Hyperspectral Anomaly Detection with Guided Autoencoder
Recently, autoencoder-based hyperspectral anomaly detection methods have demonstrated excellent performance on hyperspectral images (HSIs). The autoencoder (AE) can simultaneously reconstruct both the anomaly targets and background, but the lack of prior information limits ability to detect anomalie...
Uloženo v:
| Vydáno v: | IEEE transactions on geoscience and remote sensing Ročník 60; s. 1 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recently, autoencoder-based hyperspectral anomaly detection methods have demonstrated excellent performance on hyperspectral images (HSIs). The autoencoder (AE) can simultaneously reconstruct both the anomaly targets and background, but the lack of prior information limits ability to detect anomalies. This study proposes a novel hyperspectral anomaly detection method based on a guided AE to reduce the feature representation for anomaly targets. First, a multi-layer AE network with skip connections is proposed to fully extract the abundant latent features from HSIs and enhance the expressive ability of the network. The reconstructed HSI can be obtained by the proposed AE network. Second, to suppress anomaly targets in the obtained reconstructed HSI and better represent background features, a guided module based on a guided image is added to the network to reduce the feature representation of anomaly targets by providing feedback information. Moreover, the guided image is calculated using a proposed spectral similarity method that uses the local spatial features of the HSI. Finally, we use the reconstruction error as a performance metric and compare the results of our proposed method with other state-of-the-art methods on six real-world HSIs. The results demonstrate the effectiveness and superiority of the proposed method. |
|---|---|
| AbstractList | Recently, autoencoder-based hyperspectral anomaly detection methods have demonstrated excellent performance on hyperspectral images (HSIs). The autoencoder (AE) can simultaneously reconstruct both the anomaly targets and background, but the lack of prior information limits ability to detect anomalies. This study proposes a novel hyperspectral anomaly detection method based on a guided AE to reduce the feature representation for anomaly targets. First, a multi-layer AE network with skip connections is proposed to fully extract the abundant latent features from HSIs and enhance the expressive ability of the network. The reconstructed HSI can be obtained by the proposed AE network. Second, to suppress anomaly targets in the obtained reconstructed HSI and better represent background features, a guided module based on a guided image is added to the network to reduce the feature representation of anomaly targets by providing feedback information. Moreover, the guided image is calculated using a proposed spectral similarity method that uses the local spatial features of the HSI. Finally, we use the reconstruction error as a performance metric and compare the results of our proposed method with other state-of-the-art methods on six real-world HSIs. The results demonstrate the effectiveness and superiority of the proposed method. Recently, autoencoder (AE)-based hyperspectral anomaly detection methods have demonstrated excellent performance on hyperspectral images (HSIs). The AE can simultaneously reconstruct both the anomaly targets and the background, but the lack of prior information limits the ability to detect anomalies. This study proposes a novel hyperspectral anomaly detection method based on a guided AE to reduce the feature representation for the anomaly targets. First, a multilayer AE network with skip connections is proposed to fully extract the abundant latent features from HSIs and enhance the expressive ability of the network. The reconstructed HSI can be obtained by the proposed AE network. Second, to suppress the anomaly targets in the obtained reconstructed HSI and better represent background features, a guided module based on a guided image is added to the network to reduce the feature representation of the anomaly targets by providing feedback information. Moreover, the guided image is calculated using a proposed spectral similarity method that uses the local spatial features of the HSI. Finally, we use the reconstruction error as a performance metric and compare the results of our proposed method with other state-of-the-art methods on six real-world HSIs. The results demonstrate the effectiveness and superiority of the proposed method. |
| Author | Xiang, Pei Jung, Soon Ki Ali, Shahzad Zhou, Huixin |
| Author_xml | – sequence: 1 givenname: Pei orcidid: 0000-0003-1895-1894 surname: Xiang fullname: Xiang, Pei organization: School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, China – sequence: 2 givenname: Shahzad orcidid: 0000-0002-4949-8335 surname: Ali fullname: Ali, Shahzad organization: School of Computer Science and Engineering, Kyungpook National University, Daegu, Republic of Korea – sequence: 3 givenname: Soon Ki orcidid: 0000-0003-0239-6785 surname: Jung fullname: Jung, Soon Ki organization: School of Computer Science and Engineering, Kyungpook National University, Daegu, Republic of Korea – sequence: 4 givenname: Huixin surname: Zhou fullname: Zhou, Huixin organization: School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, China |
| BookMark | eNp9kMFKw0AQhhepYFt9APES8Jy6M7ubzR5L1VYoCFrPS9xMMCXNxk2C9O1NqHjw4Glg-L_5mW_GJrWvibFr4AsAbu5265fXBXLEhUCuIVFnbApKpTFPpJywKQeTxJgavGCztt1zDlKBnjK9OTYU2oZcF7IqWtb-kFXH6J66YVP6Ovoqu49o3Zc55dGy7zzVzucULtl5kVUtXf3MOXt7fNitNvH2ef20Wm5jh0Z0sVMG0AlplNYEuhAyN1Ib5zQmRrwnwinpMgUoTC4Nukw44nmRcyg4DpSYs9vT3Sb4z57azu59H-qh0qJGkJiCkEMKTikXfNsGKmwTykMWjha4Hf3Y0Y8d_dgfPwOj_zCu7LLx58FEWf1L3pzIkoh-m0xqRCqM-AYAinNY |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_TGRS_2023_3327630 crossref_primary_10_1109_LSP_2025_3553433 crossref_primary_10_1109_TGRS_2025_3537331 crossref_primary_10_1109_TGRS_2025_3534185 crossref_primary_10_1080_2150704X_2024_2391092 crossref_primary_10_1109_JSTARS_2024_3404607 crossref_primary_10_1109_TGRS_2025_3540385 crossref_primary_10_1109_TGRS_2025_3541353 crossref_primary_10_3390_rs16040717 crossref_primary_10_1007_s10489_025_06504_3 crossref_primary_10_1109_TIM_2023_3323997 crossref_primary_10_3390_rs16030434 crossref_primary_10_3390_rs16111837 crossref_primary_10_1109_TGRS_2025_3547145 crossref_primary_10_1109_TGRS_2024_3496355 crossref_primary_10_1109_LGRS_2024_3449635 crossref_primary_10_1109_TIM_2024_3403211 crossref_primary_10_3390_rs17040695 crossref_primary_10_1109_TGRS_2025_3547381 crossref_primary_10_1109_TGRS_2025_3568121 crossref_primary_10_1109_JSTARS_2025_3559079 crossref_primary_10_1109_TGRS_2024_3399313 crossref_primary_10_1109_JSTARS_2025_3576899 crossref_primary_10_1109_LGRS_2023_3330473 crossref_primary_10_1109_TGRS_2024_3351179 crossref_primary_10_1109_TGRS_2024_3477256 crossref_primary_10_1109_JSTARS_2025_3580751 crossref_primary_10_1109_JSTARS_2024_3478848 crossref_primary_10_1109_TIM_2025_3553235 crossref_primary_10_1109_LGRS_2024_3404951 crossref_primary_10_1109_TGRS_2024_3355184 crossref_primary_10_1109_TGRS_2025_3593391 crossref_primary_10_1109_JSEN_2024_3455258 crossref_primary_10_1109_TGRS_2024_3388476 crossref_primary_10_1109_TGRS_2023_3341245 crossref_primary_10_1109_TIM_2025_3582323 crossref_primary_10_1109_JSTARS_2024_3447896 crossref_primary_10_1109_TGRS_2023_3285893 crossref_primary_10_1109_TGRS_2023_3334562 crossref_primary_10_1109_TGRS_2024_3444191 crossref_primary_10_1109_TIM_2023_3330225 crossref_primary_10_1109_TGRS_2025_3593019 crossref_primary_10_1109_JSTARS_2022_3229834 crossref_primary_10_1080_01431161_2025_2459214 crossref_primary_10_3390_rs15174263 crossref_primary_10_1109_JSTARS_2024_3522388 crossref_primary_10_1109_TIM_2022_3222499 crossref_primary_10_3390_rs15184430 crossref_primary_10_1109_TGRS_2024_3388426 crossref_primary_10_1109_TGRS_2023_3335484 crossref_primary_10_1109_TGRS_2023_3346923 crossref_primary_10_1007_s11760_024_03238_6 crossref_primary_10_1109_TGRS_2024_3364573 crossref_primary_10_1109_TGRS_2025_3530397 crossref_primary_10_1109_LGRS_2023_3271899 crossref_primary_10_3390_rs15225266 crossref_primary_10_1109_TGRS_2024_3417326 crossref_primary_10_3390_s24175664 crossref_primary_10_1109_TGRS_2023_3248599 crossref_primary_10_1109_TGRS_2024_3456799 crossref_primary_10_1109_TGRS_2024_3361469 crossref_primary_10_1109_JSTARS_2025_3525743 crossref_primary_10_1016_j_infrared_2025_105942 crossref_primary_10_1109_TIM_2024_3446609 crossref_primary_10_1080_01431161_2024_2346186 crossref_primary_10_1109_LGRS_2024_3355471 crossref_primary_10_1109_TGRS_2023_3274661 crossref_primary_10_3390_rs16010135 crossref_primary_10_3390_rs16163036 crossref_primary_10_1080_13682199_2025_2489850 crossref_primary_10_1109_JSTARS_2024_3393995 crossref_primary_10_1109_JSTARS_2025_3542457 crossref_primary_10_1109_TGRS_2023_3329639 crossref_primary_10_1109_TGRS_2025_3532225 crossref_primary_10_1109_TIM_2025_3551470 crossref_primary_10_1109_JSTARS_2023_3296876 crossref_primary_10_3390_rs15112853 crossref_primary_10_1109_TIM_2024_3405582 |
| Cites_doi | 10.1109/79.974730 10.1109/TSP.2020.2991311 10.1109/TGRS.2004.841487 10.1109/TGRS.2019.2944419 10.1109/TGRS.2014.2343955 10.1016/j.neunet.2019.08.012 10.1109/MGRS.2021.3105440 10.1109/JSTSP.2011.2113170 10.1109/TGRS.2019.2936609 10.1117/12.718789 10.1109/LGRS.2021.3049711 10.1080/01431161.2019.1708504 10.1109/JSTARS.2014.2302446 10.1109/IGARSS.2019.8898697 10.1109/JSTARS.2020.2990457 10.1109/TGRS.2015.2493201 10.1109/TNNLS.2018.2852738 10.1609/aaai.v33i01.33011311 10.1109/TGRS.2020.3040221 10.1109/JSTARS.2021.3052968 10.1109/TGRS.2017.2710145 10.1109/TGRS.2021.3057721 10.1117/1.JRS.8.083641 10.1109/ICCV.2015.123 10.1109/TGRS.2020.3004478 10.1109/TIP.2017.2658954 10.1109/TNNLS.2020.3038659 10.1109/ICIP.2015.7351663 10.1007/s00138-020-01059-4 10.1109/TGRS.2020.2965995 10.1109/TGRS.2015.2479299 10.1117/1.3386069 10.1109/TGRS.2021.3131878 10.1109/TGRS.2017.2767068 10.1109/TGRS.2020.3021671 10.1109/TGRS.2018.2818159 10.1109/TGRS.2021.3069734 10.1109/TIP.2020.2965302 10.1117/12.2195180 10.1109/TGRS.2021.3117765 10.1109/29.60107 10.1109/TGRS.2018.2821168 10.1109/TGRS.2008.2006364 10.1109/TGRS.2021.3081177 10.1109/TCYB.2020.2968750 10.1016/j.infrared.2018.06.001 10.1109/TGRS.2020.3038722 10.1109/TGRS.2021.3097097 10.1126/science.1127647 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2022.3207165 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TGRS_2022_3207165 9893839 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: BK21 FOUR project (AI-driven Convergence Software Education Research Program) grantid: 4199990214394 – fundername: 111 project grantid: B17035 – fundername: China Scholarship Council grantid: 202106960025 funderid: 10.13039/501100004543 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c293t-c5912c349577e17f34d9479cc72693b63c54ca51239d492ca3ce0dfd01f024953 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 110 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000864196200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Tue Aug 26 15:40:29 EDT 2025 Tue Nov 18 22:37:09 EST 2025 Sat Nov 29 02:50:25 EST 2025 Wed Aug 27 02:29:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-c5912c349577e17f34d9479cc72693b63c54ca51239d492ca3ce0dfd01f024953 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1895-1894 0000-0002-4949-8335 0000-0003-0239-6785 |
| PQID | 2721428134 |
| PQPubID | 85465 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_TGRS_2022_3207165 crossref_citationtrail_10_1109_TGRS_2022_3207165 ieee_primary_9893839 proquest_journals_2721428134 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 Du (ref49) 2017 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref18 doi: 10.1109/79.974730 – ident: ref8 doi: 10.1109/TSP.2020.2991311 – ident: ref23 doi: 10.1109/TGRS.2004.841487 – ident: ref38 doi: 10.1109/TGRS.2019.2944419 – ident: ref25 doi: 10.1109/TGRS.2014.2343955 – ident: ref35 doi: 10.1016/j.neunet.2019.08.012 – ident: ref9 doi: 10.1109/MGRS.2021.3105440 – ident: ref24 doi: 10.1109/JSTSP.2011.2113170 – ident: ref33 doi: 10.1109/TGRS.2019.2936609 – ident: ref20 doi: 10.1117/12.718789 – ident: ref37 doi: 10.1109/LGRS.2021.3049711 – ident: ref41 doi: 10.1080/01431161.2019.1708504 – ident: ref21 doi: 10.1109/JSTARS.2014.2302446 – ident: ref34 doi: 10.1109/IGARSS.2019.8898697 – ident: ref11 doi: 10.1109/JSTARS.2020.2990457 – ident: ref29 doi: 10.1109/TGRS.2015.2493201 – ident: ref39 doi: 10.1109/TNNLS.2018.2852738 – ident: ref45 doi: 10.1609/aaai.v33i01.33011311 – ident: ref4 doi: 10.1109/TGRS.2020.3040221 – ident: ref7 doi: 10.1109/JSTARS.2021.3052968 – ident: ref47 doi: 10.1109/TGRS.2017.2710145 – ident: ref16 doi: 10.1109/TGRS.2021.3057721 – ident: ref27 doi: 10.1117/1.JRS.8.083641 – ident: ref40 doi: 10.1109/ICCV.2015.123 – ident: ref1 doi: 10.1109/TGRS.2020.3004478 – ident: ref42 doi: 10.1109/TIP.2017.2658954 – ident: ref32 doi: 10.1109/TNNLS.2020.3038659 – ident: ref26 doi: 10.1109/ICIP.2015.7351663 – ident: ref48 doi: 10.1007/s00138-020-01059-4 – ident: ref43 doi: 10.1109/TGRS.2020.2965995 – ident: ref28 doi: 10.1109/TGRS.2015.2479299 – ident: ref19 doi: 10.1117/1.3386069 – ident: ref44 doi: 10.1109/TGRS.2021.3131878 – ident: ref46 doi: 10.1109/TGRS.2017.2767068 – ident: ref50 doi: 10.1109/TGRS.2020.3021671 – ident: ref30 doi: 10.1109/TGRS.2018.2818159 – ident: ref3 doi: 10.1109/TGRS.2021.3069734 – ident: ref5 doi: 10.1109/TIP.2020.2965302 – ident: ref12 doi: 10.1117/12.2195180 – ident: ref22 doi: 10.1109/TGRS.2021.3117765 – ident: ref17 doi: 10.1109/29.60107 – ident: ref10 doi: 10.1109/TGRS.2018.2821168 – ident: ref51 doi: 10.1109/TGRS.2008.2006364 – ident: ref2 doi: 10.1109/TGRS.2021.3081177 – ident: ref31 doi: 10.1109/TCYB.2020.2968750 – year: 2017 ident: ref49 article-title: Technical report: Scene label ground truth map for MUUFL Gulfport data set – ident: ref36 doi: 10.1016/j.infrared.2018.06.001 – ident: ref6 doi: 10.1109/TGRS.2020.3038722 – ident: ref14 doi: 10.1109/TGRS.2020.2965995 – ident: ref15 doi: 10.1109/TGRS.2021.3097097 – ident: ref13 doi: 10.1126/science.1127647 |
| SSID | ssj0014517 |
| Score | 2.6427486 |
| Snippet | Recently, autoencoder-based hyperspectral anomaly detection methods have demonstrated excellent performance on hyperspectral images (HSIs). The autoencoder... Recently, autoencoder (AE)-based hyperspectral anomaly detection methods have demonstrated excellent performance on hyperspectral images (HSIs). The AE can... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Anomalies Anomaly detection autoencoder Detection Feature extraction guide image Hyperspectral image Hyperspectral imaging Image reconstruction Matrix decomposition Methods Multilayers Object detection Representations Sparse matrices |
| Title | Hyperspectral Anomaly Detection with Guided Autoencoder |
| URI | https://ieeexplore.ieee.org/document/9893839 https://www.proquest.com/docview/2721428134 |
| Volume | 60 |
| WOSCitedRecordID | wos000864196200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1qUdCDH61itUoOnsS0ye4m2z0Wte1BimiF3kKyO4FCTaRNBf-9u5u0FBTBWw47IbxJ8nZ2Zt4A3FCSBCxhzA1SI6otkLiJjIWryUug4p5mXOvpJz4e96ZT8VyDu00vDCLa4jPsmEuby1e5XJmjsq7Q5KoJfQd2OOdlr9YmY8ACv2qNDl0dRJAqg-l7ojsZvrzqSJCQDiWaUQ2PbHGQHary409s6WVw9L8HO4bDahvp9Eu_n0ANswYcbIkLNmDPFnfKZRP4SAebZU_lwhhl-Xs8_3IesLB1WJljDmOd4WqmUDn9VZEbcUuFi1N4GzxO7kduNTDBlZq1C1cGwieS6piHc_R5SpkSjAspOQkFTUIqAyZjTfFUKCaIjKlET6XK81OjHBjQM6hneYbn4KQipkSi4CoNGYYi5rznx6i3ZyoIExK3wFtDGMlKTdwMtZhHNqrwRGRQjwzqUYV6C243Jh-llMZfi5sG5s3CCuEWtNd-iqqPbRkRbnXjfMoufre6hH1z7_LkpA31YrHCK9iVn8Vsubi279E3xF3DCw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60KurBt1ifOXgSU5PdTbZ7LL4q1iJawVtIdidQqKm0ieC_d3eTBkERvOWwQ8I3Sb6dnZlvAE4pSQKWMOYGqRHVFkjcRMbC1eQlUHFPM671dI_3--3XV_E4B-d1Lwwi2uIzbJlLm8tXY1mYo7ILoclVE_o8LASMEb_s1qpzBizwq-bo0NVhBKlymL4nLga3T886FiSkRYnmVMMk31jIjlX58S-2BHOz_r9H24C1aiPpdErPb8IcZluw-k1ecAuWbHmnnG4D7-pws-yqnBijbPwWjz6dK8xtJVbmmONY57YYKlROp8jHRt5S4WQHXm6uB5ddtxqZ4ErN27krA-ETSXXUwzn6PKVMCcaFlJyEgiYhlQGTsSZ5KhQTRMZUoqdS5fmp0Q4M6C40snGGe-CkIqZEouAqDRmGIua87ceoN2gqCBMSN8GbQRjJSk_cjLUYRTau8ERkUI8M6lGFehPOapP3Ukzjr8XbBuZ6YYVwEw5nfoqqz20aEW6V43zK9n-3OoHl7uChF_Xu-vcHsGLuU56jHEIjnxR4BIvyIx9OJ8f2nfoCF0DGUg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Anomaly+Detection+with+Guided+Autoencoder&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Xiang%2C+Pei&rft.au=Ali%2C+Shahzad&rft.au=Jung%2C+Soon+Ki&rft.au=Zhou%2C+Huixin&rft.date=2022&rft.pub=IEEE&rft.issn=0196-2892&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTGRS.2022.3207165&rft.externalDocID=9893839 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |