A Survey on Deep Learning for Named Entity Recognition

Named entity recognition (NER) is the task to identify mentions of rigid designators from text belonging to predefined semantic types such as person, location, organization etc. NER always serves as the foundation for many natural language applications such as question answering, text summarization,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering Vol. 34; no. 1; pp. 50 - 70
Main Authors: Li, Jing, Sun, Aixin, Han, Jianglei, Li, Chenliang
Format: Journal Article
Language:English
Published: New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1041-4347, 1558-2191
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Named entity recognition (NER) is the task to identify mentions of rigid designators from text belonging to predefined semantic types such as person, location, organization etc. NER always serves as the foundation for many natural language applications such as question answering, text summarization, and machine translation. Early NER systems got a huge success in achieving good performance with the cost of human engineering in designing domain-specific features and rules. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.
AbstractList Named entity recognition (NER) is the task to identify mentions of rigid designators from text belonging to predefined semantic types such as person, location, organization etc. NER always serves as the foundation for many natural language applications such as question answering, text summarization, and machine translation. Early NER systems got a huge success in achieving good performance with the cost of human engineering in designing domain-specific features and rules. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.
Author Li, Jing
Han, Jianglei
Li, Chenliang
Sun, Aixin
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0002-3262-3734
  surname: Li
  fullname: Li, Jing
  email: jingli.phd@hotmail.com
  organization: Inception Institute of Artificial Intelligence, Abu Dhabi, UAE
– sequence: 2
  givenname: Aixin
  orcidid: 0000-0003-0764-4258
  surname: Sun
  fullname: Sun, Aixin
  email: axsun@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
– sequence: 3
  givenname: Jianglei
  surname: Han
  fullname: Han, Jianglei
  email: ray.han@sap.com
  organization: SAP, Singapore
– sequence: 4
  givenname: Chenliang
  orcidid: 0000-0003-3144-6374
  surname: Li
  fullname: Li, Chenliang
  email: cllee@whu.edu.cn
  organization: School of Cyber Science and Engineering, Wuhan University, Wuhan, China
BookMark eNp9kE1PAjEQhhuDiYD-AOOliefFfu22PRLEj0g0UTw3pTslJdBidzHh37sE4sGDh8nM4X1mJs8A9WKKgNA1JSNKib6bv9xPR4wwMmJaUU7FGerTslQFo5r2upkIWggu5AUaNM2KEKKkon1UjfHHLn_DHqeI7wG2eAY2xxCX2KeMX-0GajyNbWj3-B1cWsbQhhQv0bm36wauTn2IPh-m88lTMXt7fJ6MZ4VjmreFk5XwpdDeEll6X9dqQUsn6oXVVoCTpZRCVEC1kpbxasHqrghhXjhvK-L4EN0e925z-tpB05pV2uXYnTSsIlJ1PGddSh5TLqemyeCNC609_NlmG9aGEnOQZA6SzEGSOUnqSPqH3OawsXn_L3NzZAIA_OY14bpSJf8B9CJysQ
CODEN ITKEEH
CitedBy_id crossref_primary_10_1007_s00521_021_06748_3
crossref_primary_10_1016_j_dib_2025_112028
crossref_primary_10_1016_j_eswa_2022_118385
crossref_primary_10_1007_s44248_023_00005_9
crossref_primary_10_53941_aim_2025_100003
crossref_primary_10_1007_s10639_024_13308_4
crossref_primary_10_1145_3641850
crossref_primary_10_3390_info15060332
crossref_primary_10_1016_j_commatsci_2024_113014
crossref_primary_10_17208_jkpa_2024_12_59_7_169
crossref_primary_10_1007_s11042_023_16176_1
crossref_primary_10_1007_s11390_021_1153_y
crossref_primary_10_1002_mgea_70001
crossref_primary_10_1016_j_artmed_2024_102904
crossref_primary_10_1109_ACCESS_2025_3574345
crossref_primary_10_1007_s00521_023_08635_5
crossref_primary_10_1109_TKDE_2024_3423838
crossref_primary_10_3233_SW_222986
crossref_primary_10_4018_IJSWIS_295552
crossref_primary_10_1007_s10489_024_05934_9
crossref_primary_10_1038_s41598_025_01708_6
crossref_primary_10_1017_dsj_2024_8
crossref_primary_10_1109_ACCESS_2022_3219455
crossref_primary_10_1109_TMM_2024_3373249
crossref_primary_10_1186_s12859_025_06086_4
crossref_primary_10_1007_s11063_021_10737_x
crossref_primary_10_1007_s10579_023_09665_0
crossref_primary_10_3390_app132413239
crossref_primary_10_3390_socsci12030148
crossref_primary_10_3390_buildings15173063
crossref_primary_10_1109_ACCESS_2022_3186681
crossref_primary_10_1016_j_artmed_2023_102661
crossref_primary_10_1016_j_ecoser_2025_101740
crossref_primary_10_1109_ACCESS_2023_3324288
crossref_primary_10_1177_01655515231165228
crossref_primary_10_1007_s00521_025_11449_2
crossref_primary_10_1007_s11227_024_06244_0
crossref_primary_10_1016_j_cities_2025_105722
crossref_primary_10_3390_electronics11152287
crossref_primary_10_1007_s00799_023_00360_7
crossref_primary_10_1093_comjnl_bxac047
crossref_primary_10_3390_app12136361
crossref_primary_10_1007_s10707_022_00474_1
crossref_primary_10_1109_TKDE_2023_3341917
crossref_primary_10_3233_JIFS_210599
crossref_primary_10_1007_s11082_023_05770_0
crossref_primary_10_1016_j_inffus_2023_101988
crossref_primary_10_1016_j_ress_2023_109638
crossref_primary_10_1061_JCEMD4_COENG_14436
crossref_primary_10_1007_s40747_022_00742_5
crossref_primary_10_1016_j_nlp_2022_100003
crossref_primary_10_3390_rs15164098
crossref_primary_10_3389_fpsyt_2022_946387
crossref_primary_10_1145_3600055
crossref_primary_10_1016_j_jhydrol_2023_130128
crossref_primary_10_3390_app14135682
crossref_primary_10_1016_j_aei_2024_103098
crossref_primary_10_3390_s23115295
crossref_primary_10_1007_s41666_023_00136_3
crossref_primary_10_1007_s00521_024_10422_9
crossref_primary_10_1016_j_rcim_2024_102728
crossref_primary_10_1016_j_energy_2023_128209
crossref_primary_10_1001_jamanetworkopen_2023_23746
crossref_primary_10_1109_TBDATA_2023_3278977
crossref_primary_10_3390_app13106119
crossref_primary_10_1016_j_eswa_2023_122723
crossref_primary_10_1016_j_neucom_2024_129035
crossref_primary_10_1016_j_neucom_2024_129031
crossref_primary_10_3390_app14020585
crossref_primary_10_1186_s12859_023_05172_9
crossref_primary_10_3390_app13158913
crossref_primary_10_1007_s10489_024_05572_1
crossref_primary_10_3390_math11112420
crossref_primary_10_3390_fi17020059
crossref_primary_10_1016_j_ijcip_2023_100634
crossref_primary_10_1016_j_eswa_2025_126651
crossref_primary_10_1016_j_eswa_2025_126546
crossref_primary_10_1016_j_neucom_2024_129171
crossref_primary_10_1007_s42405_025_00954_2
crossref_primary_10_1177_18758967251355729
crossref_primary_10_1109_ACCESS_2024_3402830
crossref_primary_10_1145_3749369
crossref_primary_10_1080_09544828_2024_2339713
crossref_primary_10_7717_peerj_cs_1856
crossref_primary_10_1016_j_jii_2024_100759
crossref_primary_10_1109_TKDE_2023_3327777
crossref_primary_10_3390_app142311462
crossref_primary_10_1016_j_knosys_2025_113471
crossref_primary_10_4218_etrij_2023_0321
crossref_primary_10_1007_s42979_025_04240_6
crossref_primary_10_1016_j_aei_2025_103244
crossref_primary_10_3389_fcomm_2025_1553746
crossref_primary_10_1016_j_jbi_2025_104783
crossref_primary_10_3390_app13053348
crossref_primary_10_1145_3610168
crossref_primary_10_3390_app15063114
crossref_primary_10_1007_s10506_023_09385_4
crossref_primary_10_1109_TNNLS_2022_3178522
crossref_primary_10_1016_j_ocecoaman_2023_106679
crossref_primary_10_1080_09537325_2025_2547817
crossref_primary_10_1109_TCSS_2024_3489973
crossref_primary_10_1140_epjds_s13688_023_00386_6
crossref_primary_10_3390_electronics13224430
crossref_primary_10_1016_j_jksuci_2023_101654
crossref_primary_10_1109_TKDE_2022_3197707
crossref_primary_10_1016_j_aei_2025_103170
crossref_primary_10_1016_j_csl_2024_101643
crossref_primary_10_1016_j_jbi_2024_104754
crossref_primary_10_1007_s11042_022_14313_w
crossref_primary_10_1109_TCSS_2022_3213702
crossref_primary_10_1007_s00521_021_06477_7
crossref_primary_10_2196_63190
crossref_primary_10_1002_smr_70015
crossref_primary_10_7717_peerj_cs_2768
crossref_primary_10_1038_s41598_025_04252_5
crossref_primary_10_1109_ACCESS_2024_3427714
crossref_primary_10_3390_electronics11081282
crossref_primary_10_1109_TNNLS_2025_3528567
crossref_primary_10_1109_TCE_2023_3340752
crossref_primary_10_1016_j_ipm_2024_103657
crossref_primary_10_3390_electronics14101930
crossref_primary_10_3390_bioengineering11100982
crossref_primary_10_1038_s41746_024_01337_9
crossref_primary_10_1109_ACCESS_2022_3160201
crossref_primary_10_3390_a18080485
crossref_primary_10_1016_j_eswa_2023_121448
crossref_primary_10_1109_ACCESS_2022_3210119
crossref_primary_10_1016_j_nlp_2025_100160
crossref_primary_10_3390_su16020909
crossref_primary_10_1016_j_artmed_2024_102970
crossref_primary_10_1016_j_cmpb_2025_109070
crossref_primary_10_1108_ECAM_05_2023_0512
crossref_primary_10_3390_make6010007
crossref_primary_10_1142_S0219649224500904
crossref_primary_10_1162_dint_a_00102
crossref_primary_10_3390_info15110666
crossref_primary_10_1002_sd_3323
crossref_primary_10_1109_ACCESS_2023_3343756
crossref_primary_10_7717_peerj_cs_1535
crossref_primary_10_1109_ACCESS_2024_3430902
crossref_primary_10_1016_j_aei_2023_101880
crossref_primary_10_1016_j_ress_2022_109068
crossref_primary_10_1109_TKDE_2024_3417235
crossref_primary_10_1038_s41598_025_05499_8
crossref_primary_10_1088_1742_6596_1631_1_012016
crossref_primary_10_3390_app12178539
crossref_primary_10_1007_s40747_024_01753_0
crossref_primary_10_1109_COMST_2022_3215919
crossref_primary_10_1155_2022_5920268
crossref_primary_10_3390_app13052849
crossref_primary_10_3390_rs14194725
crossref_primary_10_1109_TNNLS_2025_3528416
crossref_primary_10_1007_s10462_022_10197_2
crossref_primary_10_1016_j_cose_2024_103805
crossref_primary_10_1007_s00521_024_10113_5
crossref_primary_10_3389_fpubh_2021_788074
crossref_primary_10_1007_s10506_025_09476_4
crossref_primary_10_1145_3494067
crossref_primary_10_1109_ACCESS_2025_3562146
crossref_primary_10_3390_app15115801
crossref_primary_10_1109_ACCESS_2025_3590851
crossref_primary_10_3390_app14167310
crossref_primary_10_3389_fnut_2024_1429259
crossref_primary_10_1016_j_procs_2024_10_160
crossref_primary_10_1016_j_engappai_2025_110543
crossref_primary_10_1007_s10707_022_00482_1
crossref_primary_10_1007_s43684_024_00072_y
crossref_primary_10_1016_j_infsof_2023_107195
crossref_primary_10_3390_app122010310
crossref_primary_10_1029_2022EA002617
crossref_primary_10_1016_j_neucom_2024_127938
crossref_primary_10_1016_j_visinf_2025_100236
crossref_primary_10_1080_13658816_2023_2266495
crossref_primary_10_1016_j_jmsy_2024_08_012
crossref_primary_10_1109_TKDE_2020_3038670
crossref_primary_10_1016_j_heliyon_2024_e30053
crossref_primary_10_7717_peerj_cs_2432
crossref_primary_10_1109_TKDE_2021_3096200
crossref_primary_10_1016_j_knosys_2022_110114
crossref_primary_10_1088_2631_8695_adf8bd
crossref_primary_10_1371_journal_pone_0307844
crossref_primary_10_1016_j_iotcps_2023_04_003
crossref_primary_10_3390_app122111084
crossref_primary_10_3390_app14135743
crossref_primary_10_3390_app15052521
crossref_primary_10_1007_s12204_023_2675_y
crossref_primary_10_3934_jimo_2025136
crossref_primary_10_1007_s40264_022_01176_1
crossref_primary_10_1109_ACCESS_2024_3400250
crossref_primary_10_1080_00140139_2024_2394510
crossref_primary_10_1111_2041_210X_13778
crossref_primary_10_32604_cmes_2023_031513
crossref_primary_10_1016_j_ipm_2023_103541
crossref_primary_10_3390_app132413296
crossref_primary_10_1038_s41598_025_05017_w
crossref_primary_10_1109_TKDE_2022_3148980
crossref_primary_10_1007_s10032_022_00399_3
crossref_primary_10_1016_j_ins_2024_121083
crossref_primary_10_20473_jisebi_11_1_1_16
crossref_primary_10_3390_math10091386
crossref_primary_10_1007_s42524_023_0273_1
crossref_primary_10_1007_s11761_022_00337_5
crossref_primary_10_1016_j_cie_2025_111375
crossref_primary_10_1111_1755_6724_15213
crossref_primary_10_1007_s10994_023_06456_0
crossref_primary_10_1145_3586180
crossref_primary_10_1016_j_ipm_2024_103724
crossref_primary_10_1016_j_ipm_2023_103546
crossref_primary_10_1016_j_ipm_2022_103250
crossref_primary_10_1109_TKDE_2023_3289949
crossref_primary_10_3390_s25072062
crossref_primary_10_1007_s00521_024_09646_6
crossref_primary_10_1016_j_oregeorev_2025_106796
crossref_primary_10_1109_TNET_2023_3339524
crossref_primary_10_2196_49041
crossref_primary_10_1016_j_oregeorev_2024_106396
crossref_primary_10_1109_TASLPRO_2025_3579311
crossref_primary_10_1038_s41598_025_92002_y
crossref_primary_10_1145_3659948
crossref_primary_10_1186_s12911_025_03137_x
crossref_primary_10_3390_info15080509
crossref_primary_10_1016_j_cosrev_2025_100765
crossref_primary_10_1016_j_patcog_2024_110779
crossref_primary_10_3390_informatics10040089
crossref_primary_10_3390_e26050394
crossref_primary_10_1016_j_knosys_2025_114183
crossref_primary_10_1007_s10489_024_05842_y
crossref_primary_10_1109_TITS_2022_3182371
crossref_primary_10_1007_s10462_025_11321_8
crossref_primary_10_1109_ACCESS_2024_3390181
crossref_primary_10_1145_3723349
crossref_primary_10_1016_j_autcon_2025_106106
crossref_primary_10_3390_s23020685
crossref_primary_10_3390_buildings13010104
crossref_primary_10_1038_s43246_024_00449_9
crossref_primary_10_1109_ACCESS_2024_3405997
crossref_primary_10_3390_en18020401
crossref_primary_10_3390_su16135296
crossref_primary_10_1007_s44163_025_00362_1
crossref_primary_10_32604_cmc_2024_050229
crossref_primary_10_1007_s10115_025_02543_x
crossref_primary_10_3390_app14051696
crossref_primary_10_1007_s12204_022_2474_x
crossref_primary_10_3390_electronics12030752
crossref_primary_10_3390_app14062456
crossref_primary_10_1016_j_knosys_2024_111762
crossref_primary_10_1007_s11227_023_05224_0
crossref_primary_10_3390_app131910759
crossref_primary_10_3390_e26090740
crossref_primary_10_1016_j_jbi_2023_104418
crossref_primary_10_3390_app122311971
crossref_primary_10_1016_j_ipm_2022_103153
crossref_primary_10_1038_s41598_025_99561_0
crossref_primary_10_1007_s10270_023_01135_z
crossref_primary_10_1109_TMM_2025_3543105
crossref_primary_10_1145_3656579
crossref_primary_10_1016_j_aei_2024_102732
crossref_primary_10_1109_TKDE_2025_3567204
crossref_primary_10_1093_bioinformatics_btae461
crossref_primary_10_1016_j_eswa_2025_129337
crossref_primary_10_3390_app13116777
crossref_primary_10_1017_S1351324922000493
crossref_primary_10_1109_ACCESS_2022_3202889
crossref_primary_10_3390_ai4040049
crossref_primary_10_1109_ACCESS_2024_3374727
crossref_primary_10_1109_ACCESS_2024_3516390
crossref_primary_10_1109_JIOT_2024_3382010
crossref_primary_10_1016_j_neucom_2024_127637
crossref_primary_10_1007_s11740_021_01070_2
crossref_primary_10_1016_j_datak_2025_102504
crossref_primary_10_1016_j_osnem_2024_100295
crossref_primary_10_1002_cjce_25700
crossref_primary_10_1016_j_knosys_2023_111323
crossref_primary_10_1109_MWC_001_2400315
crossref_primary_10_3389_fchem_2023_958002
crossref_primary_10_1109_TIFS_2025_3557755
crossref_primary_10_1007_s40747_025_01953_2
crossref_primary_10_1016_j_inffus_2025_103767
crossref_primary_10_3390_info16070554
crossref_primary_10_1016_j_eswa_2024_124867
crossref_primary_10_1016_j_oregeorev_2025_106875
crossref_primary_10_1016_j_jlp_2023_105161
crossref_primary_10_1016_j_cmpb_2022_107220
crossref_primary_10_1038_s41598_025_98465_3
crossref_primary_10_3390_info13030137
crossref_primary_10_1016_j_ipm_2025_104143
crossref_primary_10_1007_s10462_022_10338_7
crossref_primary_10_1109_TKDE_2021_3118469
crossref_primary_10_1111_coin_12654
crossref_primary_10_1016_j_iswa_2023_200247
crossref_primary_10_1080_09544828_2025_2450761
crossref_primary_10_1016_j_ipm_2022_103065
crossref_primary_10_1016_j_knosys_2024_111558
crossref_primary_10_1016_j_eswa_2024_124736
crossref_primary_10_3390_drones6120421
crossref_primary_10_1109_TEM_2023_3295951
crossref_primary_10_1186_s13326_023_00298_4
crossref_primary_10_1007_s12652_021_03297_4
crossref_primary_10_1109_ACCESS_2022_3172970
crossref_primary_10_3390_fi15050155
crossref_primary_10_1016_j_oceaneng_2024_118953
crossref_primary_10_1093_gigascience_giae104
crossref_primary_10_1109_TASLP_2022_3205753
crossref_primary_10_1016_j_knosys_2024_112410
crossref_primary_10_1007_s10844_025_00928_6
crossref_primary_10_1109_ACCESS_2024_3362645
crossref_primary_10_1108_FS_02_2023_0026
crossref_primary_10_1109_ACCESS_2024_3484765
crossref_primary_10_1007_s10489_022_03274_0
crossref_primary_10_3390_electronics14163320
crossref_primary_10_1007_s10115_023_02055_6
crossref_primary_10_1007_s11633_023_1470_4
crossref_primary_10_3390_info13040161
crossref_primary_10_3390_aerospace10080697
crossref_primary_10_3390_fire8080306
crossref_primary_10_3389_fenrg_2022_1038819
crossref_primary_10_2174_0115748936278299231213045441
crossref_primary_10_3390_e27020133
crossref_primary_10_1109_TCSS_2024_3506582
crossref_primary_10_1016_j_knosys_2023_111258
crossref_primary_10_3390_informatics10010010
crossref_primary_10_3389_fphar_2023_1121796
crossref_primary_10_3390_bdcc8120179
crossref_primary_10_1080_09544828_2024_2340392
crossref_primary_10_1016_j_jobe_2025_112189
crossref_primary_10_1038_s41597_023_02653_7
crossref_primary_10_1002_agj2_20622
crossref_primary_10_1093_bioinformatics_btaf113
crossref_primary_10_1145_3596498
crossref_primary_10_1061_JMENEA_MEENG_5298
crossref_primary_10_1109_ACCESS_2023_3327074
crossref_primary_10_1109_TAP_2024_3484014
crossref_primary_10_1016_j_aei_2024_102664
crossref_primary_10_1007_s10489_023_05262_4
crossref_primary_10_1016_j_ipm_2025_104150
crossref_primary_10_1177_10944281231213068
crossref_primary_10_4018_JDM_360526
crossref_primary_10_1016_j_inffus_2025_103405
crossref_primary_10_1016_j_knosys_2024_112750
crossref_primary_10_7717_peerj_cs_1163
crossref_primary_10_1007_s00500_024_09629_8
crossref_primary_10_3390_app14166944
crossref_primary_10_1109_TKDE_2024_3389694
crossref_primary_10_1016_j_cma_2025_117742
crossref_primary_10_1016_j_jlp_2024_105525
crossref_primary_10_1109_ACCESS_2025_3525555
crossref_primary_10_1109_ACCESS_2024_3437197
crossref_primary_10_3390_app142210417
crossref_primary_10_1080_13875868_2022_2095275
crossref_primary_10_1016_j_respol_2023_104903
crossref_primary_10_1109_TASLP_2022_3221017
crossref_primary_10_1016_j_knosys_2024_112682
crossref_primary_10_1016_j_neunet_2025_107172
crossref_primary_10_1007_s40747_025_02074_6
crossref_primary_10_1002_int_23015
crossref_primary_10_1016_j_compag_2023_108180
crossref_primary_10_1145_3678879
crossref_primary_10_1007_s10506_024_09397_8
crossref_primary_10_3390_systems13050320
crossref_primary_10_1145_3655619
crossref_primary_10_3390_rs16091484
crossref_primary_10_1109_TKDE_2023_3303136
crossref_primary_10_3390_electronics13010171
crossref_primary_10_3390_app12010330
crossref_primary_10_18287_2223_9537_2025_15_1_114_129
crossref_primary_10_1017_S1351324922000304
crossref_primary_10_1038_s41598_024_78948_5
crossref_primary_10_3390_electronics14112259
crossref_primary_10_1109_ACCESS_2023_3299824
crossref_primary_10_1007_s42979_023_02068_6
crossref_primary_10_1016_j_asoc_2024_112158
crossref_primary_10_1016_j_psep_2021_11_004
crossref_primary_10_3390_app14209410
crossref_primary_10_3390_app13074299
crossref_primary_10_1016_j_rcim_2024_102900
crossref_primary_10_1109_TKDE_2021_3117715
crossref_primary_10_1016_j_ipm_2025_104129
crossref_primary_10_1038_s41598_025_11622_6
crossref_primary_10_1109_ACCESS_2022_3167418
crossref_primary_10_1109_ACCESS_2023_3325895
crossref_primary_10_3390_math11081815
crossref_primary_10_1016_j_compind_2023_104063
crossref_primary_10_3390_app14104010
crossref_primary_10_3390_electronics12194037
crossref_primary_10_1016_j_rser_2025_115561
crossref_primary_10_32604_jqc_2022_026785
crossref_primary_10_1016_j_autcon_2024_105730
crossref_primary_10_1109_ACCESS_2025_3549312
crossref_primary_10_1155_2022_3401074
crossref_primary_10_1016_j_aej_2025_01_119
crossref_primary_10_1016_j_jfranklin_2024_107055
crossref_primary_10_3390_a17050176
crossref_primary_10_1016_j_neucom_2023_127064
crossref_primary_10_1038_s41597_024_03578_5
crossref_primary_10_3390_data7010008
crossref_primary_10_1109_JSTSP_2024_3376962
crossref_primary_10_1016_j_knosys_2022_109625
crossref_primary_10_1145_3609483
crossref_primary_10_1109_TKDE_2024_3389650
crossref_primary_10_1007_s11063_022_11122_y
crossref_primary_10_3390_healthcare11091268
crossref_primary_10_1145_3727876
crossref_primary_10_3390_app12115373
crossref_primary_10_1007_s11042_023_15464_0
crossref_primary_10_1016_j_compeleceng_2023_108981
crossref_primary_10_1038_s43247_023_00806_5
crossref_primary_10_1007_s40747_024_01551_8
crossref_primary_10_1145_3583685
crossref_primary_10_4018_IJDWM_352513
crossref_primary_10_1142_S0218126625501002
crossref_primary_10_3389_fninf_2023_1215261
crossref_primary_10_1007_s00521_022_06983_2
crossref_primary_10_1038_s43856_024_00470_6
crossref_primary_10_1007_s12559_024_10272_6
crossref_primary_10_1016_j_eswa_2023_120709
crossref_primary_10_1016_j_eswa_2023_121919
crossref_primary_10_1186_s12942_025_00397_8
crossref_primary_10_1093_bib_bbab282
crossref_primary_10_1177_20552076241286260
crossref_primary_10_3390_app14209302
crossref_primary_10_3390_app14031060
crossref_primary_10_1016_j_compeleceng_2023_108751
crossref_primary_10_3390_info13020049
crossref_primary_10_1007_s40264_022_01212_0
crossref_primary_10_4018_IJSWIS_333711
crossref_primary_10_1124_pharmrev_122_000715
crossref_primary_10_1145_3685054
crossref_primary_10_1371_journal_pone_0318262
crossref_primary_10_3390_en16124654
crossref_primary_10_1016_j_isci_2024_110192
crossref_primary_10_1007_s11280_019_00758_x
crossref_primary_10_1007_s10618_024_01088_x
crossref_primary_10_1109_ACCESS_2022_3143033
crossref_primary_10_1007_s13042_023_01885_8
crossref_primary_10_1108_EL_03_2022_0071
crossref_primary_10_1007_s10489_022_03511_6
crossref_primary_10_3390_electronics12234872
crossref_primary_10_1016_j_future_2022_10_010
crossref_primary_10_3390_app13010375
crossref_primary_10_3390_app12199818
crossref_primary_10_1007_s42979_024_02876_4
crossref_primary_10_1109_ACCESS_2023_3309148
crossref_primary_10_3233_IDA_230588
crossref_primary_10_1109_TASLPRO_2025_3592317
crossref_primary_10_1016_j_ijmedinf_2024_105626
crossref_primary_10_18255_1818_1015_2025_1_66_79
crossref_primary_10_1109_ACCESS_2020_3026535
crossref_primary_10_1007_s11517_024_03227_4
crossref_primary_10_1145_3618295
crossref_primary_10_1016_j_ijmedinf_2023_105321
crossref_primary_10_1109_TKDE_2024_3376453
crossref_primary_10_1109_ACCESS_2022_3205314
crossref_primary_10_1109_ACCESS_2024_3360528
crossref_primary_10_3390_app15158263
crossref_primary_10_26634_jcom_12_1_20651
Cites_doi 10.18653/v1/W17-4420
10.18653/v1/P18-1144
10.1093/database/baw140
10.18653/v1/D19-1539
10.3115/1567594.1567618
10.1016/j.jbi.2017.05.002
10.18653/v1/N19-1383
10.1038/nature14539
10.1145/3077136.3080810
10.24963/ijcai.2019/702
10.1109/TKDE.2009.191
10.3115/1119176.1119206
10.1093/bioinformatics/bty449
10.1007/11766247_23
10.18653/v1/W17-4422
10.1007/11893318_27
10.18653/v1/P19-1524
10.3115/1699648.1699699
10.26615/978-954-452-049-6_101
10.18653/v1/N16-1027
10.1145/1458082.1458163
10.18653/v1/W18-6112
10.1109/5254.708428
10.1007/BF00116251
10.18653/v1/P19-1585
10.18653/v1/N19-4009
10.18653/v1/W18-3221
10.18653/v1/P19-1138
10.1145/3041021.3054724
10.18653/v1/D18-1034
10.3115/v1/P15-2081
10.1007/978-3-319-96893-3_20
10.3115/992628.992709
10.18653/v1/P19-1014
10.18653/v1/P17-1113
10.18653/v1/W17-4421
10.1561/1500000055
10.18653/v1/D19-1520
10.3115/1034678.1034710
10.24963/ijcai.2018/579
10.18653/v1/D17-1283
10.1016/j.jbi.2013.08.004
10.1093/bioinformatics/bts183
10.18653/v1/P19-1139
10.18653/v1/N16-1030
10.1109/ICTAI.2016.0082
10.18653/v1/P16-1101
10.1007/978-3-319-45510-5_20
10.1093/bioinformatics/bty869
10.1145/1081870.1081950
10.1186/1471-2105-6-S1-S14
10.18653/v1/D16-1261
10.3115/1220175.1220316
10.1109/ICTAI.2017.00104
10.18653/v1/K19-1048
10.1145/3129290
10.1145/2911451.2911508
10.1186/s12859-017-1776-8
10.1145/1321440.1321542
10.3115/1119176.1119195
10.18653/v1/W17-4418
10.1075/li.30.1.03nad
10.1145/1571941.1571989
10.18653/v1/P19-1016
10.3115/1072399.1072420
10.1007/978-3-319-69005-6_12
10.1145/1963405.1963424
10.1002/asi.23816
10.18653/v1/N19-1133
10.3115/1118853.1118873
10.1007/s10462-018-9654-y
10.18653/v1/D16-1153
10.3115/1609822.1609823
10.18653/v1/P16-1134
10.3115/977035.977037
10.18653/v1/D16-1144
10.1016/j.jbi.2019.103133
10.18653/v1/N18-1131
10.18653/v1/P17-1194
10.18653/v1/P18-1185
10.18653/v1/P18-1074
10.1109/SANER.2016.10
10.3115/1119176.1119196
10.1109/TKDE.2017.2730862
10.2200/S00429ED1V01Y201207AIM018
10.18653/v1/D17-1282
10.3233/SW-170286
10.3115/1119176.1119200
10.18653/v1/E17-1075
10.18653/v1/D16-1087
10.1016/j.procs.2016.09.123
10.18653/v1/W17-2630
10.3115/974557.974586
10.1109/TKDE.2018.2857493
10.1145/345508.345563
10.1007/978-94-010-2557-7_9
10.5772/51066
10.18653/v1/P18-1249
10.18653/v1/P17-1161
10.1007/11590019_59
10.18653/v1/P17-1114
10.1613/jair.301
10.18653/v1/W17-4419
10.18653/v1/N18-1078
10.18653/v1/D19-1422
10.18653/v1/N18-1079
10.1023/A:1007379606734
10.18653/v1/P19-1236
10.18653/v1/N18-1202
10.1007/978-1-4471-2099-5_1
10.18653/v1/N18-1001
10.18653/v1/P16-2040
10.3115/1621829.1621837
10.1023/A:1007558221122
10.18653/v1/D18-1226
10.1145/2872427.2883067
10.18653/v1/P18-3006
10.3115/1072228.1072253
10.18653/v1/P19-1233
10.18653/v1/D19-1025
10.1007/978-3-319-93935-3
10.1109/TKDE.2017.2758780
10.1038/nature14236
10.1016/S0959-440X(96)80056-X
10.18653/v1/P16-2039
10.1109/ICRTCCM.2017.34
10.1016/j.cosrev.2018.06.001
10.18653/v1/D18-1153
10.1145/2457465.2457467
10.1162/tacl_a_00104
10.1016/j.csi.2012.09.004
10.1016/j.artint.2005.03.001
10.18653/v1/D19-1367
10.18653/v1/W17-2612
10.18653/v1/D18-1017
10.18653/v1/P18-2038
10.1075/bct
10.14257/ijhit.2015.8.8.29
10.18653/v1/N18-2056
10.18653/v1/P19-1336
10.18653/v1/D17-2017
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2020.2981314
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 70
ExternalDocumentID 10_1109_TKDE_2020_2981314
9039685
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-c764f549fa075ffdd8b15c4dba9a4ec7577446e1987a236b2d6b2002f4cfa60c3
IEDL.DBID RIE
ISICitedReferencesCount 816
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000728576400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sun Nov 09 07:21:02 EST 2025
Sat Nov 29 02:36:02 EST 2025
Tue Nov 18 22:33:19 EST 2025
Wed Aug 27 05:11:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-c764f549fa075ffdd8b15c4dba9a4ec7577446e1987a236b2d6b2002f4cfa60c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3144-6374
0000-0003-0764-4258
0000-0002-3262-3734
PQID 2607877432
PQPubID 85438
PageCount 21
ParticipantIDs crossref_citationtrail_10_1109_TKDE_2020_2981314
crossref_primary_10_1109_TKDE_2020_2981314
ieee_primary_9039685
proquest_journals_2607877432
PublicationCentury 2000
PublicationDate 2022-Jan.-1
2022-1-1
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.-1
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref208
ref59
ref205
ref58
ref206
ref203
ref52
ref204
ref55
ref201
patawar (ref23) 2015; 3
ref54
lafferty (ref72) 2001
ref209
ritter (ref83) 2011
ravin (ref63) 1997
ref210
yang (ref188) 2018
ref211
ref51
kim (ref44) 2000
ref46
ref45
ref43
hoffart (ref62) 2011
lee (ref169) 2018
vaswani (ref127) 2017
ref8
ref9
ref4
pradhan (ref41) 2012
ref5
ref101
ref40
liu (ref125) 2017
ref35
ref34
ref37
ref36
nguyen (ref88) 2019
ref31
ref30
ref32
ref39
ref38
hoi (ref185) 2018
ref24
ref25
ref20
ref22
ref21
ref27
gridach (ref152) 2016
rei (ref104) 2016
ref200
ref129
ref97
ref126
ref96
ref124
ref98
luo (ref133) 2019
ref93
ref134
pham (ref154) 2017
ref95
ref131
ref132
wu (ref119) 2015; 216
ref90
ref89
ref139
ref85
ref138
ref135
ref87
kazama (ref60) 2007
zhang (ref198) 2018
akbik (ref106) 2018
ref81
ref145
ref142
phan (ref207) 2019
ref143
ref140
ref141
ref80
ref79
ref78
ref107
ref75
ref74
ref77
ref102
ref103
cheng (ref3) 2019
black (ref49) 1998
krupka (ref48) 2005
ref71
ref111
ref112
ref73
toral (ref61) 2006
ref110
ref68
collobert (ref17) 2011; 12
ref67
ref117
ref69
ref64
ref115
ref116
ref66
ref113
ref65
ref114
humphreys (ref47) 1998
lecun (ref86) 2015; 521
ref122
ref123
ref121
ref168
yang (ref92) 2018
tran (ref100) 2017
kapur (ref70) 1989
ref170
vinyals (ref144) 2015
ref177
yang (ref105) 2016
ref178
ref175
ref176
ref173
ref171
ref172
ref179
sekine (ref42) 2004
ref180
ref181
liu (ref128) 2018
kuru (ref99) 2016
li (ref137) 2019
ling (ref29) 2012; 12
mikolov (ref91) 2013
aliod (ref7) 2006
ref189
ref186
ref187
ref183
zhou (ref56) 2002
radford (ref130) 2018
ref148
ref149
ref146
aone (ref50) 1998
jiang (ref165) 2007
ref155
balog (ref14) 2010
ref153
ref151
ref150
yadav (ref26) 2018
ref159
ref157
devlin (ref118) 2019
ref158
yano (ref156) 2018
yan (ref147) 2019
ghaddar (ref108) 2018
huang (ref18) 2015
ref166
ref167
ref164
ref162
ref163
ref160
ref161
sharnagat (ref28) 2014
ref15
ref11
ref10
zhai (ref94) 2017
ref16
ref19
liu (ref84) 2011
corro (ref33) 2015
collins (ref53) 1999
britz (ref195) 2016
jie (ref109) 2018
yang (ref174) 2017
partalas (ref202) 2016
pradhan (ref182) 2013
sutton (ref184) 1998; 135
li (ref136) 2019
ref2
ref1
liu (ref82) 2019
ref191
ref192
ref199
gregoric (ref120) 2018; 2
ref197
ref196
ref193
ref194
doddington (ref12) 2004; 2
borthwick (ref76) 1998
demartini (ref13) 2009
goodfellow (ref190) 2014
aone (ref6) 1999; 71
References_xml – ident: ref114
  doi: 10.18653/v1/W17-4420
– start-page: 1
  year: 2014
  ident: ref28
  article-title: Named entity recognition: A literature survey
– ident: ref149
  doi: 10.18653/v1/P18-1144
– start-page: 1
  year: 2006
  ident: ref61
  article-title: A proposal to automatically build and maintain gazetteers for named entity recognition by using wikipedia
  publication-title: Proc Workshop NEW TEXT Wikis blogs Other Dynamic Text Sources
– year: 2019
  ident: ref82
  article-title: HAMNER: Headword amplified multi-span distantly supervised method for domain specific named entity recognition
– volume: 2
  year: 2004
  ident: ref12
  article-title: The automatic content extraction (ACE) program-tasks, data, and evaluation
  publication-title: Proc 4th Int Conf Lang Resour Eval
– ident: ref111
  doi: 10.1093/database/baw140
– ident: ref131
  doi: 10.18653/v1/D19-1539
– year: 2016
  ident: ref105
  article-title: Multi-task cross-lingual sequence tagging from scratch
– ident: ref57
  doi: 10.3115/1567594.1567618
– ident: ref103
  doi: 10.1016/j.jbi.2017.05.002
– ident: ref191
  doi: 10.18653/v1/N19-1383
– volume: 521
  year: 2015
  ident: ref86
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 1
  year: 2012
  ident: ref41
  article-title: CoNLL-2012 shared task: Modeling multilingual unrestricted coreference in OntoNotes
  publication-title: Proc Conf Empir Methods Natural Lang Process
– ident: ref40
  doi: 10.1145/3077136.3080810
– ident: ref192
  doi: 10.24963/ijcai.2019/702
– start-page: 23
  year: 2016
  ident: ref152
  article-title: Character-aware neural networks for arabic named entity recognition for social media
  publication-title: Proc 6th Workshop South Southeast Asian Natural Lang Process
– ident: ref164
  doi: 10.1109/TKDE.2009.191
– ident: ref81
  doi: 10.3115/1119176.1119206
– start-page: 1896
  year: 2018
  ident: ref108
  article-title: Robust lexical features for improved neural network named-entity recognition
  publication-title: Proc 27th Int Conf Comput Linguistics
– ident: ref178
  doi: 10.1093/bioinformatics/bty449
– start-page: 2159
  year: 2018
  ident: ref188
  article-title: Distantly supervised NER with partial annotation learning and reinforcement learning
  publication-title: Proc 27th Int Conf Comput Linguistics
– ident: ref54
  doi: 10.1007/11766247_23
– ident: ref175
  doi: 10.18653/v1/W17-4422
– ident: ref75
  doi: 10.1007/11893318_27
– ident: ref107
  doi: 10.18653/v1/P19-1524
– ident: ref166
  doi: 10.3115/1699648.1699699
– start-page: 21
  year: 2005
  ident: ref48
  article-title: Description of the nerOWL extractor system as used for MUC-7
  publication-title: Proc 7th Message Understanding Conf
– ident: ref101
  doi: 10.26615/978-954-452-049-6_101
– ident: ref143
  doi: 10.18653/v1/N16-1027
– ident: ref36
  doi: 10.1145/1458082.1458163
– start-page: 5674
  year: 2018
  ident: ref198
  article-title: Adaptive co-attention network for named entity recognition in tweets
  publication-title: Proc 32nd AAAI Conf Artif Intell
– start-page: 359
  year: 2011
  ident: ref84
  article-title: Recognizing named entities in tweets
  publication-title: Proc Annual Meeting of the Assoc Computational Linguistics
– ident: ref155
  doi: 10.18653/v1/W18-6112
– ident: ref71
  doi: 10.1109/5254.708428
– ident: ref69
  doi: 10.1007/BF00116251
– ident: ref200
  doi: 10.18653/v1/P19-1585
– ident: ref210
  doi: 10.18653/v1/N19-4009
– volume: 135
  year: 1998
  ident: ref184
  publication-title: Introduction to Reinforcement Learning
– ident: ref98
  doi: 10.18653/v1/W18-3221
– ident: ref132
  doi: 10.18653/v1/P19-1138
– ident: ref32
  doi: 10.1145/3041021.3054724
– ident: ref158
  doi: 10.18653/v1/D18-1034
– year: 2015
  ident: ref18
  article-title: Bidirectional LSTM-CRF models for sequence tagging
– ident: ref116
  doi: 10.3115/v1/P15-2081
– year: 2019
  ident: ref137
  article-title: Dice loss for data-imbalanced NLP tasks
  publication-title: CoRR
– ident: ref197
  doi: 10.1007/978-3-319-96893-3_20
– ident: ref10
  doi: 10.3115/992628.992709
– ident: ref177
  doi: 10.18653/v1/P19-1014
– volume: 12
  start-page: 94
  year: 2012
  ident: ref29
  article-title: Fine-grained entity recognition
  publication-title: Proc 26th AAAI Conf Artif Intell
– ident: ref89
  doi: 10.18653/v1/P17-1113
– ident: ref112
  doi: 10.18653/v1/W17-4421
– ident: ref37
  doi: 10.1561/1500000055
– ident: ref167
  doi: 10.18653/v1/D19-1520
– ident: ref59
  doi: 10.3115/1034678.1034710
– ident: ref145
  doi: 10.24963/ijcai.2018/579
– start-page: 1
  year: 2010
  ident: ref14
  article-title: Overview of the trec 2010 entity track
  publication-title: Proc 19th Text REtrieval Conf
– ident: ref90
  doi: 10.18653/v1/D17-1283
– year: 2019
  ident: ref136
  article-title: A unified MRC framework for named entity recognition
  publication-title: CoRR
– year: 1989
  ident: ref70
  publication-title: Maximum-Entropy Models in Science and Engineering
– ident: ref43
  doi: 10.1016/j.jbi.2013.08.004
– ident: ref85
  doi: 10.1093/bioinformatics/bts183
– ident: ref2
  doi: 10.18653/v1/P19-1139
– year: 2018
  ident: ref128
  article-title: Generating wikipedia by summarizing long sequences
– ident: ref19
  doi: 10.18653/v1/N16-1030
– ident: ref150
  doi: 10.1109/ICTAI.2016.0082
– ident: ref96
  doi: 10.18653/v1/P16-1101
– ident: ref151
  doi: 10.1007/978-3-319-45510-5_20
– ident: ref163
  doi: 10.1093/bioinformatics/bty869
– ident: ref189
  doi: 10.1145/1081870.1081950
– ident: ref45
  doi: 10.1186/1471-2105-6-S1-S14
– ident: ref186
  doi: 10.18653/v1/D16-1261
– ident: ref66
  doi: 10.3115/1220175.1220316
– start-page: 3860
  year: 2018
  ident: ref109
  article-title: Dependency-guided LSTM-CRF for named entity recognition
  publication-title: Proc Conf Empir Methods Natural Lang Process
– ident: ref196
  doi: 10.1109/ICTAI.2017.00104
– ident: ref172
  doi: 10.18653/v1/K19-1048
– ident: ref153
  doi: 10.1145/3129290
– ident: ref35
  doi: 10.1145/2911451.2911508
– ident: ref162
  doi: 10.1186/s12859-017-1776-8
– ident: ref5
  doi: 10.1145/1321440.1321542
– ident: ref11
  doi: 10.3115/1119176.1119195
– year: 2018
  ident: ref156
  article-title: Neural disease named entity extraction with character-based BiLSTM+ CRF in japanese medical text
– start-page: 264
  year: 2007
  ident: ref165
  article-title: Instance weighting for domain adaptation in NLP
  publication-title: Proc 45th Annu Meeting Assoc Comput Linguistics
– start-page: 473
  year: 2002
  ident: ref56
  article-title: Named entity recognition using an HMM-based chunk tagger
  publication-title: Proc Annual Meeting of the Assoc Computational Linguistics
– start-page: 566
  year: 2017
  ident: ref100
  article-title: Named entity recognition with stack residual LSTM and trainable bias decoding
  publication-title: Proc 8th Int Joint Conf Natural Lang Process
– volume: 12
  start-page: 2493
  year: 2011
  ident: ref17
  article-title: Natural language processing (almost) from scratch
  publication-title: J Mach Learn Res
– ident: ref199
  doi: 10.18653/v1/W17-4418
– ident: ref1
  doi: 10.1075/li.30.1.03nad
– ident: ref4
  doi: 10.1145/1571941.1571989
– start-page: 1
  year: 1998
  ident: ref49
  article-title: FACILE: Description of the NE system used for MUC-7
  publication-title: Proc 7th Message Understanding Conf
– volume: 216
  start-page: 624
  year: 2015
  ident: ref119
  article-title: Named entity recognition in chinese clinical text using deep neural network
  publication-title: Stud Health Technol Informat
– start-page: 1977
  year: 2004
  ident: ref42
  article-title: Definition, dictionaries and tagger for extended named entity hierarchy
  publication-title: Proc 4th Int Conf Lang Resour Eval
– start-page: 2145
  year: 2018
  ident: ref26
  article-title: A survey on recent advances in named entity recognition from deep learning models
  publication-title: Proc 27th Int Conf Comput Linguistics
– start-page: 1
  year: 2013
  ident: ref91
  article-title: Efficient estimation of word representations in vector space
  publication-title: Proc Int Conf Learn Representations
– year: 2019
  ident: ref88
  article-title: Toward mention detection robustness with recurrent neural networks
– ident: ref140
  doi: 10.18653/v1/P19-1016
– ident: ref51
  doi: 10.3115/1072399.1072420
– ident: ref95
  doi: 10.1007/978-3-319-69005-6_12
– start-page: 4470
  year: 2018
  ident: ref169
  article-title: Transfer learning for named-entity recognition with neural networks
– ident: ref38
  doi: 10.1145/1963405.1963424
– ident: ref205
  doi: 10.1002/asi.23816
– ident: ref146
  doi: 10.18653/v1/N19-1133
– ident: ref80
  doi: 10.3115/1118853.1118873
– ident: ref208
  doi: 10.1007/s10462-018-9654-y
– ident: ref157
  doi: 10.18653/v1/D16-1153
– ident: ref8
  doi: 10.3115/1609822.1609823
– start-page: 911
  year: 2016
  ident: ref99
  article-title: CharNER: Character-level named entity recognition
  publication-title: Proc 26th Int Conf Comput Linguistics
– ident: ref141
  doi: 10.18653/v1/P16-1134
– ident: ref52
  doi: 10.3115/977035.977037
– start-page: 5253
  year: 2017
  ident: ref125
  article-title: Empower sequence labeling with task-aware neural language model
  publication-title: Proc AAAI Conf Artif Intell
– ident: ref30
  doi: 10.18653/v1/D16-1144
– ident: ref148
  doi: 10.1016/j.jbi.2019.103133
– start-page: 5998
  year: 2017
  ident: ref127
  article-title: Attention is all you need
  publication-title: Proc 31st Int Conf Neural Inf Process Syst
– ident: ref122
  doi: 10.18653/v1/N18-1131
– start-page: 143
  year: 2013
  ident: ref182
  article-title: Towards robust linguistic analysis using ontonotes
  publication-title: Proc 17th Int Conf Comput Linguistics
– ident: ref123
  doi: 10.18653/v1/P17-1194
– ident: ref110
  doi: 10.18653/v1/P18-1185
– start-page: 3365
  year: 2017
  ident: ref94
  article-title: Neural models for sequence chunking
  publication-title: Proc 31st AAAI Conf Artif Intell
– ident: ref159
  doi: 10.18653/v1/P18-1074
– ident: ref201
  doi: 10.1109/SANER.2016.10
– ident: ref77
  doi: 10.3115/1119176.1119196
– ident: ref203
  doi: 10.1109/TKDE.2017.2730862
– start-page: 1
  year: 2019
  ident: ref207
  article-title: Collective named entity recognition in user comments via parameterized label propagation
  publication-title: J Assoc Inf Sci Technol
– ident: ref180
  doi: 10.2200/S00429ED1V01Y201207AIM018
– year: 2018
  ident: ref185
  article-title: Online learning: A comprehensive survey
– ident: ref97
  doi: 10.18653/v1/D17-1282
– ident: ref209
  doi: 10.3233/SW-170286
– ident: ref79
  doi: 10.3115/1119176.1119200
– start-page: 3879
  year: 2018
  ident: ref92
  article-title: Design challenges and misconceptions in neural sequence labeling
  publication-title: Proc 27th Int Conf Comput Linguistics
– start-page: 1
  year: 1998
  ident: ref50
  article-title: SRA: Description of the IE2 system used for MUC-7
  publication-title: Proc 7th Message Understanding Conf
– ident: ref31
  doi: 10.18653/v1/E17-1075
– year: 2019
  ident: ref133
  article-title: Hierarchical contextualized representation for named entity recognition
  publication-title: CoRR
– start-page: 698
  year: 2007
  ident: ref60
  article-title: Exploiting wikipedia as external knowledge for named entity recognition
  publication-title: Proc Joint Conf Empir Methods Natural Lang Process Comput Natural Lang Learn
– start-page: 2672
  year: 2014
  ident: ref190
  article-title: Generative adversarial nets
  publication-title: Proc 27th Int Conf Neural Inf Process Syst
– ident: ref173
  doi: 10.18653/v1/D16-1087
– start-page: 254
  year: 2009
  ident: ref13
  article-title: Overview of the INEX 2009 entity ranking track
  publication-title: Proc Int Workshop Initiative Eval XML Retrieval
– ident: ref46
  doi: 10.1016/j.procs.2016.09.123
– ident: ref87
  doi: 10.18653/v1/W17-2630
– ident: ref73
  doi: 10.3115/974557.974586
– ident: ref204
  doi: 10.1109/TKDE.2018.2857493
– start-page: 528
  year: 2000
  ident: ref44
  article-title: A rule-based named entity recognition system for speech input
  publication-title: Proc Int Conf Spoken Lang Process
– year: 2019
  ident: ref3
  article-title: Attending to entities for better text understanding
– year: 2016
  ident: ref195
  article-title: Attention and memory in deep learning and NLP
– ident: ref15
  doi: 10.1145/345508.345563
– start-page: 219
  year: 2017
  ident: ref154
  article-title: End-to-end recurrent neural network models for vietnamese named entity recognition: Word-level vs. character-level
  publication-title: Proc 15th Int Conf Pacific Assoc Comput Linguistics
– start-page: 1
  year: 2018
  ident: ref130
  article-title: Improving language understanding by generative pre-training
– start-page: 282
  year: 2001
  ident: ref72
  article-title: Conditional random fields: Probabilistic models for segmenting and labeling sequence data
  publication-title: Proc 18th Int Conf Mach Learn
– ident: ref16
  doi: 10.1007/978-94-010-2557-7_9
– ident: ref67
  doi: 10.5772/51066
– ident: ref129
  doi: 10.18653/v1/P18-1249
– ident: ref21
  doi: 10.18653/v1/P17-1161
– volume: 71
  start-page: 71
  year: 1999
  ident: ref6
  article-title: A trainable summarizer with knowledge acquired from robust nlp techniques
  publication-title: Adv Autom Text Summ
– ident: ref64
  doi: 10.1007/11590019_59
– year: 1998
  ident: ref76
  article-title: NYU: Description of the MENE named entity system as used in MUC-7
  publication-title: Proc 7th Message Understanding Conf
– start-page: 171
  year: 2016
  ident: ref202
  article-title: Learning to search for recognizing named entities in Twitter
  publication-title: Proc 2nd Workshop Noisy User-Generated Text
– start-page: 51
  year: 2006
  ident: ref7
  article-title: Named entity recognition for question answering
  publication-title: Proc Australas Lang Technol Workshop
– ident: ref115
  doi: 10.18653/v1/P17-1114
– ident: ref183
  doi: 10.1613/jair.301
– start-page: 1638
  year: 2018
  ident: ref106
  article-title: Contextual string embeddings for sequence labeling
  publication-title: Proc 27th Int Conf Comput Linguistics
– ident: ref113
  doi: 10.18653/v1/W17-4419
– ident: ref117
  doi: 10.18653/v1/N18-1078
– start-page: 782
  year: 2011
  ident: ref62
  article-title: Robust disambiguation of named entities in text
  publication-title: Proc Conf Empir Methods Natural Lang Process
– ident: ref138
  doi: 10.18653/v1/D19-1422
– ident: ref121
  doi: 10.18653/v1/N18-1079
– start-page: 1
  year: 1997
  ident: ref63
  article-title: Extracting Names From Natural-Language Text
– ident: ref160
  doi: 10.1023/A:1007379606734
– ident: ref126
  doi: 10.18653/v1/P19-1236
– year: 2017
  ident: ref174
  article-title: Transfer learning for sequence tagging with hierarchical recurrent networks
  publication-title: Proc Int Conf Learn Representations
– year: 2019
  ident: ref147
  article-title: TENER: Adapting transformer encoder for name entity recognition
– ident: ref102
  doi: 10.18653/v1/N18-1202
– ident: ref181
  doi: 10.1007/978-1-4471-2099-5_1
– ident: ref179
  doi: 10.18653/v1/N18-1001
– ident: ref39
  doi: 10.18653/v1/P16-2040
– ident: ref58
  doi: 10.3115/1621829.1621837
– ident: ref74
  doi: 10.1023/A:1007558221122
– ident: ref170
  doi: 10.18653/v1/D18-1226
– ident: ref65
  doi: 10.1145/2872427.2883067
– ident: ref25
  doi: 10.18653/v1/P18-3006
– ident: ref78
  doi: 10.3115/1072228.1072253
– volume: 2
  start-page: 69
  year: 2018
  ident: ref120
  article-title: Named entity recognition with parallel recurrent neural networks
  publication-title: Proc Annual Meeting of the Assoc Computational Linguistics
– ident: ref134
  doi: 10.18653/v1/P19-1233
– ident: ref171
  doi: 10.18653/v1/D19-1025
– start-page: 1
  year: 1998
  ident: ref47
  article-title: University of sheffield: Description of the laSIE-II system as used for MUC-7
  publication-title: Proc 7th Message Understanding Conf
– ident: ref34
  doi: 10.1007/978-3-319-93935-3
– start-page: 868
  year: 2015
  ident: ref33
  article-title: FINET: Context-aware fine-grained named entity typing
  publication-title: Proc Conf Empir Methods Natural Lang Process
– ident: ref206
  doi: 10.1109/TKDE.2017.2758780
– ident: ref187
  doi: 10.1038/nature14236
– ident: ref68
  doi: 10.1016/S0959-440X(96)80056-X
– ident: ref139
  doi: 10.18653/v1/P16-2039
– volume: 3
  start-page: 12 201
  year: 2015
  ident: ref23
  article-title: Approaches to named entity recognition: A survey
  publication-title: Int J Innovative Res Comput Commun Eng
– ident: ref24
  doi: 10.1109/ICRTCCM.2017.34
– ident: ref27
  doi: 10.1016/j.cosrev.2018.06.001
– ident: ref124
  doi: 10.18653/v1/D18-1153
– ident: ref168
  doi: 10.1145/2457465.2457467
– start-page: 2692
  year: 2015
  ident: ref144
  article-title: Pointer networks
  publication-title: Proc 28th Int Conf Neural Inf Process Syst
– ident: ref20
  doi: 10.1162/tacl_a_00104
– ident: ref22
  doi: 10.1016/j.csi.2012.09.004
– ident: ref9
  doi: 10.1016/j.artint.2005.03.001
– start-page: 309
  year: 2016
  ident: ref104
  article-title: Attending to characters in neural sequence labeling models
  publication-title: Proc 26th Int Conf Comput Linguistics
– ident: ref135
  doi: 10.18653/v1/D19-1367
– ident: ref161
  doi: 10.18653/v1/W17-2612
– ident: ref193
  doi: 10.18653/v1/D18-1017
– start-page: 1524
  year: 2011
  ident: ref83
  article-title: Named entity recognition in tweets: An experimental study
  publication-title: Proc Conf Empir Methods Natural Lang Process
– ident: ref142
  doi: 10.18653/v1/P18-2038
– ident: ref55
  doi: 10.1075/bct
– ident: ref93
  doi: 10.14257/ijhit.2015.8.8.29
– ident: ref176
  doi: 10.18653/v1/N18-2056
– ident: ref194
  doi: 10.18653/v1/P19-1336
– start-page: 100
  year: 1999
  ident: ref53
  article-title: Unsupervised models for named entity classification
  publication-title: Proc Conf Empir Methods Natural Lang Process
– start-page: 4171
  year: 2019
  ident: ref118
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
  publication-title: Proc Conference North Amer Chapter Assoc Comput Linguistics Hum Lang Technol
– ident: ref211
  doi: 10.18653/v1/D17-2017
SSID ssj0008781
Score 2.748275
Snippet Named entity recognition (NER) is the task to identify mentions of rigid designators from text belonging to predefined semantic types such as person, location,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 50
SubjectTerms Annotations
Coders
Deep learning
Encyclopedias
Human engineering
Machine translation
named entity recognition
Natural language processing
Recognition
Representations
Semantics
survey
Task analysis
Taxonomy
Text recognition
Title A Survey on Deep Learning for Named Entity Recognition
URI https://ieeexplore.ieee.org/document/9039685
https://www.proquest.com/docview/2607877432
Volume 34
WOSCitedRecordID wos000728576400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-24YM-ON0Up1Py4JPYrR_p1-NwG4IyRCfsraRpIoK0Y1-w_95LlhZFEXwolJKE8kty97tL7g7gWqosUV4cWMLmzKLI6a2U0dTCT9LjSGGp0CnzH8PJJJrN4qca3FaxMEIIfflM9NSrPsvPCr5WrrJ-bOMQkV-HehgGu1itSupGoS5IitYF2kQeDc0JpmPH_enDcISWoGv33DhyPId-00G6qMoPSazVy7j5vx87gkNDI8lgN-_HUBN5C5pliQZidmwLDr7kG2xDMCAv68VGbEmRk6EQc2LSq74R5K5kwlA1kpEK3N2S5_JmUZGfwOt4NL27t0zhBIuj9l5ZPAyoRMNPMiQEUmZZlDo-p1nKYkYFD33kfDQQyt_AXC9I3QwfFI2ScskCm3un0MiLXJwBcVMUhshapOshqFGacuowlvnY1A5wqA7YJZQJN1nFVXGLj0RbF3acKPQThX5i0O_ATdVlvkup8VfjtoK7amiQ7kC3nK_EbLplgqYZih-kRO75770uYN9V0Qvag9KFxmqxFpewxzer9-XiSq-nTyqkxX0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90CuqD8xOnU_Pgk9gtTdOvx-EminOITvCtpGkignQyt8H-ey9ZNhRF8KFQShLKL8nd7y65O4AzbbJEBWnkKSqFx5HTe7nguYefdCCRwnJlU-Z3414veX5O75fgYhELo5Syl89Uw7zas_xiIMfGVdZMKQ6RhMuwEnLO6CxaayF3k9iWJEX7Aq2igMfuDNOnabN_2-6gLchog6WJH_j8mxayZVV-yGKrYK6q__u1Ldh0RJK0ZjO_DUuq3IHqvEgDcXt2Bza-ZBzchahFHsfDiZqSQUnaSr0Tl2D1hSB7JT2BypF0TOjulDzM7xYNyj14uur0L689VzrBk6i_R56MI67R9NMCKYHWRZHkfih5kYtUcCXjEFkfj5TxOAgWRDkr8EHhqLnUIqIy2IdKOSjVARCWozhE3qJZgKAmeS65L0QRYlMa4VA1oHMoM-nyipvyFm-ZtS9omhn0M4N-5tCvwfmiy_ssqcZfjXcN3IuGDuka1Ofzlblt95GhcYYCCEkRO_y91ymsXffvuln3pnd7BOvMxDJYf0odKqPhWB3DqpyMXj-GJ3ZtfQKeEMjE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Deep+Learning+for+Named+Entity+Recognition&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Li%2C+Jing&rft.au=Sun%2C+Aixin&rft.au=Han%2C+Jianglei&rft.au=Li%2C+Chenliang&rft.date=2022-01-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=34&rft.issue=1&rft.spage=50&rft.epage=70&rft_id=info:doi/10.1109%2FTKDE.2020.2981314&rft.externalDocID=9039685
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon