Distributed Task Scheduling in Serverless Edge Computing Networks for the Internet of Things: A Learning Approach

By delegating the infrastructure management, such as provisioning or scaling to third-party providers, serverless edge computing has recently been widely adopted in several applications, especially Internet of Things (IoT) applications. Task scheduling is a critical issue in serverless edge computin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal Jg. 9; H. 20; S. 19634 - 19648
Hauptverfasser: Tang, Qinqin, Xie, Renchao, Yu, Fei Richard, Chen, Tianjiao, Zhang, Ran, Huang, Tao, Liu, Yunjie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 15.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2327-4662, 2327-4662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract By delegating the infrastructure management, such as provisioning or scaling to third-party providers, serverless edge computing has recently been widely adopted in several applications, especially Internet of Things (IoT) applications. Task scheduling is a critical issue in serverless edge computing as it significantly impacts the quality of user experience. In contrast to the centralized scheduling in the cloud center, serverless edge task scheduling is more challenging due to the heterogeneous and resource-constrained nature of edge resources. This article aims to study the distributed task scheduling for the IoT in serverless edge computing networks, in which heterogeneous serverless edge computing nodes are rational individuals with interests to optimize their own scheduling utility while the nodes only have access to local observations. The task scheduling competition process is formulated as a partially observable stochastic game (POSG) to enable serverless edge computing nodes to noncooperatively schedule tasks and allocate computing resources depending on their locally observed system state, which takes into account the associated task generation state, data queue state, communication channel state, and previous computing resource allocation state. To solve the proposed POSG and deal with the partial observability, a multiagent task scheduling algorithm based on the dueling double deep recurrent <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-network (D3RQN) method is developed to approximate the optimal task scheduling and resource allocation solution. Finally, extensive simulation experiments are conducted to validate the effectiveness and superiority of the proposed scheme.
AbstractList By delegating the infrastructure management, such as provisioning or scaling to third-party providers, serverless edge computing has recently been widely adopted in several applications, especially Internet of Things (IoT) applications. Task scheduling is a critical issue in serverless edge computing as it significantly impacts the quality of user experience. In contrast to the centralized scheduling in the cloud center, serverless edge task scheduling is more challenging due to the heterogeneous and resource-constrained nature of edge resources. This article aims to study the distributed task scheduling for the IoT in serverless edge computing networks, in which heterogeneous serverless edge computing nodes are rational individuals with interests to optimize their own scheduling utility while the nodes only have access to local observations. The task scheduling competition process is formulated as a partially observable stochastic game (POSG) to enable serverless edge computing nodes to noncooperatively schedule tasks and allocate computing resources depending on their locally observed system state, which takes into account the associated task generation state, data queue state, communication channel state, and previous computing resource allocation state. To solve the proposed POSG and deal with the partial observability, a multiagent task scheduling algorithm based on the dueling double deep recurrent [Formula Omitted]-network (D3RQN) method is developed to approximate the optimal task scheduling and resource allocation solution. Finally, extensive simulation experiments are conducted to validate the effectiveness and superiority of the proposed scheme.
By delegating the infrastructure management, such as provisioning or scaling to third-party providers, serverless edge computing has recently been widely adopted in several applications, especially Internet of Things (IoT) applications. Task scheduling is a critical issue in serverless edge computing as it significantly impacts the quality of user experience. In contrast to the centralized scheduling in the cloud center, serverless edge task scheduling is more challenging due to the heterogeneous and resource-constrained nature of edge resources. This article aims to study the distributed task scheduling for the IoT in serverless edge computing networks, in which heterogeneous serverless edge computing nodes are rational individuals with interests to optimize their own scheduling utility while the nodes only have access to local observations. The task scheduling competition process is formulated as a partially observable stochastic game (POSG) to enable serverless edge computing nodes to noncooperatively schedule tasks and allocate computing resources depending on their locally observed system state, which takes into account the associated task generation state, data queue state, communication channel state, and previous computing resource allocation state. To solve the proposed POSG and deal with the partial observability, a multiagent task scheduling algorithm based on the dueling double deep recurrent <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-network (D3RQN) method is developed to approximate the optimal task scheduling and resource allocation solution. Finally, extensive simulation experiments are conducted to validate the effectiveness and superiority of the proposed scheme.
Author Tang, Qinqin
Zhang, Ran
Xie, Renchao
Chen, Tianjiao
Yu, Fei Richard
Liu, Yunjie
Huang, Tao
Author_xml – sequence: 1
  givenname: Qinqin
  orcidid: 0000-0002-3930-7005
  surname: Tang
  fullname: Tang, Qinqin
  email: qqtang@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 2
  givenname: Renchao
  orcidid: 0000-0002-2825-8463
  surname: Xie
  fullname: Xie, Renchao
  email: renchao_xie@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 3
  givenname: Fei Richard
  orcidid: 0000-0003-1006-7594
  surname: Yu
  fullname: Yu, Fei Richard
  email: richard.yu@carleton.ca
  organization: School of Information Technology, Carleton University, Ottawa, ON, Canada
– sequence: 4
  givenname: Tianjiao
  orcidid: 0000-0002-2931-3487
  surname: Chen
  fullname: Chen, Tianjiao
  email: 2013210074@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 5
  givenname: Ran
  orcidid: 0000-0001-7666-0599
  surname: Zhang
  fullname: Zhang, Ran
  email: zhangran@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 6
  givenname: Tao
  orcidid: 0000-0002-3545-1122
  surname: Huang
  fullname: Huang, Tao
  email: htao@bupt.edu.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 7
  givenname: Yunjie
  surname: Liu
  fullname: Liu, Yunjie
  email: liuyj@chinaunicom.cn
  organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
BookMark eNp9kE1LAzEQhoNUsGp_gHgJeG5NZj_ieiu1aqXowfW8ZLOzbfqRtElW8d-7S0XEg6cZmOeZYd5T0jPWICEXnI04Z9n10-wlHwEDGEU8FTEXR6QPEYhhnKbQ-9WfkIH3K8ZYqyU8S_tkf6d9cLpsAlY0l35NX9USq2ajzYJqQ1_RvaPboPd0Wi2QTux214Ru-Izhw7q1p7V1NCyRzkxAZzBQW9N82SL-lo7pHKUzHT_e7ZyVanlOjmu58Tj4rmfk7X6aTx6H85eH2WQ8HyrIojBUcRYnZakqwVABlEzFPJYyEcBvKgalSjJVpmlaRwCYAauEUiIBjFsdVQrRGbk67G3P7hv0oVjZxpn2ZAECIIkzIVhLiQOlnPXeYV0oHWTQ1gQn9abgrOgiLrqIiy7i4jvi1uR_zJ3TW-k-_3UuD45GxB8-E-1XURR9AfuRiVw
CODEN IITJAU
CitedBy_id crossref_primary_10_3390_info15050250
crossref_primary_10_1007_s10586_023_03991_2
crossref_primary_10_1016_j_adhoc_2023_103254
crossref_primary_10_1109_ACCESS_2024_3385230
crossref_primary_10_1109_TMC_2023_3348165
crossref_primary_10_1109_ACCESS_2024_3402611
crossref_primary_10_1109_ACCESS_2024_3490671
crossref_primary_10_1109_TIV_2024_3384184
crossref_primary_10_1109_TITS_2024_3394130
crossref_primary_10_1109_TNSE_2024_3375374
crossref_primary_10_1109_TMC_2023_3343969
crossref_primary_10_1109_TC_2024_3388897
crossref_primary_10_1109_TPDS_2025_3591010
crossref_primary_10_3390_s24061863
crossref_primary_10_1109_TCE_2024_3476079
crossref_primary_10_1016_j_future_2024_04_003
crossref_primary_10_1016_j_heliyon_2024_e29916
crossref_primary_10_1109_TMC_2024_3355118
crossref_primary_10_1109_TII_2022_3217477
crossref_primary_10_1007_s00607_024_01335_5
crossref_primary_10_1007_s10586_023_04264_8
crossref_primary_10_1109_JIOT_2025_3553219
crossref_primary_10_1631_FITEE_2400240
crossref_primary_10_3390_electronics12153306
crossref_primary_10_1109_COMST_2023_3338153
crossref_primary_10_1109_JIOT_2023_3332421
crossref_primary_10_1049_cmu2_70017
crossref_primary_10_1016_j_future_2023_09_016
crossref_primary_10_1016_j_future_2024_01_020
crossref_primary_10_1016_j_comnet_2025_111673
crossref_primary_10_3390_fi17040140
crossref_primary_10_1109_JIOT_2025_3530986
crossref_primary_10_1002_dac_70146
crossref_primary_10_1109_TSC_2024_3520864
crossref_primary_10_1016_j_adhoc_2025_103863
crossref_primary_10_1007_s10462_024_10947_4
crossref_primary_10_1109_TMC_2023_3323524
crossref_primary_10_1109_JSAC_2022_3227081
crossref_primary_10_1109_TMC_2024_3440066
crossref_primary_10_1016_j_future_2025_107873
crossref_primary_10_1109_JSAC_2024_3365889
crossref_primary_10_1016_j_future_2025_108121
crossref_primary_10_1186_s13677_025_00737_w
crossref_primary_10_1016_j_comnet_2025_111486
crossref_primary_10_1109_TSUSC_2023_3336691
crossref_primary_10_1016_j_adhoc_2025_103854
crossref_primary_10_1109_TCOMM_2024_3412741
crossref_primary_10_3390_pr12071328
crossref_primary_10_1109_JIOT_2024_3488283
crossref_primary_10_1002_rnc_7453
crossref_primary_10_1109_TCC_2023_3280170
Cites_doi 10.1109/ACCESS.2019.2902846
10.1109/COMST.2019.2916583
10.1109/JSAC.2019.2894306
10.1007/978-3-319-67262-5_15
10.1109/JIOT.2020.2971323
10.1109/ICFC.2019.00008
10.1109/TII.2020.3017573
10.1007/978-981-10-5026-8_1
10.1109/JSAC.2020.2986615
10.1109/MCOM.2018.1701095
10.1145/3437378.3444367
10.1109/TPDS.2020.3028841
10.1109/TNSM.2020.3023305
10.1109/TCSS.2020.3008995
10.1109/TVT.2019.2935450
10.1109/TGCN.2021.3125543
10.1109/JIOT.2020.3004500
10.1109/TCC.2020.3033373
10.1109/TWC.2019.2933417
10.1109/JIOT.2020.3004223
10.1109/TSMC.2020.2967936
10.1109/GLOCOM.2018.8647611
10.1109/TMC.2020.3036871
10.1109/MVT.2019.2903655
10.1109/TSP.2012.2187284
10.1109/JSAC.2019.2906793
10.1109/TSC.2021.3052139
10.1162/089976699300016070
10.1145/3125719.3125727
10.1109/JIOT.2020.3042428
10.1145/2378104.2378125
10.1016/j.jmsy.2021.07.015
10.1109/MWC.001.2000466
10.1016/j.future.2020.07.017
10.1109/JIOT.2018.2871706
10.1109/TVT.2018.2890726
10.1109/MIC.2017.2911430
10.1109/MCOM.001.1900498
10.1016/j.future.2018.11.014
10.1109/JIOT.2020.3047105
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2022.3167417
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 19648
ExternalDocumentID 10_1109_JIOT_2022_3167417
9757233
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Beijing
  grantid: 4212004; L201002
  funderid: 10.13039/501100004826
– fundername: BUPT Excellent Ph.D. Students Foundation
  grantid: CX2021302
– fundername: National Key Research and Development Program of China
  grantid: 2019YFB1804403
  funderid: 10.13039/501100012166
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-c4945bbcd70ec22b0c414aa57218d02bc59cb666f322e920d7cc752e4c29ec623
IEDL.DBID RIE
ISICitedReferencesCount 71
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000865097300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4662
IngestDate Sun Nov 30 05:01:43 EST 2025
Tue Nov 18 22:16:04 EST 2025
Sat Nov 29 06:17:06 EST 2025
Wed Aug 27 02:14:20 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 20
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-c4945bbcd70ec22b0c414aa57218d02bc59cb666f322e920d7cc752e4c29ec623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2825-8463
0000-0002-3930-7005
0000-0002-2931-3487
0000-0002-3545-1122
0000-0001-7666-0599
0000-0003-1006-7594
PQID 2722549770
PQPubID 2040421
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_JIOT_2022_3167417
proquest_journals_2722549770
ieee_primary_9757233
crossref_primary_10_1109_JIOT_2022_3167417
PublicationCentury 2000
PublicationDate 2022-10-15
PublicationDateYYYYMMDD 2022-10-15
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-15
  day: 15
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
Lillicrap (ref32) 2015
ref37
ref14
ref36
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref44
ref21
Bahdanau (ref33) 2016
ref28
ref27
ref29
ref8
ref7
ref4
Gupta (ref22) 2020
ref6
ref5
Osborne (ref43) 2004
Hellerstein (ref3) 2018
ref40
Fox (ref9) 2017
References_xml – ident: ref36
  doi: 10.1109/ACCESS.2019.2902846
– ident: ref41
  doi: 10.1109/COMST.2019.2916583
– ident: ref12
  doi: 10.1109/JSAC.2019.2894306
– ident: ref21
  doi: 10.1007/978-3-319-67262-5_15
– year: 2015
  ident: ref32
  article-title: Continuous control with deep reinforcement learning
  publication-title: arXiv preprint arXiv:1509.02971
– ident: ref14
  doi: 10.1109/JIOT.2020.2971323
– ident: ref23
  doi: 10.1109/ICFC.2019.00008
– ident: ref26
  doi: 10.1109/TII.2020.3017573
– ident: ref6
  doi: 10.1007/978-981-10-5026-8_1
– ident: ref11
  doi: 10.1109/JSAC.2020.2986615
– ident: ref15
  doi: 10.1109/MCOM.2018.1701095
– volume-title: An Introduction to Game Theory
  year: 2004
  ident: ref43
– year: 2016
  ident: ref33
  article-title: An actor-critic algorithm for sequence prediction
  publication-title: arXiv preprint arXiv:1607.07086
– ident: ref4
  doi: 10.1145/3437378.3444367
– ident: ref5
  doi: 10.1109/TPDS.2020.3028841
– ident: ref24
  doi: 10.1109/TNSM.2020.3023305
– ident: ref7
  doi: 10.1109/TCSS.2020.3008995
– ident: ref27
  doi: 10.1109/TVT.2019.2935450
– ident: ref28
  doi: 10.1109/TGCN.2021.3125543
– ident: ref1
  doi: 10.1109/JIOT.2020.3004500
– year: 2017
  ident: ref9
  article-title: Status of serverless computing and function-as-a-service (FaaS) in industry and research
  publication-title: arXiv:1708.08028
– ident: ref8
  doi: 10.1109/TCC.2020.3033373
– ident: ref44
  doi: 10.1109/TWC.2019.2933417
– ident: ref13
  doi: 10.1109/JIOT.2020.3004223
– ident: ref39
  doi: 10.1109/TSMC.2020.2967936
– ident: ref38
  doi: 10.1109/GLOCOM.2018.8647611
– ident: ref25
  doi: 10.1109/TMC.2020.3036871
– year: 2020
  ident: ref22
  article-title: Utility-based resource allocation and pricing for serverless computing
  publication-title: arXiv:2008.07793
– ident: ref31
  doi: 10.1109/MVT.2019.2903655
– ident: ref29
  doi: 10.1109/TSP.2012.2187284
– ident: ref2
  doi: 10.1109/JSAC.2019.2906793
– ident: ref46
  doi: 10.1109/TSC.2021.3052139
– year: 2018
  ident: ref3
  article-title: Serverless computing: One step forward, two steps back
  publication-title: arXiv:1812.03651
– ident: ref37
  doi: 10.1162/089976699300016070
– ident: ref10
  doi: 10.1145/3125719.3125727
– ident: ref18
  doi: 10.1109/JIOT.2020.3042428
– ident: ref30
  doi: 10.1145/2378104.2378125
– ident: ref34
  doi: 10.1016/j.jmsy.2021.07.015
– ident: ref20
  doi: 10.1109/MWC.001.2000466
– ident: ref19
  doi: 10.1016/j.future.2020.07.017
– ident: ref45
  doi: 10.1109/JIOT.2018.2871706
– ident: ref40
  doi: 10.1109/TVT.2018.2890726
– ident: ref16
  doi: 10.1109/MIC.2017.2911430
– ident: ref17
  doi: 10.1109/MCOM.001.1900498
– ident: ref35
  doi: 10.1016/j.future.2018.11.014
– ident: ref42
  doi: 10.1109/JIOT.2020.3047105
SSID ssj0001105196
Score 2.5115187
Snippet By delegating the infrastructure management, such as provisioning or scaling to third-party providers, serverless edge computing has recently been widely...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19634
SubjectTerms Algorithms
Cloud computing
Computational modeling
Deep reinforcement learning (DRL)
distributed task scheduling
Edge computing
Internet of Things
Internet of Things (IoT)
Job shop scheduling
Multiagent systems
Nodes
Optimization
Processor scheduling
Provisioning
Resource allocation
Resource scheduling
Scheduling
Serverless computing
serverless edge computing
stochastic game
Task analysis
Task scheduling
User experience
Title Distributed Task Scheduling in Serverless Edge Computing Networks for the Internet of Things: A Learning Approach
URI https://ieeexplore.ieee.org/document/9757233
https://www.proquest.com/docview/2722549770
Volume 9
WOSCitedRecordID wos000865097300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYAceDCeIrxUg6cEGVJmpKV2wRDgNDgMBC3qnkUJtAG6-D3Y7fZOICQuFVKHLVxE392Yn8ABzl6ybg3qqjtchkpR0TuRcwjiwKFcMq6KpjzcKN7vfbjY3o3B0ezXBjvfXX5zB_TY3WW70b2g0JlrVQnWsbxPMxrretcre94iiAwchIOLgVPW9dXt310AKU8pmxvVVGSfZueikvlxwZcWZWLxv_eZwWWA3pknVrdqzDnh2vQmDIzsLBQ1-H9nOrhEpWVd6yfly_Y9IxGhXLP2WDIaIfwdMxesq578qwegRp79bXwkiGYZQgOWR0y9BM2KlhN8nnKOiyUZX1inVCTfAPuL7r9s8sokCtEFi38JLIqVYkx1mnurZSGWyVUnuMHibbj0tgktQZ9mwJXvE8ld9panUivUNxbBE2bsDAcDf0WsMIgRvTcxQLRFUIc41LteFHoWBgtTLsJfDrvmQ2Vx4kA4zWrPBCeZqSqjFSVBVU14XAm8laX3fir8zrpZtYxqKUJu1PlZmFhlpnUklxirfn271I7sERjk3kSyS4sTMYffg8W7edkUI73q3_uC1Np1gw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xkuDCe7VdXj5wQgRsx1k33Coe4lEKh4K4RfEjLFrUQtPy-5lJ3HIAIXGLZE8SZ2LPN2PPfAC7OXrJuDaqqOlyGSlHRO5FzCOLAoVwyroqmHPf1p1O8-EhvZ2C_UkujPe-OnzmD-iy2st3fTuiUNlhqhMt43gaZhOlpKiztT4iKoLgyN-wdSl4enh5cdNFF1DKA8r3VhUp2YfxqdhUPi3BlV05W_rZGy3DYsCPrFUrfAWmfG8VlsbcDCxM1TV4PaGKuERm5R3r5uV_bPqHZoWyz9lTj9Ea4WmjvWSn7tGz-g7U2KkPhpcM4SxDeMjqoKEfsn7BaprPI9ZioTDrI2uFquTrcHd22j0-jwK9QmTRxg8jq1KVGGOd5t5KabhVQuU5Dkg0HZfGJqk16N0UOOd9KrnT1upEeoXi3iJs-gUzvX7P_wZWGESJnrtYIL5CkGNcqh0vCh0Lo4VpNoCPv3tmQ-1xosB4ziofhKcZqSojVWVBVQ3Ym4i81IU3vuu8RrqZdAxqacDmWLlZmJplJrUkp1hr_udrqR2YP-9et7P2RedqAxboOWSsRLIJM8PByG_BnH0bPpWD7er_ewebWtlT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Task+Scheduling+in+Serverless+Edge+Computing+Networks+for+the+Internet+of+Things%3A+A+Learning+Approach&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Tang%2C+Qinqin&rft.au=Xie%2C+Renchao&rft.au=Yu%2C+Fei+Richard&rft.au=Chen%2C+Tianjiao&rft.date=2022-10-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=9&rft.issue=20&rft.spage=19634&rft_id=info:doi/10.1109%2FJIOT.2022.3167417&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon