.3128869 10.1007/s42064-017-0003-8 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M |
| DOI | 10.1109/TAES.2022.3211245 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9603 |
| EndPage | 16 |
| ExternalDocumentID | 10_1109_TAES_2022_3211245 9907820 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M |
| ID | FETCH-LOGICAL-c293t-ca3868af4b4d2e6309056c844bcdefea8acbafab4ac35ab1ebcc7c461e9736073 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001006747500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9251 |
| IngestDate | Mon Jun 30 10:19:54 EDT 2025 Sat Nov 29 01:51:34 EST 2025 Tue Nov 18 22:20:17 EST 2025 Wed Aug 27 02:29:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-ca3868af4b4d2e6309056c844bcdefea8acbafab4ac35ab1ebcc7c461e9736073 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9947-6986 0000-0003-0317-5976 0000-0001-9142-5036 |
| PQID | 2824110716 |
| PQPubID | 85477 |
| PageCount | 16 |
| ParticipantIDs | ieee_primary_9907820 crossref_citationtrail_10_1109_TAES_2022_3211245 crossref_primary_10_1109_TAES_2022_3211245 proquest_journals_2824110716 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on aerospace and electronic systems |
| PublicationTitleAbbrev | T-AES |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref21 aps (ref35) 2021 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 marco (ref11) 2021; 117 arnab (ref22) 2014; 37 |
| References_xml | – ident: ref30 doi: 10.1007/978-3-540-71041-7 – ident: ref29 doi: 10.1016/j.ast.2020.106134 – ident: ref37 doi: 10.1007/s11081-011-9176-9 – ident: ref17 doi: 10.2514/1.G005529 – ident: ref13 doi: 10.2514/1.G004590 – ident: ref18 doi: 10.1109/TAES.2020.3008576 – ident: ref26 doi: 10.1109/TAES.2021.3054074 – ident: ref10 doi: 10.2514/6.2021-0862 – ident: ref4 doi: 10.1109/TAES.2021.3131140 – ident: ref21 doi: 10.2514/1.53647 – year: 2021 ident: ref35 article-title: MOSEK optimization toolbox for MATLAB – ident: ref19 doi: 10.2514/1.G003766 – ident: ref31 doi: 10.2514/1.G003518 – ident: ref20 doi: 10.2514/6.2020-1350 – ident: ref36 doi: 10.23919/ECC.2013.6669541 – ident: ref23 doi: 10.1109/TAES.2018.2890375 – ident: ref16 doi: 10.1016/j.actaastro.2020.03.025 – ident: ref12 doi: 10.2514/6.2019-0925 – ident: ref14 doi: 10.2514/1.47202 – volume: 37 start-page: 1897 year: 2014 ident: ref22 article-title: Generalized model predictive static programming and angle-constrained guidance of Air-to-Ground missiles publication-title: J Guid Control Dyn doi: 10.2514/1.G000038 – ident: ref5 doi: 10.1007/s11071-017-3626-7 – ident: ref15 doi: 10.1016/j.ast.2015.09.008 – volume: 117 year: 2021 ident: ref11 article-title: Optimal drag-energy entry guidance via pseudospectral convex optimization publication-title: Aerosp Sci Technol – ident: ref27 doi: 10.1007/s10957-021-01953-5 – ident: ref34 doi: 10.1109/CACSD.2004.1393890 – ident: ref2 doi: 10.1016/j.ifacol.2017.08.789 – ident: ref25 doi: 10.1016/j.ast.2018.06.031 – ident: ref32 doi: 10.2514/1.G003931 – ident: ref7 doi: 10.2514/1.G003731 – ident: ref3 doi: 10.2514/1.G002150 – ident: ref24 doi: 10.1109/TAES.2021.3069285 – ident: ref33 doi: 10.1109/TAES.2016.150741 – ident: ref28 doi: 10.1115/1.4048488 – ident: ref9 doi: 10.2514/1.G004549 – ident: ref6 doi: 10.1109/CDC.2016.7798816 – ident: ref8 doi: 10.1109/TAES.2021.3128869 – ident: ref1 doi: 10.1007/s42064-017-0003-8 |
| SSID | ssj0014843 |
| Score | 2.4864793 |
| Snippet | This paper presents a pseudospectral convex optimization-based model predictive static programming (PCMPSP) for the constrained guidance problem. First, the... This article presents a pseudospectral convex optimization-based model predictive static programming (PCMPSP) for the constrained guidance problem. First, the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Aerodynamics Air to surface missiles Air-to-surface missile Algorithms Computational geometry Constrained guidance Convexity Guidance (motion) Guidance systems Mathematical programming Missile control Model predictive static programming Nonlinear dynamical systems Optimal control Optimization Performance analysis Performance indices Predictive models Pseudospectral convex optimization Robustness Sensitivity Trajectory Trajectory optimization |
| Title | Pseudospectral Convex Optimization based Model Predictive Static Programming for Constrained Guidance |
| URI | https://ieeexplore.ieee.org/document/9907820 https://www.proquest.com/docview/2824110716 |
| Volume | 59 |
| WOSCitedRecordID | wos001006747500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014843 issn: 0018-9251 databaseCode: RIE dateStart: 19650101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6qeNCDb7G-2IMncXUf6SZ7FPFxqgUVvC3JJIGCttKH-POdSdMiKIK3ZZkJYb9kHjsvgFNvNKKTMu2U3FRbFSZVPtepr5zIlEVfKgzDJmS3q15e6l4Lzhe1MM65kHzmLvgxxPLtEKf8q-ySJCe3d1uCJSmrWa3WImIgVMyQy-kCk9KOEcw8qy-frm4eyRMsiouS3J2CK5e-6aAwVOWHJA7q5XbjfxvbhPVoRiZXM9y3oOUG27D2rbngDrje2E3tMJRSjoj2mvPLP5MHkhFvsfgyYR1mE56H9pr0RhyzYemXsAXaR3oTcrfeaLmEbFteYRxGShDP3bRv-cDswvPtzdP1fRqHKqRImn2Soi5VpbQXRtjCVWVWkwmESgiD1nmnlUajvTZCY9nRJncGUaKoclfLsiKBsAfLg-HA7UNiyLn1wte2MLWohDSZkabU1pCN1yky24Zs_pkbjB3HeZevTfA8srphZBpGponItOFswfI-a7fxF_EOQ7EgjCi04WiOZRMv5Lghz1Kwq5tXB79zHcIqT5KfZYEdwfJkNHXHsIIfk_54dBLO2hcXZtQU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEC7UFdSD6xNH3bUPnsTWfmS608dBdF3UccARvDVJJYEBnZF5LPvzrcpkBkERvDVNVQj9JfXoegEcO60QbVnGzZybastMx9KlKnaFFYk06HKJfthE2W7Lp6eqswCn81oYa61PPrNn_Ohj-WaAE_5Vdk6Sk9u7LcKPphBZMq3WmscMhAw5cildYVLbIYaZJtV5t3X5QL5glp3l5PBkXLv0Tgv5sSofZLFXMFc_v7e1DVgPhmTUmiK_CQu2vwVr79oLboPtjOzEDHwx5ZBoLzjD_H90T1LiJZRfRqzFTMQT0Z6jzpCjNiz_IrZBe0hvfPbWCy0XkXXLK4z8UAni-TPpGT4yO_B4ddm9uI7DWIUYSbePY1S5LKRyQguT2SJPKjKCUAqh0VhnlVSolVNaKMybSqdWI5YoitRWZV6QSNiFpf6gb_cg0uTeOuEqk-lKFKLUiS51rowmK6-ZJaYByewz1xh6jvMun2vveyRVzcjUjEwdkGnAyZzlddpw4yvibYZiThhQaMDhDMs6XMlRTb6lYGc3LfY_5zqClevu3W19-7d9cwCrPFd-mhN2CEvj4cT-gmX8N-6Nhr_9uXsDRa3XWw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudospectral+Convex+Optimization+Based+Model+Predictive+Static+Programming+for+Constrained+Guidance&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Liu%2C+Xu&rft.au=Li%2C+Shuang&rft.au=Xin%2C+Ming&rft.date=2023-06-01&rft.issn=0018-9251&rft.eissn=1557-9603&rft.volume=59&rft.issue=3&rft.spage=2232&rft.epage=2244&rft_id=info:doi/10.1109%2FTAES.2022.3211245&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAES_2022_3211245 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon |