Fishing Gear Pattern Recognition by Including Supervised Autoencoder Dimensional Reduction
Fishing is a crucial worldwide activity as it provides a source of food and economic income. A challenge in ecology and conservation is decreasing overfishing and illegal, unreported, and unregulated fishing (IUUF). One strategy to decrease those issues is to track vessels for detecting fishing beha...
Saved in:
| Published in: | IEEE geoscience and remote sensing letters Vol. 19; pp. 1 - 5 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1545-598X, 1558-0571 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Fishing is a crucial worldwide activity as it provides a source of food and economic income. A challenge in ecology and conservation is decreasing overfishing and illegal, unreported, and unregulated fishing (IUUF). One strategy to decrease those issues is to track vessels for detecting fishing behaviors through monitory systems. In this letter, we present an approach to classify fishing behaviors, specifically, for four fishing gear types (trawl, purse seine, fixed gear, and longline) using automatic identification systems (AISs) data from the Global Fishing Watch platform. Thus, our main contribution is how we propose data processing by including a supervised autoencoder dimensional reduction (SA-DR) processing data step. This step allows removing redundant features and noise, avoiding overfitting, decreasing data complexity, and preserving the differences between classes. Specifically, we propose to use IVIS and centroid encoder (CE) methods. The experimental results show how our approach applying SA-DR over the vessel trajectory feature representation reduces the variation results among different classifiers and achieves a high classification accuracy of up to 95%. This result could help prevent IUUF, overfishing, and improve fishery management strategies. |
|---|---|
| AbstractList | Fishing is a crucial worldwide activity as it provides a source of food and economic income. A challenge in ecology and conservation is decreasing overfishing and illegal, unreported, and unregulated fishing (IUUF). One strategy to decrease those issues is to track vessels for detecting fishing behaviors through monitory systems. In this letter, we present an approach to classify fishing behaviors, specifically, for four fishing gear types (trawl, purse seine, fixed gear, and longline) using automatic identification systems (AISs) data from the Global Fishing Watch platform. Thus, our main contribution is how we propose data processing by including a supervised autoencoder dimensional reduction (SA-DR) processing data step. This step allows removing redundant features and noise, avoiding overfitting, decreasing data complexity, and preserving the differences between classes. Specifically, we propose to use IVIS and centroid encoder (CE) methods. The experimental results show how our approach applying SA-DR over the vessel trajectory feature representation reduces the variation results among different classifiers and achieves a high classification accuracy of up to 95%. This result could help prevent IUUF, overfishing, and improve fishery management strategies. |
| Author | Velasco, Mariana Rivera-De Mendez-Lopez, Maria Elena Rodriguez-Gonzalez, Ansel Y. Aranda, Ramon Carlos, Hugo |
| Author_xml | – sequence: 1 givenname: Hugo surname: Carlos fullname: Carlos, Hugo organization: Cátedras del Consejo Nacional de Ciencia y Tecnología (CONACYT), Ciudad de México, Mexico – sequence: 2 givenname: Ramon orcidid: 0000-0001-8269-3944 surname: Aranda fullname: Aranda, Ramon email: aranda@cicese.edu.mx organization: Cátedras del Consejo Nacional de Ciencia y Tecnología (CONACYT), Ciudad de México, Mexico – sequence: 3 givenname: Mariana Rivera-De surname: Velasco fullname: Velasco, Mariana Rivera-De organization: Centro de Investigación en Ciencias de Información Geoespacial, Unidad Yucatán, Merida, Mexico – sequence: 4 givenname: Ansel Y. surname: Rodriguez-Gonzalez fullname: Rodriguez-Gonzalez, Ansel Y. organization: Cátedras del Consejo Nacional de Ciencia y Tecnología (CONACYT), Ciudad de México, Mexico – sequence: 5 givenname: Maria Elena orcidid: 0000-0003-2088-7879 surname: Mendez-Lopez fullname: Mendez-Lopez, Maria Elena organization: Cátedras del Consejo Nacional de Ciencia y Tecnología (CONACYT), Ciudad de México, Mexico |
| BookMark | eNp9kE9LwzAYh4MouE0_gHgpeO5MmqRJj2O6ORgom4J4KWn6dmZ06UxSYd_elg0PHjy97-H3vH-eITq3jQWEbggeE4Kz--V8tR4nOCFjiiUjkp6hAeFcxpgLct73jMc8k--XaOj9FuOESSkG6GNm_Kexm2gOykUvKgRwNlqBbjbWBNPYqDhEC6vrtuxT63YP7tt4KKNJGxqwuinBRQ9mB9Z3aVV3bNnqnrxCF5WqPVyf6gi9zR5fp0_x8nm-mE6WsU4yGmKd8lKmjJYFUVKAJFxAoQRJacoKUXHQZVYQDkmmiCgVo4ylwDOoBBeplIyO0N1x7t41Xy34kG-b1nWn-DxJOweEYpp0KXJMadd476DK987slDvkBOe9wrxXmPcK85PCjhF_GG2C6n8LTpn6X_L2SBoA-N2UMSYp5_QHyB2BCA |
| CODEN | IGRSBY |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3571493 crossref_primary_10_1017_S037346332400033X |
| Cites_doi | 10.3390/s20133782 10.1037/h0070888 10.1016/j.marpol.2018.04.023 10.35940/ijrte.b1067.0782s619 10.1145/3369555.3369574 10.1139/cjfas-2013-0572 10.1007/978-3-030-44267-5_20 10.1080/14786440109462720 10.3389/fmars.2020.589000 10.1126/science.290.5500.2319 10.1002/aic.690370209 10.1016/j.marpol.2020.103980 10.1016/j.marpol.2018.08.003 10.1198/016214505000000628 10.1007/bf02288916 10.3390/w11020213 10.3390/app10114010 10.1109/JOE.2017.2723278 10.1162/neco.2007.19.9.2536 10.1371/journal.pone.0163760 10.1007/s11277-020-07200-w 10.1111/j.1469-1809.1936.tb02137.x 10.1016/j.fishres.2007.08.007 10.21105/joss.00861 10.1016/B978-0-12-817945-1.00015-0 10.1007/s11042-020-08949-9 10.1002/fee.2147 10.1007/s00773-019-00694-5 10.1162/089976603321780317 10.3390/rs12040702 10.1007/bf00337288 10.1016/j.patcog.2011.12.006 10.1093/icesjms/fsx230 10.1145/1015330.1015345 10.1038/s41598-019-45301-0 10.1016/j.patrec.2009.05.011 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| DOI | 10.1109/LGRS.2021.3084183 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Economics Ecology |
| EISSN | 1558-0571 |
| EndPage | 5 |
| ExternalDocumentID | 10_1109_LGRS_2021_3084183 9448355 |
| Genre | orig-research |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-c65d8643db1a87e8157eba716364b7f5ecd9b15e29a17da43446e59ef75768843 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000733550100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-598X |
| IngestDate | Mon Jun 30 08:32:28 EDT 2025 Sat Nov 29 05:54:07 EST 2025 Tue Nov 18 22:07:48 EST 2025 Wed Aug 27 05:00:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-c65d8643db1a87e8157eba716364b7f5ecd9b15e29a17da43446e59ef75768843 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2088-7879 0000-0001-8269-3944 |
| PQID | 2615513032 |
| PQPubID | 75725 |
| PageCount | 5 |
| ParticipantIDs | crossref_primary_10_1109_LGRS_2021_3084183 proquest_journals_2615513032 crossref_citationtrail_10_1109_LGRS_2021_3084183 ieee_primary_9448355 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE geoscience and remote sensing letters |
| PublicationTitleAbbrev | LGRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 ref37 ref14 ref36 ref31 Ghosh (ref40) 2020 ref30 ref11 ref33 ref10 ref32 Snoek (ref42) ref2 ref1 ref17 ref39 ref16 Song (ref34) ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 (ref22) 2021 ref21 ref43 ref28 (ref3) 2020 ref27 ref29 ref8 ref7 ref4 ref6 Borit (ref9) 2020 ref5 Hermans (ref41) 2017 |
| References_xml | – start-page: 1385 volume-title: Proc. 20th Int. Conf. Neural Inf. Process. Syst. ident: ref34 article-title: Colored maximum variance unfolding – ident: ref16 doi: 10.3390/s20133782 – ident: ref26 doi: 10.1037/h0070888 – ident: ref1 doi: 10.1016/j.marpol.2018.04.023 – ident: ref12 doi: 10.35940/ijrte.b1067.0782s619 – ident: ref18 doi: 10.1145/3369555.3369574 – ident: ref24 doi: 10.1139/cjfas-2013-0572 – ident: ref19 doi: 10.1007/978-3-030-44267-5_20 – ident: ref25 doi: 10.1080/14786440109462720 – ident: ref4 doi: 10.3389/fmars.2020.589000 – year: 2017 ident: ref41 article-title: In defense of the triplet loss for person re-identification publication-title: arXiv:1703.07737 – ident: ref29 doi: 10.1126/science.290.5500.2319 – ident: ref38 doi: 10.1002/aic.690370209 – ident: ref5 doi: 10.1016/j.marpol.2020.103980 – ident: ref8 doi: 10.1016/j.marpol.2018.08.003 – ident: ref33 doi: 10.1198/016214505000000628 – ident: ref28 doi: 10.1007/bf02288916 – year: 2020 ident: ref40 article-title: Supervised dimensionality reduction and visualization using centroid-encoder publication-title: arXiv:2002.11934 – ident: ref6 doi: 10.3390/w11020213 – ident: ref13 doi: 10.3390/app10114010 – ident: ref17 doi: 10.1109/JOE.2017.2723278 – ident: ref35 doi: 10.1162/neco.2007.19.9.2536 – ident: ref11 doi: 10.1371/journal.pone.0163760 – ident: ref14 doi: 10.1007/s11277-020-07200-w – ident: ref32 doi: 10.1111/j.1469-1809.1936.tb02137.x – ident: ref23 doi: 10.1016/j.fishres.2007.08.007 – ident: ref43 doi: 10.21105/joss.00861 – start-page: 2951 volume-title: Proc. NIPS ident: ref42 article-title: Practical Bayesian optimization of machine learning algorithms – ident: ref2 doi: 10.1016/B978-0-12-817945-1.00015-0 – ident: ref21 doi: 10.1007/s11042-020-08949-9 – ident: ref7 doi: 10.1002/fee.2147 – ident: ref20 doi: 10.1007/s00773-019-00694-5 – ident: ref30 doi: 10.1162/089976603321780317 – ident: ref15 doi: 10.3390/rs12040702 – ident: ref27 doi: 10.1007/bf00337288 – ident: ref37 doi: 10.1016/j.patcog.2011.12.006 – ident: ref10 doi: 10.1093/icesjms/fsx230 – volume-title: FAO Yearbook of Fishery and Aquaculture Statistics year: 2020 ident: ref3 – ident: ref31 doi: 10.1145/1015330.1015345 – ident: ref39 doi: 10.1038/s41598-019-45301-0 – volume-title: FAO Fisheries and Aquaculture Circular No. 1197 year: 2020 ident: ref9 article-title: Beyond regulatory compliance—Seafood traceability benefits and success cases – volume-title: Fishing Gear Types. Bottom Trawls. Technology Fact Sheets year: 2021 ident: ref22 – ident: ref36 doi: 10.1016/j.patrec.2009.05.011 |
| SSID | ssj0024887 |
| Score | 2.3306913 |
| Snippet | Fishing is a crucial worldwide activity as it provides a source of food and economic income. A challenge in ecology and conservation is decreasing overfishing... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Artificial intelligence Centroids Coders Conservation Data analysis Data processing Dimension reduction Ecology Economics Fisheries Fisheries management Fishery management Fishing Fishing equipment Fishing gear Food sources Gears Illegal fishing Longline fishing Marine vehicles Monitoring Overfishing Pattern recognition Proposals Purse seines supervised autoencoder Support vector machines Trajectory vessel behavior Vessels |
| Title | Fishing Gear Pattern Recognition by Including Supervised Autoencoder Dimensional Reduction |
| URI | https://ieeexplore.ieee.org/document/9448355 https://www.proquest.com/docview/2615513032 |
| Volume | 19 |
| WOSCitedRecordID | wos000733550100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH6oKHrxx1ScTsnBk1ht0qRJjqJuHkRkUxleSppkKEgn2yrsvzdJu4kogrce8krpl7wfSd73ARzjXGiqKI5MymxEFcGRIjaOjOZegYNjGjSWnm753Z3o9-X9ApzOe2GsteHymT3zj-Es3wx16bfKzqWrJVx8XIRFztOqV-uLV08EMTyfEURMin59goljeX7b6fZcJUjwWRILikXyLQYFUZUfnjiEl_bG_z5sE9brNBJdVLhvwYItGrBaK5q_TBuw0gmSvdNteG5X20yo4yY1ug98mgXqzi4ODQuUT5FzE2-lD2OoV7579zG2Bl2Uk6HnuTR2hK68CkDF4OFsTcU5uwOP7euHy5uoVlSItAvrk0inzAiXg5gcK8GtwMwBolzJlKQ05wNmtZE5ZpZIhblRNHHFomXSDrgvSwRNdmGpGBZ2D1Au_FoWLFUDTc0AK-lyTZK7FxDPOceaEM_-caZrunGvevGWhbIjlpmHJfOwZDUsTTiZm7xXXBt_Dd72OMwH1hA0oTUDMqtX4zgjadCxiROy_7vVAawR39YQtlZasDQZlfYQlvXH5HU8OgoT7RM8T8-2 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4aA9S9cNlFKwzww54Q2WLHTuzHCWiH6Kqp3VDFS-TYrkCq0qltJvXf4-O4RWgIibc8-ERRPvtcbJ_vAzillTRcc5rYXLiEa0YTzVyaWFOgAkdBedBY-jYohkM5majrHfiw7YVxzoXLZ-4MH8NZvp2bBrfKzpWvJXx8fASPUTkrdmv9ZtaTQQ4Pc4JEKDmJZ5g0VeeD_mjsa0FGz7JUciqzP6JQkFV54ItDgOk9_79PewHPYiJJLlrkX8KOq_ehEzXNf6z34Wk_iPauD-B7r91oIn0_rcl1YNSsyWhzdWhek2pNvKOYNRjIyLi5QweydJZcNKs5Ml1atyCfUAeg5fDwtrZlnT2E297nm4-XSdRUSIwP7KvE5MJKn4XYimpZOEmFh0T7oinLeVVMhTNWVVQ4pjQtrOaZLxedUG5aYGEieXYEu_W8dsdAKomrWYpcTw23U6qVzzZZ5V_AkHVOdCHd_OPSRMJx1L2YlaHwSFWJsJQISxlh6cL7rcldy7bxr8EHiMN2YISgCycbIMu4Hpcly4OSTZqxV3-3egedy5urQTn4Mvz6GvYYNjmEjZYT2F0tGvcGnpj71c_l4m2YdL8AOQbS_w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fishing+Gear+Pattern+Recognition+by+Including+Supervised+Autoencoder+Dimensional+Reduction&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Carlos%2C+Hugo&rft.au=Aranda%2C+Ramon&rft.au=Velasco%2C+Mariana+Rivera-De&rft.au=Rodriguez-Gonzalez%2C+Ansel+Y.&rft.date=2022&rft.pub=IEEE&rft.issn=1545-598X&rft.volume=19&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2021.3084183&rft.externalDocID=9448355 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |