A Survey on Deep Learning for Named Entity Recognition
Named entity recognition (NER) is the task to identify mentions of rigid designators from text belonging to predefined semantic types such as person, location, organization etc. NER always serves as the foundation for many natural language applications such as question answering, text summarization,...
Uloženo v:
| Vydáno v: | IEEE transactions on knowledge and data engineering Ročník 34; číslo 1; s. 50 - 70 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1041-4347, 1558-2191 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Named entity recognition (NER) is the task to identify mentions of rigid designators from text belonging to predefined semantic types such as person, location, organization etc. NER always serves as the foundation for many natural language applications such as question answering, text summarization, and machine translation. Early NER systems got a huge success in achieving good performance with the cost of human engineering in designing domain-specific features and rules. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area. |
|---|---|
| AbstractList | Named entity recognition (NER) is the task to identify mentions of rigid designators from text belonging to predefined semantic types such as person, location, organization etc. NER always serves as the foundation for many natural language applications such as question answering, text summarization, and machine translation. Early NER systems got a huge success in achieving good performance with the cost of human engineering in designing domain-specific features and rules. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area. |
| Author | Li, Jing Han, Jianglei Li, Chenliang Sun, Aixin |
| Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0002-3262-3734 surname: Li fullname: Li, Jing email: jingli.phd@hotmail.com organization: Inception Institute of Artificial Intelligence, Abu Dhabi, UAE – sequence: 2 givenname: Aixin orcidid: 0000-0003-0764-4258 surname: Sun fullname: Sun, Aixin email: axsun@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore – sequence: 3 givenname: Jianglei surname: Han fullname: Han, Jianglei email: ray.han@sap.com organization: SAP, Singapore – sequence: 4 givenname: Chenliang orcidid: 0000-0003-3144-6374 surname: Li fullname: Li, Chenliang email: cllee@whu.edu.cn organization: School of Cyber Science and Engineering, Wuhan University, Wuhan, China |
| BookMark | eNp9kE1PAjEQhhuDiYD-AOOliefFfu22PRLEj0g0UTw3pTslJdBidzHh37sE4sGDh8nM4X1mJs8A9WKKgNA1JSNKib6bv9xPR4wwMmJaUU7FGerTslQFo5r2upkIWggu5AUaNM2KEKKkon1UjfHHLn_DHqeI7wG2eAY2xxCX2KeMX-0GajyNbWj3-B1cWsbQhhQv0bm36wauTn2IPh-m88lTMXt7fJ6MZ4VjmreFk5XwpdDeEll6X9dqQUsn6oXVVoCTpZRCVEC1kpbxasHqrghhXjhvK-L4EN0e925z-tpB05pV2uXYnTSsIlJ1PGddSh5TLqemyeCNC609_NlmG9aGEnOQZA6SzEGSOUnqSPqH3OawsXn_L3NzZAIA_OY14bpSJf8B9CJysQ |
| CODEN | ITKEEH |
| CitedBy_id | crossref_primary_10_1007_s00521_021_06748_3 crossref_primary_10_1016_j_dib_2025_112028 crossref_primary_10_1016_j_eswa_2022_118385 crossref_primary_10_1007_s44248_023_00005_9 crossref_primary_10_53941_aim_2025_100003 crossref_primary_10_1007_s10639_024_13308_4 crossref_primary_10_1145_3641850 crossref_primary_10_3390_info15060332 crossref_primary_10_1016_j_commatsci_2024_113014 crossref_primary_10_17208_jkpa_2024_12_59_7_169 crossref_primary_10_1007_s11042_023_16176_1 crossref_primary_10_1007_s11390_021_1153_y crossref_primary_10_1002_mgea_70001 crossref_primary_10_1016_j_artmed_2024_102904 crossref_primary_10_1109_ACCESS_2025_3574345 crossref_primary_10_1007_s00521_023_08635_5 crossref_primary_10_1109_TKDE_2024_3423838 crossref_primary_10_3233_SW_222986 crossref_primary_10_4018_IJSWIS_295552 crossref_primary_10_1007_s10489_024_05934_9 crossref_primary_10_1038_s41598_025_01708_6 crossref_primary_10_1017_dsj_2024_8 crossref_primary_10_1109_ACCESS_2022_3219455 crossref_primary_10_1109_TMM_2024_3373249 crossref_primary_10_1186_s12859_025_06086_4 crossref_primary_10_1007_s11063_021_10737_x crossref_primary_10_1007_s10579_023_09665_0 crossref_primary_10_3390_app132413239 crossref_primary_10_3390_socsci12030148 crossref_primary_10_3390_buildings15173063 crossref_primary_10_1109_ACCESS_2022_3186681 crossref_primary_10_1016_j_artmed_2023_102661 crossref_primary_10_1016_j_ecoser_2025_101740 crossref_primary_10_1109_ACCESS_2023_3324288 crossref_primary_10_1177_01655515231165228 crossref_primary_10_1007_s00521_025_11449_2 crossref_primary_10_1007_s11227_024_06244_0 crossref_primary_10_1016_j_cities_2025_105722 crossref_primary_10_3390_electronics11152287 crossref_primary_10_1007_s00799_023_00360_7 crossref_primary_10_1093_comjnl_bxac047 crossref_primary_10_3390_app12136361 crossref_primary_10_1007_s10707_022_00474_1 crossref_primary_10_1109_TKDE_2023_3341917 crossref_primary_10_3233_JIFS_210599 crossref_primary_10_1007_s11082_023_05770_0 crossref_primary_10_1016_j_inffus_2023_101988 crossref_primary_10_1016_j_ress_2023_109638 crossref_primary_10_1061_JCEMD4_COENG_14436 crossref_primary_10_1007_s40747_022_00742_5 crossref_primary_10_1016_j_nlp_2022_100003 crossref_primary_10_3390_rs15164098 crossref_primary_10_3389_fpsyt_2022_946387 crossref_primary_10_1145_3600055 crossref_primary_10_1016_j_jhydrol_2023_130128 crossref_primary_10_3390_app14135682 crossref_primary_10_1016_j_aei_2024_103098 crossref_primary_10_3390_s23115295 crossref_primary_10_1007_s41666_023_00136_3 crossref_primary_10_1007_s00521_024_10422_9 crossref_primary_10_1016_j_rcim_2024_102728 crossref_primary_10_1016_j_energy_2023_128209 crossref_primary_10_1001_jamanetworkopen_2023_23746 crossref_primary_10_1109_TBDATA_2023_3278977 crossref_primary_10_3390_app13106119 crossref_primary_10_1016_j_eswa_2023_122723 crossref_primary_10_1016_j_neucom_2024_129035 crossref_primary_10_1016_j_neucom_2024_129031 crossref_primary_10_3390_app14020585 crossref_primary_10_1186_s12859_023_05172_9 crossref_primary_10_3390_app13158913 crossref_primary_10_1007_s10489_024_05572_1 crossref_primary_10_3390_math11112420 crossref_primary_10_3390_fi17020059 crossref_primary_10_1016_j_ijcip_2023_100634 crossref_primary_10_1016_j_eswa_2025_126651 crossref_primary_10_1016_j_eswa_2025_126546 crossref_primary_10_1016_j_neucom_2024_129171 crossref_primary_10_1007_s42405_025_00954_2 crossref_primary_10_1177_18758967251355729 crossref_primary_10_1109_ACCESS_2024_3402830 crossref_primary_10_1145_3749369 crossref_primary_10_1080_09544828_2024_2339713 crossref_primary_10_7717_peerj_cs_1856 crossref_primary_10_1016_j_jii_2024_100759 crossref_primary_10_1109_TKDE_2023_3327777 crossref_primary_10_3390_app142311462 crossref_primary_10_1016_j_knosys_2025_113471 crossref_primary_10_4218_etrij_2023_0321 crossref_primary_10_1007_s42979_025_04240_6 crossref_primary_10_1016_j_aei_2025_103244 crossref_primary_10_3389_fcomm_2025_1553746 crossref_primary_10_1016_j_jbi_2025_104783 crossref_primary_10_3390_app13053348 crossref_primary_10_1145_3610168 crossref_primary_10_3390_app15063114 crossref_primary_10_1007_s10506_023_09385_4 crossref_primary_10_1109_TNNLS_2022_3178522 crossref_primary_10_1016_j_ocecoaman_2023_106679 crossref_primary_10_1080_09537325_2025_2547817 crossref_primary_10_1109_TCSS_2024_3489973 crossref_primary_10_1140_epjds_s13688_023_00386_6 crossref_primary_10_3390_electronics13224430 crossref_primary_10_1016_j_jksuci_2023_101654 crossref_primary_10_1109_TKDE_2022_3197707 crossref_primary_10_1016_j_aei_2025_103170 crossref_primary_10_1016_j_csl_2024_101643 crossref_primary_10_1016_j_jbi_2024_104754 crossref_primary_10_1007_s11042_022_14313_w crossref_primary_10_1109_TCSS_2022_3213702 crossref_primary_10_1007_s00521_021_06477_7 crossref_primary_10_2196_63190 crossref_primary_10_1002_smr_70015 crossref_primary_10_7717_peerj_cs_2768 crossref_primary_10_1038_s41598_025_04252_5 crossref_primary_10_1109_ACCESS_2024_3427714 crossref_primary_10_3390_electronics11081282 crossref_primary_10_1109_TNNLS_2025_3528567 crossref_primary_10_1109_TCE_2023_3340752 crossref_primary_10_1016_j_ipm_2024_103657 crossref_primary_10_3390_electronics14101930 crossref_primary_10_3390_bioengineering11100982 crossref_primary_10_1038_s41746_024_01337_9 crossref_primary_10_1109_ACCESS_2022_3160201 crossref_primary_10_3390_a18080485 crossref_primary_10_1016_j_eswa_2023_121448 crossref_primary_10_1109_ACCESS_2022_3210119 crossref_primary_10_1016_j_nlp_2025_100160 crossref_primary_10_3390_su16020909 crossref_primary_10_1016_j_artmed_2024_102970 crossref_primary_10_1016_j_cmpb_2025_109070 crossref_primary_10_1108_ECAM_05_2023_0512 crossref_primary_10_3390_make6010007 crossref_primary_10_1142_S0219649224500904 crossref_primary_10_1162_dint_a_00102 crossref_primary_10_3390_info15110666 crossref_primary_10_1002_sd_3323 crossref_primary_10_1109_ACCESS_2023_3343756 crossref_primary_10_7717_peerj_cs_1535 crossref_primary_10_1109_ACCESS_2024_3430902 crossref_primary_10_1016_j_aei_2023_101880 crossref_primary_10_1016_j_ress_2022_109068 crossref_primary_10_1109_TKDE_2024_3417235 crossref_primary_10_1038_s41598_025_05499_8 crossref_primary_10_1088_1742_6596_1631_1_012016 crossref_primary_10_3390_app12178539 crossref_primary_10_1007_s40747_024_01753_0 crossref_primary_10_1109_COMST_2022_3215919 crossref_primary_10_1155_2022_5920268 crossref_primary_10_3390_app13052849 crossref_primary_10_3390_rs14194725 crossref_primary_10_1109_TNNLS_2025_3528416 crossref_primary_10_1007_s10462_022_10197_2 crossref_primary_10_1016_j_cose_2024_103805 crossref_primary_10_1007_s00521_024_10113_5 crossref_primary_10_3389_fpubh_2021_788074 crossref_primary_10_1007_s10506_025_09476_4 crossref_primary_10_1145_3494067 crossref_primary_10_1109_ACCESS_2025_3562146 crossref_primary_10_3390_app15115801 crossref_primary_10_1109_ACCESS_2025_3590851 crossref_primary_10_3390_app14167310 crossref_primary_10_3389_fnut_2024_1429259 crossref_primary_10_1016_j_procs_2024_10_160 crossref_primary_10_1016_j_engappai_2025_110543 crossref_primary_10_1007_s10707_022_00482_1 crossref_primary_10_1007_s43684_024_00072_y crossref_primary_10_1016_j_infsof_2023_107195 crossref_primary_10_3390_app122010310 crossref_primary_10_1029_2022EA002617 crossref_primary_10_1016_j_neucom_2024_127938 crossref_primary_10_1016_j_visinf_2025_100236 crossref_primary_10_1080_13658816_2023_2266495 crossref_primary_10_1016_j_jmsy_2024_08_012 crossref_primary_10_1109_TKDE_2020_3038670 crossref_primary_10_1016_j_heliyon_2024_e30053 crossref_primary_10_7717_peerj_cs_2432 crossref_primary_10_1109_TKDE_2021_3096200 crossref_primary_10_1016_j_knosys_2022_110114 crossref_primary_10_1088_2631_8695_adf8bd crossref_primary_10_1371_journal_pone_0307844 crossref_primary_10_1016_j_iotcps_2023_04_003 crossref_primary_10_3390_app122111084 crossref_primary_10_3390_app14135743 crossref_primary_10_3390_app15052521 crossref_primary_10_1007_s12204_023_2675_y crossref_primary_10_3934_jimo_2025136 crossref_primary_10_1007_s40264_022_01176_1 crossref_primary_10_1109_ACCESS_2024_3400250 crossref_primary_10_1080_00140139_2024_2394510 crossref_primary_10_1111_2041_210X_13778 crossref_primary_10_32604_cmes_2023_031513 crossref_primary_10_1016_j_ipm_2023_103541 crossref_primary_10_3390_app132413296 crossref_primary_10_1038_s41598_025_05017_w crossref_primary_10_1109_TKDE_2022_3148980 crossref_primary_10_1007_s10032_022_00399_3 crossref_primary_10_1016_j_ins_2024_121083 crossref_primary_10_20473_jisebi_11_1_1_16 crossref_primary_10_3390_math10091386 crossref_primary_10_1007_s42524_023_0273_1 crossref_primary_10_1007_s11761_022_00337_5 crossref_primary_10_1016_j_cie_2025_111375 crossref_primary_10_1111_1755_6724_15213 crossref_primary_10_1007_s10994_023_06456_0 crossref_primary_10_1145_3586180 crossref_primary_10_1016_j_ipm_2024_103724 crossref_primary_10_1016_j_ipm_2023_103546 crossref_primary_10_1016_j_ipm_2022_103250 crossref_primary_10_1109_TKDE_2023_3289949 crossref_primary_10_3390_s25072062 crossref_primary_10_1007_s00521_024_09646_6 crossref_primary_10_1016_j_oregeorev_2025_106796 crossref_primary_10_1109_TNET_2023_3339524 crossref_primary_10_2196_49041 crossref_primary_10_1016_j_oregeorev_2024_106396 crossref_primary_10_1109_TASLPRO_2025_3579311 crossref_primary_10_1038_s41598_025_92002_y crossref_primary_10_1145_3659948 crossref_primary_10_1186_s12911_025_03137_x crossref_primary_10_3390_info15080509 crossref_primary_10_1016_j_cosrev_2025_100765 crossref_primary_10_1016_j_patcog_2024_110779 crossref_primary_10_3390_informatics10040089 crossref_primary_10_3390_e26050394 crossref_primary_10_1016_j_knosys_2025_114183 crossref_primary_10_1007_s10489_024_05842_y crossref_primary_10_1109_TITS_2022_3182371 crossref_primary_10_1007_s10462_025_11321_8 crossref_primary_10_1109_ACCESS_2024_3390181 crossref_primary_10_1145_3723349 crossref_primary_10_1016_j_autcon_2025_106106 crossref_primary_10_3390_s23020685 crossref_primary_10_3390_buildings13010104 crossref_primary_10_1038_s43246_024_00449_9 crossref_primary_10_1109_ACCESS_2024_3405997 crossref_primary_10_3390_en18020401 crossref_primary_10_3390_su16135296 crossref_primary_10_1007_s44163_025_00362_1 crossref_primary_10_32604_cmc_2024_050229 crossref_primary_10_1007_s10115_025_02543_x crossref_primary_10_3390_app14051696 crossref_primary_10_1007_s12204_022_2474_x crossref_primary_10_3390_electronics12030752 crossref_primary_10_3390_app14062456 crossref_primary_10_1016_j_knosys_2024_111762 crossref_primary_10_1007_s11227_023_05224_0 crossref_primary_10_3390_app131910759 crossref_primary_10_3390_e26090740 crossref_primary_10_1016_j_jbi_2023_104418 crossref_primary_10_3390_app122311971 crossref_primary_10_1016_j_ipm_2022_103153 crossref_primary_10_1038_s41598_025_99561_0 crossref_primary_10_1007_s10270_023_01135_z crossref_primary_10_1109_TMM_2025_3543105 crossref_primary_10_1145_3656579 crossref_primary_10_1016_j_aei_2024_102732 crossref_primary_10_1109_TKDE_2025_3567204 crossref_primary_10_1093_bioinformatics_btae461 crossref_primary_10_1016_j_eswa_2025_129337 crossref_primary_10_3390_app13116777 crossref_primary_10_1017_S1351324922000493 crossref_primary_10_1109_ACCESS_2022_3202889 crossref_primary_10_3390_ai4040049 crossref_primary_10_1109_ACCESS_2024_3374727 crossref_primary_10_1109_ACCESS_2024_3516390 crossref_primary_10_1109_JIOT_2024_3382010 crossref_primary_10_1016_j_neucom_2024_127637 crossref_primary_10_1007_s11740_021_01070_2 crossref_primary_10_1016_j_datak_2025_102504 crossref_primary_10_1016_j_osnem_2024_100295 crossref_primary_10_1002_cjce_25700 crossref_primary_10_1016_j_knosys_2023_111323 crossref_primary_10_1109_MWC_001_2400315 crossref_primary_10_3389_fchem_2023_958002 crossref_primary_10_1109_TIFS_2025_3557755 crossref_primary_10_1007_s40747_025_01953_2 crossref_primary_10_1016_j_inffus_2025_103767 crossref_primary_10_3390_info16070554 crossref_primary_10_1016_j_eswa_2024_124867 crossref_primary_10_1016_j_oregeorev_2025_106875 crossref_primary_10_1016_j_jlp_2023_105161 crossref_primary_10_1016_j_cmpb_2022_107220 crossref_primary_10_1038_s41598_025_98465_3 crossref_primary_10_3390_info13030137 crossref_primary_10_1016_j_ipm_2025_104143 crossref_primary_10_1007_s10462_022_10338_7 crossref_primary_10_1109_TKDE_2021_3118469 crossref_primary_10_1111_coin_12654 crossref_primary_10_1016_j_iswa_2023_200247 crossref_primary_10_1080_09544828_2025_2450761 crossref_primary_10_1016_j_ipm_2022_103065 crossref_primary_10_1016_j_knosys_2024_111558 crossref_primary_10_1016_j_eswa_2024_124736 crossref_primary_10_3390_drones6120421 crossref_primary_10_1109_TEM_2023_3295951 crossref_primary_10_1186_s13326_023_00298_4 crossref_primary_10_1007_s12652_021_03297_4 crossref_primary_10_1109_ACCESS_2022_3172970 crossref_primary_10_3390_fi15050155 crossref_primary_10_1016_j_oceaneng_2024_118953 crossref_primary_10_1093_gigascience_giae104 crossref_primary_10_1109_TASLP_2022_3205753 crossref_primary_10_1016_j_knosys_2024_112410 crossref_primary_10_1007_s10844_025_00928_6 crossref_primary_10_1109_ACCESS_2024_3362645 crossref_primary_10_1108_FS_02_2023_0026 crossref_primary_10_1109_ACCESS_2024_3484765 crossref_primary_10_1007_s10489_022_03274_0 crossref_primary_10_3390_electronics14163320 crossref_primary_10_1007_s10115_023_02055_6 crossref_primary_10_1007_s11633_023_1470_4 crossref_primary_10_3390_info13040161 crossref_primary_10_3390_aerospace10080697 crossref_primary_10_3390_fire8080306 crossref_primary_10_3389_fenrg_2022_1038819 crossref_primary_10_2174_0115748936278299231213045441 crossref_primary_10_3390_e27020133 crossref_primary_10_1109_TCSS_2024_3506582 crossref_primary_10_1016_j_knosys_2023_111258 crossref_primary_10_3390_informatics10010010 crossref_primary_10_3389_fphar_2023_1121796 crossref_primary_10_3390_bdcc8120179 crossref_primary_10_1080_09544828_2024_2340392 crossref_primary_10_1016_j_jobe_2025_112189 crossref_primary_10_1038_s41597_023_02653_7 crossref_primary_10_1002_agj2_20622 crossref_primary_10_1093_bioinformatics_btaf113 crossref_primary_10_1145_3596498 crossref_primary_10_1061_JMENEA_MEENG_5298 crossref_primary_10_1109_ACCESS_2023_3327074 crossref_primary_10_1109_TAP_2024_3484014 crossref_primary_10_1016_j_aei_2024_102664 crossref_primary_10_1007_s10489_023_05262_4 crossref_primary_10_1016_j_ipm_2025_104150 crossref_primary_10_1177_10944281231213068 crossref_primary_10_4018_JDM_360526 crossref_primary_10_1016_j_inffus_2025_103405 crossref_primary_10_1016_j_knosys_2024_112750 crossref_primary_10_7717_peerj_cs_1163 crossref_primary_10_1007_s00500_024_09629_8 crossref_primary_10_3390_app14166944 crossref_primary_10_1109_TKDE_2024_3389694 crossref_primary_10_1016_j_cma_2025_117742 crossref_primary_10_1016_j_jlp_2024_105525 crossref_primary_10_1109_ACCESS_2025_3525555 crossref_primary_10_1109_ACCESS_2024_3437197 crossref_primary_10_3390_app142210417 crossref_primary_10_1080_13875868_2022_2095275 crossref_primary_10_1016_j_respol_2023_104903 crossref_primary_10_1109_TASLP_2022_3221017 crossref_primary_10_1016_j_knosys_2024_112682 crossref_primary_10_1016_j_neunet_2025_107172 crossref_primary_10_1007_s40747_025_02074_6 crossref_primary_10_1002_int_23015 crossref_primary_10_1016_j_compag_2023_108180 crossref_primary_10_1145_3678879 crossref_primary_10_1007_s10506_024_09397_8 crossref_primary_10_3390_systems13050320 crossref_primary_10_1145_3655619 crossref_primary_10_3390_rs16091484 crossref_primary_10_1109_TKDE_2023_3303136 crossref_primary_10_3390_electronics13010171 crossref_primary_10_3390_app12010330 crossref_primary_10_18287_2223_9537_2025_15_1_114_129 crossref_primary_10_1017_S1351324922000304 crossref_primary_10_1038_s41598_024_78948_5 crossref_primary_10_3390_electronics14112259 crossref_primary_10_1109_ACCESS_2023_3299824 crossref_primary_10_1007_s42979_023_02068_6 crossref_primary_10_1016_j_asoc_2024_112158 crossref_primary_10_1016_j_psep_2021_11_004 crossref_primary_10_3390_app14209410 crossref_primary_10_3390_app13074299 crossref_primary_10_1016_j_rcim_2024_102900 crossref_primary_10_1109_TKDE_2021_3117715 crossref_primary_10_1016_j_ipm_2025_104129 crossref_primary_10_1038_s41598_025_11622_6 crossref_primary_10_1109_ACCESS_2022_3167418 crossref_primary_10_1109_ACCESS_2023_3325895 crossref_primary_10_3390_math11081815 crossref_primary_10_1016_j_compind_2023_104063 crossref_primary_10_3390_app14104010 crossref_primary_10_3390_electronics12194037 crossref_primary_10_1016_j_rser_2025_115561 crossref_primary_10_32604_jqc_2022_026785 crossref_primary_10_1016_j_autcon_2024_105730 crossref_primary_10_1109_ACCESS_2025_3549312 crossref_primary_10_1155_2022_3401074 crossref_primary_10_1016_j_aej_2025_01_119 crossref_primary_10_1016_j_jfranklin_2024_107055 crossref_primary_10_3390_a17050176 crossref_primary_10_1016_j_neucom_2023_127064 crossref_primary_10_1038_s41597_024_03578_5 crossref_primary_10_3390_data7010008 crossref_primary_10_1109_JSTSP_2024_3376962 crossref_primary_10_1016_j_knosys_2022_109625 crossref_primary_10_1145_3609483 crossref_primary_10_1109_TKDE_2024_3389650 crossref_primary_10_1007_s11063_022_11122_y crossref_primary_10_3390_healthcare11091268 crossref_primary_10_1145_3727876 crossref_primary_10_3390_app12115373 crossref_primary_10_1007_s11042_023_15464_0 crossref_primary_10_1016_j_compeleceng_2023_108981 crossref_primary_10_1038_s43247_023_00806_5 crossref_primary_10_1007_s40747_024_01551_8 crossref_primary_10_1145_3583685 crossref_primary_10_4018_IJDWM_352513 crossref_primary_10_1142_S0218126625501002 crossref_primary_10_3389_fninf_2023_1215261 crossref_primary_10_1007_s00521_022_06983_2 crossref_primary_10_1038_s43856_024_00470_6 crossref_primary_10_1007_s12559_024_10272_6 crossref_primary_10_1016_j_eswa_2023_120709 crossref_primary_10_1016_j_eswa_2023_121919 crossref_primary_10_1186_s12942_025_00397_8 crossref_primary_10_1093_bib_bbab282 crossref_primary_10_1177_20552076241286260 crossref_primary_10_3390_app14209302 crossref_primary_10_3390_app14031060 crossref_primary_10_1016_j_compeleceng_2023_108751 crossref_primary_10_3390_info13020049 crossref_primary_10_1007_s40264_022_01212_0 crossref_primary_10_4018_IJSWIS_333711 crossref_primary_10_1124_pharmrev_122_000715 crossref_primary_10_1145_3685054 crossref_primary_10_1371_journal_pone_0318262 crossref_primary_10_3390_en16124654 crossref_primary_10_1016_j_isci_2024_110192 crossref_primary_10_1007_s11280_019_00758_x crossref_primary_10_1007_s10618_024_01088_x crossref_primary_10_1109_ACCESS_2022_3143033 crossref_primary_10_1007_s13042_023_01885_8 crossref_primary_10_1108_EL_03_2022_0071 crossref_primary_10_1007_s10489_022_03511_6 crossref_primary_10_3390_electronics12234872 crossref_primary_10_1016_j_future_2022_10_010 crossref_primary_10_3390_app13010375 crossref_primary_10_3390_app12199818 crossref_primary_10_1007_s42979_024_02876_4 crossref_primary_10_1109_ACCESS_2023_3309148 crossref_primary_10_3233_IDA_230588 crossref_primary_10_1109_TASLPRO_2025_3592317 crossref_primary_10_1016_j_ijmedinf_2024_105626 crossref_primary_10_18255_1818_1015_2025_1_66_79 crossref_primary_10_1109_ACCESS_2020_3026535 crossref_primary_10_1007_s11517_024_03227_4 crossref_primary_10_1145_3618295 crossref_primary_10_1016_j_ijmedinf_2023_105321 crossref_primary_10_1109_TKDE_2024_3376453 crossref_primary_10_1109_ACCESS_2022_3205314 crossref_primary_10_1109_ACCESS_2024_3360528 crossref_primary_10_3390_app15158263 crossref_primary_10_26634_jcom_12_1_20651 |
| Cites_doi | 10.18653/v1/W17-4420 10.18653/v1/P18-1144 10.1093/database/baw140 10.18653/v1/D19-1539 10.3115/1567594.1567618 10.1016/j.jbi.2017.05.002 10.18653/v1/N19-1383 10.1038/nature14539 10.1145/3077136.3080810 10.24963/ijcai.2019/702 10.1109/TKDE.2009.191 10.3115/1119176.1119206 10.1093/bioinformatics/bty449 10.1007/11766247_23 10.18653/v1/W17-4422 10.1007/11893318_27 10.18653/v1/P19-1524 10.3115/1699648.1699699 10.26615/978-954-452-049-6_101 10.18653/v1/N16-1027 10.1145/1458082.1458163 10.18653/v1/W18-6112 10.1109/5254.708428 10.1007/BF00116251 10.18653/v1/P19-1585 10.18653/v1/N19-4009 10.18653/v1/W18-3221 10.18653/v1/P19-1138 10.1145/3041021.3054724 10.18653/v1/D18-1034 10.3115/v1/P15-2081 10.1007/978-3-319-96893-3_20 10.3115/992628.992709 10.18653/v1/P19-1014 10.18653/v1/P17-1113 10.18653/v1/W17-4421 10.1561/1500000055 10.18653/v1/D19-1520 10.3115/1034678.1034710 10.24963/ijcai.2018/579 10.18653/v1/D17-1283 10.1016/j.jbi.2013.08.004 10.1093/bioinformatics/bts183 10.18653/v1/P19-1139 10.18653/v1/N16-1030 10.1109/ICTAI.2016.0082 10.18653/v1/P16-1101 10.1007/978-3-319-45510-5_20 10.1093/bioinformatics/bty869 10.1145/1081870.1081950 10.1186/1471-2105-6-S1-S14 10.18653/v1/D16-1261 10.3115/1220175.1220316 10.1109/ICTAI.2017.00104 10.18653/v1/K19-1048 10.1145/3129290 10.1145/2911451.2911508 10.1186/s12859-017-1776-8 10.1145/1321440.1321542 10.3115/1119176.1119195 10.18653/v1/W17-4418 10.1075/li.30.1.03nad 10.1145/1571941.1571989 10.18653/v1/P19-1016 10.3115/1072399.1072420 10.1007/978-3-319-69005-6_12 10.1145/1963405.1963424 10.1002/asi.23816 10.18653/v1/N19-1133 10.3115/1118853.1118873 10.1007/s10462-018-9654-y 10.18653/v1/D16-1153 10.3115/1609822.1609823 10.18653/v1/P16-1134 10.3115/977035.977037 10.18653/v1/D16-1144 10.1016/j.jbi.2019.103133 10.18653/v1/N18-1131 10.18653/v1/P17-1194 10.18653/v1/P18-1185 10.18653/v1/P18-1074 10.1109/SANER.2016.10 10.3115/1119176.1119196 10.1109/TKDE.2017.2730862 10.2200/S00429ED1V01Y201207AIM018 10.18653/v1/D17-1282 10.3233/SW-170286 10.3115/1119176.1119200 10.18653/v1/E17-1075 10.18653/v1/D16-1087 10.1016/j.procs.2016.09.123 10.18653/v1/W17-2630 10.3115/974557.974586 10.1109/TKDE.2018.2857493 10.1145/345508.345563 10.1007/978-94-010-2557-7_9 10.5772/51066 10.18653/v1/P18-1249 10.18653/v1/P17-1161 10.1007/11590019_59 10.18653/v1/P17-1114 10.1613/jair.301 10.18653/v1/W17-4419 10.18653/v1/N18-1078 10.18653/v1/D19-1422 10.18653/v1/N18-1079 10.1023/A:1007379606734 10.18653/v1/P19-1236 10.18653/v1/N18-1202 10.1007/978-1-4471-2099-5_1 10.18653/v1/N18-1001 10.18653/v1/P16-2040 10.3115/1621829.1621837 10.1023/A:1007558221122 10.18653/v1/D18-1226 10.1145/2872427.2883067 10.18653/v1/P18-3006 10.3115/1072228.1072253 10.18653/v1/P19-1233 10.18653/v1/D19-1025 10.1007/978-3-319-93935-3 10.1109/TKDE.2017.2758780 10.1038/nature14236 10.1016/S0959-440X(96)80056-X 10.18653/v1/P16-2039 10.1109/ICRTCCM.2017.34 10.1016/j.cosrev.2018.06.001 10.18653/v1/D18-1153 10.1145/2457465.2457467 10.1162/tacl_a_00104 10.1016/j.csi.2012.09.004 10.1016/j.artint.2005.03.001 10.18653/v1/D19-1367 10.18653/v1/W17-2612 10.18653/v1/D18-1017 10.18653/v1/P18-2038 10.1075/bct 10.14257/ijhit.2015.8.8.29 10.18653/v1/N18-2056 10.18653/v1/P19-1336 10.18653/v1/D17-2017 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TKDE.2020.2981314 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 70 |
| ExternalDocumentID | 10_1109_TKDE_2020_2981314 9039685 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-c764f549fa075ffdd8b15c4dba9a4ec7577446e1987a236b2d6b2002f4cfa60c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 816 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000728576400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1041-4347 |
| IngestDate | Sun Nov 09 07:21:02 EST 2025 Sat Nov 29 02:36:02 EST 2025 Tue Nov 18 22:33:19 EST 2025 Wed Aug 27 05:11:53 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-c764f549fa075ffdd8b15c4dba9a4ec7577446e1987a236b2d6b2002f4cfa60c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3144-6374 0000-0003-0764-4258 0000-0002-3262-3734 |
| PQID | 2607877432 |
| PQPubID | 85438 |
| PageCount | 21 |
| ParticipantIDs | crossref_citationtrail_10_1109_TKDE_2020_2981314 crossref_primary_10_1109_TKDE_2020_2981314 ieee_primary_9039685 proquest_journals_2607877432 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Jan.-1 2022-1-1 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan.-1 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref208 ref59 ref205 ref58 ref206 ref203 ref52 ref204 ref55 ref201 patawar (ref23) 2015; 3 ref54 lafferty (ref72) 2001 ref209 ritter (ref83) 2011 ravin (ref63) 1997 ref210 yang (ref188) 2018 ref211 ref51 kim (ref44) 2000 ref46 ref45 ref43 hoffart (ref62) 2011 lee (ref169) 2018 vaswani (ref127) 2017 ref8 ref9 ref4 pradhan (ref41) 2012 ref5 ref101 ref40 liu (ref125) 2017 ref35 ref34 ref37 ref36 nguyen (ref88) 2019 ref31 ref30 ref32 ref39 ref38 hoi (ref185) 2018 ref24 ref25 ref20 ref22 ref21 ref27 gridach (ref152) 2016 rei (ref104) 2016 ref200 ref129 ref97 ref126 ref96 ref124 ref98 luo (ref133) 2019 ref93 ref134 pham (ref154) 2017 ref95 ref131 ref132 wu (ref119) 2015; 216 ref90 ref89 ref139 ref85 ref138 ref135 ref87 kazama (ref60) 2007 zhang (ref198) 2018 akbik (ref106) 2018 ref81 ref145 ref142 phan (ref207) 2019 ref143 ref140 ref141 ref80 ref79 ref78 ref107 ref75 ref74 ref77 ref102 ref103 cheng (ref3) 2019 black (ref49) 1998 krupka (ref48) 2005 ref71 ref111 ref112 ref73 toral (ref61) 2006 ref110 ref68 collobert (ref17) 2011; 12 ref67 ref117 ref69 ref64 ref115 ref116 ref66 ref113 ref65 ref114 humphreys (ref47) 1998 lecun (ref86) 2015; 521 ref122 ref123 ref121 ref168 yang (ref92) 2018 tran (ref100) 2017 kapur (ref70) 1989 ref170 vinyals (ref144) 2015 ref177 yang (ref105) 2016 ref178 ref175 ref176 ref173 ref171 ref172 ref179 sekine (ref42) 2004 ref180 ref181 liu (ref128) 2018 kuru (ref99) 2016 li (ref137) 2019 ling (ref29) 2012; 12 mikolov (ref91) 2013 aliod (ref7) 2006 ref189 ref186 ref187 ref183 zhou (ref56) 2002 radford (ref130) 2018 ref148 ref149 ref146 aone (ref50) 1998 jiang (ref165) 2007 ref155 balog (ref14) 2010 ref153 ref151 ref150 yadav (ref26) 2018 ref159 ref157 devlin (ref118) 2019 ref158 yano (ref156) 2018 yan (ref147) 2019 ghaddar (ref108) 2018 huang (ref18) 2015 ref166 ref167 ref164 ref162 ref163 ref160 ref161 sharnagat (ref28) 2014 ref15 ref11 ref10 zhai (ref94) 2017 ref16 ref19 liu (ref84) 2011 corro (ref33) 2015 collins (ref53) 1999 britz (ref195) 2016 jie (ref109) 2018 yang (ref174) 2017 partalas (ref202) 2016 pradhan (ref182) 2013 sutton (ref184) 1998; 135 li (ref136) 2019 ref2 ref1 liu (ref82) 2019 ref191 ref192 ref199 gregoric (ref120) 2018; 2 ref197 ref196 ref193 ref194 doddington (ref12) 2004; 2 borthwick (ref76) 1998 demartini (ref13) 2009 goodfellow (ref190) 2014 aone (ref6) 1999; 71 |
| References_xml | – ident: ref114 doi: 10.18653/v1/W17-4420 – start-page: 1 year: 2014 ident: ref28 article-title: Named entity recognition: A literature survey – ident: ref149 doi: 10.18653/v1/P18-1144 – start-page: 1 year: 2006 ident: ref61 article-title: A proposal to automatically build and maintain gazetteers for named entity recognition by using wikipedia publication-title: Proc Workshop NEW TEXT Wikis blogs Other Dynamic Text Sources – year: 2019 ident: ref82 article-title: HAMNER: Headword amplified multi-span distantly supervised method for domain specific named entity recognition – volume: 2 year: 2004 ident: ref12 article-title: The automatic content extraction (ACE) program-tasks, data, and evaluation publication-title: Proc 4th Int Conf Lang Resour Eval – ident: ref111 doi: 10.1093/database/baw140 – ident: ref131 doi: 10.18653/v1/D19-1539 – year: 2016 ident: ref105 article-title: Multi-task cross-lingual sequence tagging from scratch – ident: ref57 doi: 10.3115/1567594.1567618 – ident: ref103 doi: 10.1016/j.jbi.2017.05.002 – ident: ref191 doi: 10.18653/v1/N19-1383 – volume: 521 year: 2015 ident: ref86 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – start-page: 1 year: 2012 ident: ref41 article-title: CoNLL-2012 shared task: Modeling multilingual unrestricted coreference in OntoNotes publication-title: Proc Conf Empir Methods Natural Lang Process – ident: ref40 doi: 10.1145/3077136.3080810 – ident: ref192 doi: 10.24963/ijcai.2019/702 – start-page: 23 year: 2016 ident: ref152 article-title: Character-aware neural networks for arabic named entity recognition for social media publication-title: Proc 6th Workshop South Southeast Asian Natural Lang Process – ident: ref164 doi: 10.1109/TKDE.2009.191 – ident: ref81 doi: 10.3115/1119176.1119206 – start-page: 1896 year: 2018 ident: ref108 article-title: Robust lexical features for improved neural network named-entity recognition publication-title: Proc 27th Int Conf Comput Linguistics – ident: ref178 doi: 10.1093/bioinformatics/bty449 – start-page: 2159 year: 2018 ident: ref188 article-title: Distantly supervised NER with partial annotation learning and reinforcement learning publication-title: Proc 27th Int Conf Comput Linguistics – ident: ref54 doi: 10.1007/11766247_23 – ident: ref175 doi: 10.18653/v1/W17-4422 – ident: ref75 doi: 10.1007/11893318_27 – ident: ref107 doi: 10.18653/v1/P19-1524 – ident: ref166 doi: 10.3115/1699648.1699699 – start-page: 21 year: 2005 ident: ref48 article-title: Description of the nerOWL extractor system as used for MUC-7 publication-title: Proc 7th Message Understanding Conf – ident: ref101 doi: 10.26615/978-954-452-049-6_101 – ident: ref143 doi: 10.18653/v1/N16-1027 – ident: ref36 doi: 10.1145/1458082.1458163 – start-page: 5674 year: 2018 ident: ref198 article-title: Adaptive co-attention network for named entity recognition in tweets publication-title: Proc 32nd AAAI Conf Artif Intell – start-page: 359 year: 2011 ident: ref84 article-title: Recognizing named entities in tweets publication-title: Proc Annual Meeting of the Assoc Computational Linguistics – ident: ref155 doi: 10.18653/v1/W18-6112 – ident: ref71 doi: 10.1109/5254.708428 – ident: ref69 doi: 10.1007/BF00116251 – ident: ref200 doi: 10.18653/v1/P19-1585 – ident: ref210 doi: 10.18653/v1/N19-4009 – volume: 135 year: 1998 ident: ref184 publication-title: Introduction to Reinforcement Learning – ident: ref98 doi: 10.18653/v1/W18-3221 – ident: ref132 doi: 10.18653/v1/P19-1138 – ident: ref32 doi: 10.1145/3041021.3054724 – ident: ref158 doi: 10.18653/v1/D18-1034 – year: 2015 ident: ref18 article-title: Bidirectional LSTM-CRF models for sequence tagging – ident: ref116 doi: 10.3115/v1/P15-2081 – year: 2019 ident: ref137 article-title: Dice loss for data-imbalanced NLP tasks publication-title: CoRR – ident: ref197 doi: 10.1007/978-3-319-96893-3_20 – ident: ref10 doi: 10.3115/992628.992709 – ident: ref177 doi: 10.18653/v1/P19-1014 – volume: 12 start-page: 94 year: 2012 ident: ref29 article-title: Fine-grained entity recognition publication-title: Proc 26th AAAI Conf Artif Intell – ident: ref89 doi: 10.18653/v1/P17-1113 – ident: ref112 doi: 10.18653/v1/W17-4421 – ident: ref37 doi: 10.1561/1500000055 – ident: ref167 doi: 10.18653/v1/D19-1520 – ident: ref59 doi: 10.3115/1034678.1034710 – ident: ref145 doi: 10.24963/ijcai.2018/579 – start-page: 1 year: 2010 ident: ref14 article-title: Overview of the trec 2010 entity track publication-title: Proc 19th Text REtrieval Conf – ident: ref90 doi: 10.18653/v1/D17-1283 – year: 2019 ident: ref136 article-title: A unified MRC framework for named entity recognition publication-title: CoRR – year: 1989 ident: ref70 publication-title: Maximum-Entropy Models in Science and Engineering – ident: ref43 doi: 10.1016/j.jbi.2013.08.004 – ident: ref85 doi: 10.1093/bioinformatics/bts183 – ident: ref2 doi: 10.18653/v1/P19-1139 – year: 2018 ident: ref128 article-title: Generating wikipedia by summarizing long sequences – ident: ref19 doi: 10.18653/v1/N16-1030 – ident: ref150 doi: 10.1109/ICTAI.2016.0082 – ident: ref96 doi: 10.18653/v1/P16-1101 – ident: ref151 doi: 10.1007/978-3-319-45510-5_20 – ident: ref163 doi: 10.1093/bioinformatics/bty869 – ident: ref189 doi: 10.1145/1081870.1081950 – ident: ref45 doi: 10.1186/1471-2105-6-S1-S14 – ident: ref186 doi: 10.18653/v1/D16-1261 – ident: ref66 doi: 10.3115/1220175.1220316 – start-page: 3860 year: 2018 ident: ref109 article-title: Dependency-guided LSTM-CRF for named entity recognition publication-title: Proc Conf Empir Methods Natural Lang Process – ident: ref196 doi: 10.1109/ICTAI.2017.00104 – ident: ref172 doi: 10.18653/v1/K19-1048 – ident: ref153 doi: 10.1145/3129290 – ident: ref35 doi: 10.1145/2911451.2911508 – ident: ref162 doi: 10.1186/s12859-017-1776-8 – ident: ref5 doi: 10.1145/1321440.1321542 – ident: ref11 doi: 10.3115/1119176.1119195 – year: 2018 ident: ref156 article-title: Neural disease named entity extraction with character-based BiLSTM+ CRF in japanese medical text – start-page: 264 year: 2007 ident: ref165 article-title: Instance weighting for domain adaptation in NLP publication-title: Proc 45th Annu Meeting Assoc Comput Linguistics – start-page: 473 year: 2002 ident: ref56 article-title: Named entity recognition using an HMM-based chunk tagger publication-title: Proc Annual Meeting of the Assoc Computational Linguistics – start-page: 566 year: 2017 ident: ref100 article-title: Named entity recognition with stack residual LSTM and trainable bias decoding publication-title: Proc 8th Int Joint Conf Natural Lang Process – volume: 12 start-page: 2493 year: 2011 ident: ref17 article-title: Natural language processing (almost) from scratch publication-title: J Mach Learn Res – ident: ref199 doi: 10.18653/v1/W17-4418 – ident: ref1 doi: 10.1075/li.30.1.03nad – ident: ref4 doi: 10.1145/1571941.1571989 – start-page: 1 year: 1998 ident: ref49 article-title: FACILE: Description of the NE system used for MUC-7 publication-title: Proc 7th Message Understanding Conf – volume: 216 start-page: 624 year: 2015 ident: ref119 article-title: Named entity recognition in chinese clinical text using deep neural network publication-title: Stud Health Technol Informat – start-page: 1977 year: 2004 ident: ref42 article-title: Definition, dictionaries and tagger for extended named entity hierarchy publication-title: Proc 4th Int Conf Lang Resour Eval – start-page: 2145 year: 2018 ident: ref26 article-title: A survey on recent advances in named entity recognition from deep learning models publication-title: Proc 27th Int Conf Comput Linguistics – start-page: 1 year: 2013 ident: ref91 article-title: Efficient estimation of word representations in vector space publication-title: Proc Int Conf Learn Representations – year: 2019 ident: ref88 article-title: Toward mention detection robustness with recurrent neural networks – ident: ref140 doi: 10.18653/v1/P19-1016 – ident: ref51 doi: 10.3115/1072399.1072420 – ident: ref95 doi: 10.1007/978-3-319-69005-6_12 – start-page: 4470 year: 2018 ident: ref169 article-title: Transfer learning for named-entity recognition with neural networks – ident: ref38 doi: 10.1145/1963405.1963424 – ident: ref205 doi: 10.1002/asi.23816 – ident: ref146 doi: 10.18653/v1/N19-1133 – ident: ref80 doi: 10.3115/1118853.1118873 – ident: ref208 doi: 10.1007/s10462-018-9654-y – ident: ref157 doi: 10.18653/v1/D16-1153 – ident: ref8 doi: 10.3115/1609822.1609823 – start-page: 911 year: 2016 ident: ref99 article-title: CharNER: Character-level named entity recognition publication-title: Proc 26th Int Conf Comput Linguistics – ident: ref141 doi: 10.18653/v1/P16-1134 – ident: ref52 doi: 10.3115/977035.977037 – start-page: 5253 year: 2017 ident: ref125 article-title: Empower sequence labeling with task-aware neural language model publication-title: Proc AAAI Conf Artif Intell – ident: ref30 doi: 10.18653/v1/D16-1144 – ident: ref148 doi: 10.1016/j.jbi.2019.103133 – start-page: 5998 year: 2017 ident: ref127 article-title: Attention is all you need publication-title: Proc 31st Int Conf Neural Inf Process Syst – ident: ref122 doi: 10.18653/v1/N18-1131 – start-page: 143 year: 2013 ident: ref182 article-title: Towards robust linguistic analysis using ontonotes publication-title: Proc 17th Int Conf Comput Linguistics – ident: ref123 doi: 10.18653/v1/P17-1194 – ident: ref110 doi: 10.18653/v1/P18-1185 – start-page: 3365 year: 2017 ident: ref94 article-title: Neural models for sequence chunking publication-title: Proc 31st AAAI Conf Artif Intell – ident: ref159 doi: 10.18653/v1/P18-1074 – ident: ref201 doi: 10.1109/SANER.2016.10 – ident: ref77 doi: 10.3115/1119176.1119196 – ident: ref203 doi: 10.1109/TKDE.2017.2730862 – start-page: 1 year: 2019 ident: ref207 article-title: Collective named entity recognition in user comments via parameterized label propagation publication-title: J Assoc Inf Sci Technol – ident: ref180 doi: 10.2200/S00429ED1V01Y201207AIM018 – year: 2018 ident: ref185 article-title: Online learning: A comprehensive survey – ident: ref97 doi: 10.18653/v1/D17-1282 – ident: ref209 doi: 10.3233/SW-170286 – ident: ref79 doi: 10.3115/1119176.1119200 – start-page: 3879 year: 2018 ident: ref92 article-title: Design challenges and misconceptions in neural sequence labeling publication-title: Proc 27th Int Conf Comput Linguistics – start-page: 1 year: 1998 ident: ref50 article-title: SRA: Description of the IE2 system used for MUC-7 publication-title: Proc 7th Message Understanding Conf – ident: ref31 doi: 10.18653/v1/E17-1075 – year: 2019 ident: ref133 article-title: Hierarchical contextualized representation for named entity recognition publication-title: CoRR – start-page: 698 year: 2007 ident: ref60 article-title: Exploiting wikipedia as external knowledge for named entity recognition publication-title: Proc Joint Conf Empir Methods Natural Lang Process Comput Natural Lang Learn – start-page: 2672 year: 2014 ident: ref190 article-title: Generative adversarial nets publication-title: Proc 27th Int Conf Neural Inf Process Syst – ident: ref173 doi: 10.18653/v1/D16-1087 – start-page: 254 year: 2009 ident: ref13 article-title: Overview of the INEX 2009 entity ranking track publication-title: Proc Int Workshop Initiative Eval XML Retrieval – ident: ref46 doi: 10.1016/j.procs.2016.09.123 – ident: ref87 doi: 10.18653/v1/W17-2630 – ident: ref73 doi: 10.3115/974557.974586 – ident: ref204 doi: 10.1109/TKDE.2018.2857493 – start-page: 528 year: 2000 ident: ref44 article-title: A rule-based named entity recognition system for speech input publication-title: Proc Int Conf Spoken Lang Process – year: 2019 ident: ref3 article-title: Attending to entities for better text understanding – year: 2016 ident: ref195 article-title: Attention and memory in deep learning and NLP – ident: ref15 doi: 10.1145/345508.345563 – start-page: 219 year: 2017 ident: ref154 article-title: End-to-end recurrent neural network models for vietnamese named entity recognition: Word-level vs. character-level publication-title: Proc 15th Int Conf Pacific Assoc Comput Linguistics – start-page: 1 year: 2018 ident: ref130 article-title: Improving language understanding by generative pre-training – start-page: 282 year: 2001 ident: ref72 article-title: Conditional random fields: Probabilistic models for segmenting and labeling sequence data publication-title: Proc 18th Int Conf Mach Learn – ident: ref16 doi: 10.1007/978-94-010-2557-7_9 – ident: ref67 doi: 10.5772/51066 – ident: ref129 doi: 10.18653/v1/P18-1249 – ident: ref21 doi: 10.18653/v1/P17-1161 – volume: 71 start-page: 71 year: 1999 ident: ref6 article-title: A trainable summarizer with knowledge acquired from robust nlp techniques publication-title: Adv Autom Text Summ – ident: ref64 doi: 10.1007/11590019_59 – year: 1998 ident: ref76 article-title: NYU: Description of the MENE named entity system as used in MUC-7 publication-title: Proc 7th Message Understanding Conf – start-page: 171 year: 2016 ident: ref202 article-title: Learning to search for recognizing named entities in Twitter publication-title: Proc 2nd Workshop Noisy User-Generated Text – start-page: 51 year: 2006 ident: ref7 article-title: Named entity recognition for question answering publication-title: Proc Australas Lang Technol Workshop – ident: ref115 doi: 10.18653/v1/P17-1114 – ident: ref183 doi: 10.1613/jair.301 – start-page: 1638 year: 2018 ident: ref106 article-title: Contextual string embeddings for sequence labeling publication-title: Proc 27th Int Conf Comput Linguistics – ident: ref113 doi: 10.18653/v1/W17-4419 – ident: ref117 doi: 10.18653/v1/N18-1078 – start-page: 782 year: 2011 ident: ref62 article-title: Robust disambiguation of named entities in text publication-title: Proc Conf Empir Methods Natural Lang Process – ident: ref138 doi: 10.18653/v1/D19-1422 – ident: ref121 doi: 10.18653/v1/N18-1079 – start-page: 1 year: 1997 ident: ref63 article-title: Extracting Names From Natural-Language Text – ident: ref160 doi: 10.1023/A:1007379606734 – ident: ref126 doi: 10.18653/v1/P19-1236 – year: 2017 ident: ref174 article-title: Transfer learning for sequence tagging with hierarchical recurrent networks publication-title: Proc Int Conf Learn Representations – year: 2019 ident: ref147 article-title: TENER: Adapting transformer encoder for name entity recognition – ident: ref102 doi: 10.18653/v1/N18-1202 – ident: ref181 doi: 10.1007/978-1-4471-2099-5_1 – ident: ref179 doi: 10.18653/v1/N18-1001 – ident: ref39 doi: 10.18653/v1/P16-2040 – ident: ref58 doi: 10.3115/1621829.1621837 – ident: ref74 doi: 10.1023/A:1007558221122 – ident: ref170 doi: 10.18653/v1/D18-1226 – ident: ref65 doi: 10.1145/2872427.2883067 – ident: ref25 doi: 10.18653/v1/P18-3006 – ident: ref78 doi: 10.3115/1072228.1072253 – volume: 2 start-page: 69 year: 2018 ident: ref120 article-title: Named entity recognition with parallel recurrent neural networks publication-title: Proc Annual Meeting of the Assoc Computational Linguistics – ident: ref134 doi: 10.18653/v1/P19-1233 – ident: ref171 doi: 10.18653/v1/D19-1025 – start-page: 1 year: 1998 ident: ref47 article-title: University of sheffield: Description of the laSIE-II system as used for MUC-7 publication-title: Proc 7th Message Understanding Conf – ident: ref34 doi: 10.1007/978-3-319-93935-3 – start-page: 868 year: 2015 ident: ref33 article-title: FINET: Context-aware fine-grained named entity typing publication-title: Proc Conf Empir Methods Natural Lang Process – ident: ref206 doi: 10.1109/TKDE.2017.2758780 – ident: ref187 doi: 10.1038/nature14236 – ident: ref68 doi: 10.1016/S0959-440X(96)80056-X – ident: ref139 doi: 10.18653/v1/P16-2039 – volume: 3 start-page: 12 201 year: 2015 ident: ref23 article-title: Approaches to named entity recognition: A survey publication-title: Int J Innovative Res Comput Commun Eng – ident: ref24 doi: 10.1109/ICRTCCM.2017.34 – ident: ref27 doi: 10.1016/j.cosrev.2018.06.001 – ident: ref124 doi: 10.18653/v1/D18-1153 – ident: ref168 doi: 10.1145/2457465.2457467 – start-page: 2692 year: 2015 ident: ref144 article-title: Pointer networks publication-title: Proc 28th Int Conf Neural Inf Process Syst – ident: ref20 doi: 10.1162/tacl_a_00104 – ident: ref22 doi: 10.1016/j.csi.2012.09.004 – ident: ref9 doi: 10.1016/j.artint.2005.03.001 – start-page: 309 year: 2016 ident: ref104 article-title: Attending to characters in neural sequence labeling models publication-title: Proc 26th Int Conf Comput Linguistics – ident: ref135 doi: 10.18653/v1/D19-1367 – ident: ref161 doi: 10.18653/v1/W17-2612 – ident: ref193 doi: 10.18653/v1/D18-1017 – start-page: 1524 year: 2011 ident: ref83 article-title: Named entity recognition in tweets: An experimental study publication-title: Proc Conf Empir Methods Natural Lang Process – ident: ref142 doi: 10.18653/v1/P18-2038 – ident: ref55 doi: 10.1075/bct – ident: ref93 doi: 10.14257/ijhit.2015.8.8.29 – ident: ref176 doi: 10.18653/v1/N18-2056 – ident: ref194 doi: 10.18653/v1/P19-1336 – start-page: 100 year: 1999 ident: ref53 article-title: Unsupervised models for named entity classification publication-title: Proc Conf Empir Methods Natural Lang Process – start-page: 4171 year: 2019 ident: ref118 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding publication-title: Proc Conference North Amer Chapter Assoc Comput Linguistics Hum Lang Technol – ident: ref211 doi: 10.18653/v1/D17-2017 |
| SSID | ssj0008781 |
| Score | 2.748275 |
| Snippet | Named entity recognition (NER) is the task to identify mentions of rigid designators from text belonging to predefined semantic types such as person, location,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 50 |
| SubjectTerms | Annotations Coders Deep learning Encyclopedias Human engineering Machine translation named entity recognition Natural language processing Recognition Representations Semantics survey Task analysis Taxonomy Text recognition |
| Title | A Survey on Deep Learning for Named Entity Recognition |
| URI | https://ieeexplore.ieee.org/document/9039685 https://www.proquest.com/docview/2607877432 |
| Volume | 34 |
| WOSCitedRecordID | wos000728576400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1UPOjBalWsVsnBk7jtdjebj6PYFkEoohW8LWkyEUG2pbaC_94kTYuiCB4W9pDA8rKZeW-SmQE490XSfc2SxAhjEopMJUIqm0iGXFnpOYoOzSb4YCCenuTdGlyucmEQMVw-w5Z_DWf5ZqznPlTWlmkumSjWYZ1ztsjVWlldwUNDUqcunCbKKY8nmJ1Utoe33Z5TglnayqTo5B36zQeFpio_LHFwL_3a_z5sF3YijSRXi3XfgzWs6lBbtmggccfWYftLvcF9YFfkYT59xw8yrkgXcUJiedVn4rgrGSjnGknPJ-5-kPvlzaJxdQCP_d7w-iaJjRMS7bz3LNGcUeuEn1WOEFhrjBh1Ck3NSElFUfPCcT7K0McbVJazUWbc40yjpdoqlur8EDaqcYVHQKSx1KRCS5SSClao3KcxI7eOOKBJiwakSyhLHauK--YWr2VQF6ksPfqlR7-M6DfgYjVlsiip8dfgfQ_3amBEugHN5XqVcdO9lU6aOfPjKFF2_PusE9jKfPZCiKA0YWM2neMpbOr32cvb9Cz8T5-h3cV9 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gXrwLdZnDp7E1XQ3m02OohWltYhW8LakyUQE2UptBf-9SZoWRRE8LOwhgeXLZub7JpkZgENfJN3XLEmMMCZhyFUipLKJ5FgoKz1H0aHZRNFui8dHeTsFx5NcGEQMl8_wxL-Gs3zT00MfKjuVNJNc5NMwmzOW0lG21sTuiiK0JHX6wqmijBXxDLNO5WmnedFwWjClJ6kU9azOvnmh0Fblhy0ODuZy-X-ftgJLkUiSs9HKr8IUVmuwPG7SQOKeXYPFLxUH14Gfkfth_x0_SK8iF4ivJBZYfSKOvZK2cs6RNHzq7ge5G98t6lUb8HDZ6JxfJbF1QqKd_x4kuuDMOulnlaME1hojuvVcM9NVUjHURe5YH-PoIw4qzXg3Ne5xxtEybRWnOtuEmapX4RYQaSwzVGiJUjLBc5X5RGYsrKMOaGheAzqGstSxrrhvb_FSBn1BZenRLz36ZUS_BkeTKa-johp_DV73cE8GRqRrsDterzJuu7fSiTNngBwpSrd_n3UA81edm1bZum43d2Ah9bkMIZ6yCzOD_hD3YE6_D57f-vvh3_oEFdTIxA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Deep+Learning+for+Named+Entity+Recognition&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Li%2C+Jing&rft.au=Sun%2C+Aixin&rft.au=Han%2C+Jianglei&rft.au=Li%2C+Chenliang&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=34&rft.issue=1&rft.spage=50&rft_id=info:doi/10.1109%2FTKDE.2020.2981314&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |