Experimental Output Regulation of Linear Motor Driven Inverted Pendulum With Friction Compensation

Over the past few decades, the nonlinear output regulation (NOR) theory has attracted extensive attentions in control society. However, few experimental results have been reported about the NOR theory. This article first presents experimental results on discrete-time NOR problem for a linear motor d...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on systems, man, and cybernetics. Systems Ročník 51; číslo 6; s. 3751 - 3758
Hlavní autori: Ping, Zhaowu, Liu, Chenxi, Huang, Yunzhi, Yu, Ming, Lu, Jun-Guo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2168-2216, 2168-2232
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Over the past few decades, the nonlinear output regulation (NOR) theory has attracted extensive attentions in control society. However, few experimental results have been reported about the NOR theory. This article first presents experimental results on discrete-time NOR problem for a linear motor driven inverted pendulum (LMDIP) system. To solve this problem, it is essential to find the solution of the complicated discrete regulator equations (DREs). Moreover, the friction force commonly exists in mechanical systems and cannot be neglected for control systems requiring high precision tracking performance. We present a novel discrete-time controller by combining neural network (NN) approach and friction-feedforward compensation mechanism. Finally, we verify the proposed control algorithm by experiment and make some comparisons with the linear controller.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2168-2216
2168-2232
DOI:10.1109/TSMC.2019.2931740