Hyperspectral Anomaly Detection with Guided Autoencoder

Recently, autoencoder-based hyperspectral anomaly detection methods have demonstrated excellent performance on hyperspectral images (HSIs). The autoencoder (AE) can simultaneously reconstruct both the anomaly targets and background, but the lack of prior information limits ability to detect anomalie...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on geoscience and remote sensing Ročník 60; s. 1
Hlavní autoři: Xiang, Pei, Ali, Shahzad, Jung, Soon Ki, Zhou, Huixin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0196-2892, 1558-0644
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recently, autoencoder-based hyperspectral anomaly detection methods have demonstrated excellent performance on hyperspectral images (HSIs). The autoencoder (AE) can simultaneously reconstruct both the anomaly targets and background, but the lack of prior information limits ability to detect anomalies. This study proposes a novel hyperspectral anomaly detection method based on a guided AE to reduce the feature representation for anomaly targets. First, a multi-layer AE network with skip connections is proposed to fully extract the abundant latent features from HSIs and enhance the expressive ability of the network. The reconstructed HSI can be obtained by the proposed AE network. Second, to suppress anomaly targets in the obtained reconstructed HSI and better represent background features, a guided module based on a guided image is added to the network to reduce the feature representation of anomaly targets by providing feedback information. Moreover, the guided image is calculated using a proposed spectral similarity method that uses the local spatial features of the HSI. Finally, we use the reconstruction error as a performance metric and compare the results of our proposed method with other state-of-the-art methods on six real-world HSIs. The results demonstrate the effectiveness and superiority of the proposed method.
AbstractList Recently, autoencoder-based hyperspectral anomaly detection methods have demonstrated excellent performance on hyperspectral images (HSIs). The autoencoder (AE) can simultaneously reconstruct both the anomaly targets and background, but the lack of prior information limits ability to detect anomalies. This study proposes a novel hyperspectral anomaly detection method based on a guided AE to reduce the feature representation for anomaly targets. First, a multi-layer AE network with skip connections is proposed to fully extract the abundant latent features from HSIs and enhance the expressive ability of the network. The reconstructed HSI can be obtained by the proposed AE network. Second, to suppress anomaly targets in the obtained reconstructed HSI and better represent background features, a guided module based on a guided image is added to the network to reduce the feature representation of anomaly targets by providing feedback information. Moreover, the guided image is calculated using a proposed spectral similarity method that uses the local spatial features of the HSI. Finally, we use the reconstruction error as a performance metric and compare the results of our proposed method with other state-of-the-art methods on six real-world HSIs. The results demonstrate the effectiveness and superiority of the proposed method.
Recently, autoencoder (AE)-based hyperspectral anomaly detection methods have demonstrated excellent performance on hyperspectral images (HSIs). The AE can simultaneously reconstruct both the anomaly targets and the background, but the lack of prior information limits the ability to detect anomalies. This study proposes a novel hyperspectral anomaly detection method based on a guided AE to reduce the feature representation for the anomaly targets. First, a multilayer AE network with skip connections is proposed to fully extract the abundant latent features from HSIs and enhance the expressive ability of the network. The reconstructed HSI can be obtained by the proposed AE network. Second, to suppress the anomaly targets in the obtained reconstructed HSI and better represent background features, a guided module based on a guided image is added to the network to reduce the feature representation of the anomaly targets by providing feedback information. Moreover, the guided image is calculated using a proposed spectral similarity method that uses the local spatial features of the HSI. Finally, we use the reconstruction error as a performance metric and compare the results of our proposed method with other state-of-the-art methods on six real-world HSIs. The results demonstrate the effectiveness and superiority of the proposed method.
Author Xiang, Pei
Jung, Soon Ki
Ali, Shahzad
Zhou, Huixin
Author_xml – sequence: 1
  givenname: Pei
  orcidid: 0000-0003-1895-1894
  surname: Xiang
  fullname: Xiang, Pei
  organization: School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, China
– sequence: 2
  givenname: Shahzad
  orcidid: 0000-0002-4949-8335
  surname: Ali
  fullname: Ali, Shahzad
  organization: School of Computer Science and Engineering, Kyungpook National University, Daegu, Republic of Korea
– sequence: 3
  givenname: Soon Ki
  orcidid: 0000-0003-0239-6785
  surname: Jung
  fullname: Jung, Soon Ki
  organization: School of Computer Science and Engineering, Kyungpook National University, Daegu, Republic of Korea
– sequence: 4
  givenname: Huixin
  surname: Zhou
  fullname: Zhou, Huixin
  organization: School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, China
BookMark eNp9kMFKw0AQhhepYFt9APES8Jy6M7ubzR5L1VYoCFrPS9xMMCXNxk2C9O1NqHjw4Glg-L_5mW_GJrWvibFr4AsAbu5265fXBXLEhUCuIVFnbApKpTFPpJywKQeTxJgavGCztt1zDlKBnjK9OTYU2oZcF7IqWtb-kFXH6J66YVP6Ovoqu49o3Zc55dGy7zzVzucULtl5kVUtXf3MOXt7fNitNvH2ef20Wm5jh0Z0sVMG0AlplNYEuhAyN1Ib5zQmRrwnwinpMgUoTC4Nukw44nmRcyg4DpSYs9vT3Sb4z57azu59H-qh0qJGkJiCkEMKTikXfNsGKmwTykMWjha4Hf3Y0Y8d_dgfPwOj_zCu7LLx58FEWf1L3pzIkoh-m0xqRCqM-AYAinNY
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TGRS_2023_3327630
crossref_primary_10_1109_LSP_2025_3553433
crossref_primary_10_1109_TGRS_2025_3537331
crossref_primary_10_1109_TGRS_2025_3534185
crossref_primary_10_1080_2150704X_2024_2391092
crossref_primary_10_1109_JSTARS_2024_3404607
crossref_primary_10_1109_TGRS_2025_3540385
crossref_primary_10_1109_TGRS_2025_3541353
crossref_primary_10_3390_rs16040717
crossref_primary_10_1007_s10489_025_06504_3
crossref_primary_10_1109_TIM_2023_3323997
crossref_primary_10_3390_rs16030434
crossref_primary_10_3390_rs16111837
crossref_primary_10_1109_TGRS_2025_3547145
crossref_primary_10_1109_TGRS_2024_3496355
crossref_primary_10_1109_LGRS_2024_3449635
crossref_primary_10_1109_TIM_2024_3403211
crossref_primary_10_3390_rs17040695
crossref_primary_10_1109_TGRS_2025_3547381
crossref_primary_10_1109_TGRS_2025_3568121
crossref_primary_10_1109_JSTARS_2025_3559079
crossref_primary_10_1109_TGRS_2024_3399313
crossref_primary_10_1109_JSTARS_2025_3576899
crossref_primary_10_1109_LGRS_2023_3330473
crossref_primary_10_1109_TGRS_2024_3351179
crossref_primary_10_1109_TGRS_2024_3477256
crossref_primary_10_1109_JSTARS_2025_3580751
crossref_primary_10_1109_JSTARS_2024_3478848
crossref_primary_10_1109_TIM_2025_3553235
crossref_primary_10_1109_LGRS_2024_3404951
crossref_primary_10_1109_TGRS_2024_3355184
crossref_primary_10_1109_TGRS_2025_3593391
crossref_primary_10_1109_JSEN_2024_3455258
crossref_primary_10_1109_TGRS_2024_3388476
crossref_primary_10_1109_TGRS_2023_3341245
crossref_primary_10_1109_TIM_2025_3582323
crossref_primary_10_1109_JSTARS_2024_3447896
crossref_primary_10_1109_TGRS_2023_3285893
crossref_primary_10_1109_TGRS_2023_3334562
crossref_primary_10_1109_TGRS_2024_3444191
crossref_primary_10_1109_TIM_2023_3330225
crossref_primary_10_1109_TGRS_2025_3593019
crossref_primary_10_1109_JSTARS_2022_3229834
crossref_primary_10_1080_01431161_2025_2459214
crossref_primary_10_3390_rs15174263
crossref_primary_10_1109_JSTARS_2024_3522388
crossref_primary_10_1109_TIM_2022_3222499
crossref_primary_10_3390_rs15184430
crossref_primary_10_1109_TGRS_2024_3388426
crossref_primary_10_1109_TGRS_2023_3335484
crossref_primary_10_1109_TGRS_2023_3346923
crossref_primary_10_1007_s11760_024_03238_6
crossref_primary_10_1109_TGRS_2024_3364573
crossref_primary_10_1109_TGRS_2025_3530397
crossref_primary_10_1109_LGRS_2023_3271899
crossref_primary_10_3390_rs15225266
crossref_primary_10_1109_TGRS_2024_3417326
crossref_primary_10_3390_s24175664
crossref_primary_10_1109_TGRS_2023_3248599
crossref_primary_10_1109_TGRS_2024_3456799
crossref_primary_10_1109_TGRS_2024_3361469
crossref_primary_10_1109_JSTARS_2025_3525743
crossref_primary_10_1016_j_infrared_2025_105942
crossref_primary_10_1109_TIM_2024_3446609
crossref_primary_10_1080_01431161_2024_2346186
crossref_primary_10_1109_LGRS_2024_3355471
crossref_primary_10_1109_TGRS_2023_3274661
crossref_primary_10_3390_rs16010135
crossref_primary_10_3390_rs16163036
crossref_primary_10_1080_13682199_2025_2489850
crossref_primary_10_1109_JSTARS_2024_3393995
crossref_primary_10_1109_JSTARS_2025_3542457
crossref_primary_10_1109_TGRS_2023_3329639
crossref_primary_10_1109_TGRS_2025_3532225
crossref_primary_10_1109_TIM_2025_3551470
crossref_primary_10_1109_JSTARS_2023_3296876
crossref_primary_10_3390_rs15112853
crossref_primary_10_1109_TIM_2024_3405582
Cites_doi 10.1109/79.974730
10.1109/TSP.2020.2991311
10.1109/TGRS.2004.841487
10.1109/TGRS.2019.2944419
10.1109/TGRS.2014.2343955
10.1016/j.neunet.2019.08.012
10.1109/MGRS.2021.3105440
10.1109/JSTSP.2011.2113170
10.1109/TGRS.2019.2936609
10.1117/12.718789
10.1109/LGRS.2021.3049711
10.1080/01431161.2019.1708504
10.1109/JSTARS.2014.2302446
10.1109/IGARSS.2019.8898697
10.1109/JSTARS.2020.2990457
10.1109/TGRS.2015.2493201
10.1109/TNNLS.2018.2852738
10.1609/aaai.v33i01.33011311
10.1109/TGRS.2020.3040221
10.1109/JSTARS.2021.3052968
10.1109/TGRS.2017.2710145
10.1109/TGRS.2021.3057721
10.1117/1.JRS.8.083641
10.1109/ICCV.2015.123
10.1109/TGRS.2020.3004478
10.1109/TIP.2017.2658954
10.1109/TNNLS.2020.3038659
10.1109/ICIP.2015.7351663
10.1007/s00138-020-01059-4
10.1109/TGRS.2020.2965995
10.1109/TGRS.2015.2479299
10.1117/1.3386069
10.1109/TGRS.2021.3131878
10.1109/TGRS.2017.2767068
10.1109/TGRS.2020.3021671
10.1109/TGRS.2018.2818159
10.1109/TGRS.2021.3069734
10.1109/TIP.2020.2965302
10.1117/12.2195180
10.1109/TGRS.2021.3117765
10.1109/29.60107
10.1109/TGRS.2018.2821168
10.1109/TGRS.2008.2006364
10.1109/TGRS.2021.3081177
10.1109/TCYB.2020.2968750
10.1016/j.infrared.2018.06.001
10.1109/TGRS.2020.3038722
10.1109/TGRS.2021.3097097
10.1126/science.1127647
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2022.3207165
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1
ExternalDocumentID 10_1109_TGRS_2022_3207165
9893839
Genre orig-research
GrantInformation_xml – fundername: BK21 FOUR project (AI-driven Convergence Software Education Research Program)
  grantid: 4199990214394
– fundername: 111 project
  grantid: B17035
– fundername: China Scholarship Council
  grantid: 202106960025
  funderid: 10.13039/501100004543
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-c5912c349577e17f34d9479cc72693b63c54ca51239d492ca3ce0dfd01f024953
IEDL.DBID RIE
ISICitedReferencesCount 110
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000864196200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-2892
IngestDate Tue Aug 26 15:40:29 EDT 2025
Tue Nov 18 22:37:09 EST 2025
Sat Nov 29 02:50:25 EST 2025
Wed Aug 27 02:29:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-c5912c349577e17f34d9479cc72693b63c54ca51239d492ca3ce0dfd01f024953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1895-1894
0000-0002-4949-8335
0000-0003-0239-6785
PQID 2721428134
PQPubID 85465
PageCount 1
ParticipantIDs crossref_primary_10_1109_TGRS_2022_3207165
crossref_citationtrail_10_1109_TGRS_2022_3207165
ieee_primary_9893839
proquest_journals_2721428134
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
Du (ref49) 2017
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref18
  doi: 10.1109/79.974730
– ident: ref8
  doi: 10.1109/TSP.2020.2991311
– ident: ref23
  doi: 10.1109/TGRS.2004.841487
– ident: ref38
  doi: 10.1109/TGRS.2019.2944419
– ident: ref25
  doi: 10.1109/TGRS.2014.2343955
– ident: ref35
  doi: 10.1016/j.neunet.2019.08.012
– ident: ref9
  doi: 10.1109/MGRS.2021.3105440
– ident: ref24
  doi: 10.1109/JSTSP.2011.2113170
– ident: ref33
  doi: 10.1109/TGRS.2019.2936609
– ident: ref20
  doi: 10.1117/12.718789
– ident: ref37
  doi: 10.1109/LGRS.2021.3049711
– ident: ref41
  doi: 10.1080/01431161.2019.1708504
– ident: ref21
  doi: 10.1109/JSTARS.2014.2302446
– ident: ref34
  doi: 10.1109/IGARSS.2019.8898697
– ident: ref11
  doi: 10.1109/JSTARS.2020.2990457
– ident: ref29
  doi: 10.1109/TGRS.2015.2493201
– ident: ref39
  doi: 10.1109/TNNLS.2018.2852738
– ident: ref45
  doi: 10.1609/aaai.v33i01.33011311
– ident: ref4
  doi: 10.1109/TGRS.2020.3040221
– ident: ref7
  doi: 10.1109/JSTARS.2021.3052968
– ident: ref47
  doi: 10.1109/TGRS.2017.2710145
– ident: ref16
  doi: 10.1109/TGRS.2021.3057721
– ident: ref27
  doi: 10.1117/1.JRS.8.083641
– ident: ref40
  doi: 10.1109/ICCV.2015.123
– ident: ref1
  doi: 10.1109/TGRS.2020.3004478
– ident: ref42
  doi: 10.1109/TIP.2017.2658954
– ident: ref32
  doi: 10.1109/TNNLS.2020.3038659
– ident: ref26
  doi: 10.1109/ICIP.2015.7351663
– ident: ref48
  doi: 10.1007/s00138-020-01059-4
– ident: ref43
  doi: 10.1109/TGRS.2020.2965995
– ident: ref28
  doi: 10.1109/TGRS.2015.2479299
– ident: ref19
  doi: 10.1117/1.3386069
– ident: ref44
  doi: 10.1109/TGRS.2021.3131878
– ident: ref46
  doi: 10.1109/TGRS.2017.2767068
– ident: ref50
  doi: 10.1109/TGRS.2020.3021671
– ident: ref30
  doi: 10.1109/TGRS.2018.2818159
– ident: ref3
  doi: 10.1109/TGRS.2021.3069734
– ident: ref5
  doi: 10.1109/TIP.2020.2965302
– ident: ref12
  doi: 10.1117/12.2195180
– ident: ref22
  doi: 10.1109/TGRS.2021.3117765
– ident: ref17
  doi: 10.1109/29.60107
– ident: ref10
  doi: 10.1109/TGRS.2018.2821168
– ident: ref51
  doi: 10.1109/TGRS.2008.2006364
– ident: ref2
  doi: 10.1109/TGRS.2021.3081177
– ident: ref31
  doi: 10.1109/TCYB.2020.2968750
– year: 2017
  ident: ref49
  article-title: Technical report: Scene label ground truth map for MUUFL Gulfport data set
– ident: ref36
  doi: 10.1016/j.infrared.2018.06.001
– ident: ref6
  doi: 10.1109/TGRS.2020.3038722
– ident: ref14
  doi: 10.1109/TGRS.2020.2965995
– ident: ref15
  doi: 10.1109/TGRS.2021.3097097
– ident: ref13
  doi: 10.1126/science.1127647
SSID ssj0014517
Score 2.6427486
Snippet Recently, autoencoder-based hyperspectral anomaly detection methods have demonstrated excellent performance on hyperspectral images (HSIs). The autoencoder...
Recently, autoencoder (AE)-based hyperspectral anomaly detection methods have demonstrated excellent performance on hyperspectral images (HSIs). The AE can...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Anomalies
Anomaly detection
autoencoder
Detection
Feature extraction
guide image
Hyperspectral image
Hyperspectral imaging
Image reconstruction
Matrix decomposition
Methods
Multilayers
Object detection
Representations
Sparse matrices
Title Hyperspectral Anomaly Detection with Guided Autoencoder
URI https://ieeexplore.ieee.org/document/9893839
https://www.proquest.com/docview/2721428134
Volume 60
WOSCitedRecordID wos000864196200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1qUdCDH61itUoOnsS0ye4m2z0Wte1BimiF3kKyO4FCTaRNBf-9u5u0FBTBWw47IbxJ8nZ2Zt4A3FCSBCxhzA1SI6otkLiJjIWryUug4p5mXOvpJz4e96ZT8VyDu00vDCLa4jPsmEuby1e5XJmjsq7Q5KoJfQd2OOdlr9YmY8ACv2qNDl0dRJAqg-l7ojsZvrzqSJCQDiWaUQ2PbHGQHary409s6WVw9L8HO4bDahvp9Eu_n0ANswYcbIkLNmDPFnfKZRP4SAebZU_lwhhl-Xs8_3IesLB1WJljDmOd4WqmUDn9VZEbcUuFi1N4GzxO7kduNTDBlZq1C1cGwieS6piHc_R5SpkSjAspOQkFTUIqAyZjTfFUKCaIjKlET6XK81OjHBjQM6hneYbn4KQipkSi4CoNGYYi5rznx6i3ZyoIExK3wFtDGMlKTdwMtZhHNqrwRGRQjwzqUYV6C243Jh-llMZfi5sG5s3CCuEWtNd-iqqPbRkRbnXjfMoufre6hH1z7_LkpA31YrHCK9iVn8Vsubi279E3xF3DCw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60KurBt1ifOXgSU5PdTbZ7LL4q1iJawVtIdidQqKm0ieC_d3eTBkERvOWwQ8I3Sb6dnZlvAE4pSQKWMOYGqRHVFkjcRMbC1eQlUHFPM671dI_3--3XV_E4B-d1Lwwi2uIzbJlLm8tXY1mYo7ILoclVE_o8LASMEb_s1qpzBizwq-bo0NVhBKlymL4nLga3T886FiSkRYnmVMMk31jIjlX58S-2BHOz_r9H24C1aiPpdErPb8IcZluw-k1ecAuWbHmnnG4D7-pws-yqnBijbPwWjz6dK8xtJVbmmONY57YYKlROp8jHRt5S4WQHXm6uB5ddtxqZ4ErN27krA-ETSXXUwzn6PKVMCcaFlJyEgiYhlQGTsSZ5KhQTRMZUoqdS5fmp0Q4M6C40snGGe-CkIqZEouAqDRmGIua87ceoN2gqCBMSN8GbQRjJSk_cjLUYRTau8ERkUI8M6lGFehPOapP3Ukzjr8XbBuZ6YYVwEw5nfoqqz20aEW6V43zK9n-3OoHl7uChF_Xu-vcHsGLuU56jHEIjnxR4BIvyIx9OJ8f2nfoCF0DGUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Anomaly+Detection+with+Guided+Autoencoder&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Xiang%2C+Pei&rft.au=Ali%2C+Shahzad&rft.au=Jung%2C+Soon+Ki&rft.au=Zhou%2C+Huixin&rft.date=2022&rft.pub=IEEE&rft.issn=0196-2892&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTGRS.2022.3207165&rft.externalDocID=9893839
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon