Scenario-Based Robust Remanufacturing Scheduling Problem Using Improved Biogeography-Based Optimization Algorithm
As a promising method for organizing remanufacturing production activities, remanufacturing scheduling has attracted increasing attention in recent years. However, extant studies have primarily focused on solving remanufacturing scheduling problems in a deterministic environment, while neglecting th...
Uložené v:
| Vydané v: | IEEE transactions on systems, man, and cybernetics. Systems Ročník 53; číslo 6; s. 1 - 14 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2168-2216, 2168-2232 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | As a promising method for organizing remanufacturing production activities, remanufacturing scheduling has attracted increasing attention in recent years. However, extant studies have primarily focused on solving remanufacturing scheduling problems in a deterministic environment, while neglecting the impact of uncertainties on remanufacturing. Therefore, a new scenario-based robust remanufacturing scheduling problem was investigated in this study, and a robust optimization model for this problem was established. In the proposed model, a discrete scenario set is used to describe the uncertain arrival time and uncertain processing time of end-of-life products, and the variable start-up batch size constraint is considered to improve the practicality and flexibility of the model. To solve this model, an improved biogeography-based optimization algorithm with a new three-dimensional unequal-length representation scheme is proposed, in which, new migration and mutation operators, a local search strategy, and a new batch promotion mechanism are designed to improve the algorithmic performance. The results of the experiments demonstrate the feasibility of the proposed model and the superiority of the presented algorithm in solving the proposed model. |
|---|---|
| AbstractList | As a promising method for organizing remanufacturing production activities, remanufacturing scheduling has attracted increasing attention in recent years. However, extant studies have primarily focused on solving remanufacturing scheduling problems in a deterministic environment, while neglecting the impact of uncertainties on remanufacturing. Therefore, a new scenario-based robust remanufacturing scheduling problem was investigated in this study, and a robust optimization model for this problem was established. In the proposed model, a discrete scenario set is used to describe the uncertain arrival time and uncertain processing time of end-of-life products, and the variable start-up batch size constraint is considered to improve the practicality and flexibility of the model. To solve this model, an improved biogeography-based optimization algorithm with a new three-dimensional unequal-length representation scheme is proposed, in which, new migration and mutation operators, a local search strategy, and a new batch promotion mechanism are designed to improve the algorithmic performance. The results of the experiments demonstrate the feasibility of the proposed model and the superiority of the presented algorithm in solving the proposed model. |
| Author | Chen, Mengjiao Zhang, Shuai Zhang, Wenyu Shi, Jiaxuan |
| Author_xml | – sequence: 1 givenname: Wenyu orcidid: 0000-0002-8906-5411 surname: Zhang fullname: Zhang, Wenyu organization: School of Information Management and Artificial Intelligence, Zhejiang University of Finance and Economics, Hangzhou, China – sequence: 2 givenname: Jiaxuan orcidid: 0000-0001-8251-5689 surname: Shi fullname: Shi, Jiaxuan organization: School of Information Management and Artificial Intelligence, Zhejiang University of Finance and Economics, Hangzhou, China – sequence: 3 givenname: Shuai orcidid: 0000-0002-6405-584X surname: Zhang fullname: Zhang, Shuai organization: School of Information Management and Artificial Intelligence, Zhejiang University of Finance and Economics, Hangzhou, China – sequence: 4 givenname: Mengjiao surname: Chen fullname: Chen, Mengjiao organization: School of Information Management and Artificial Intelligence, Zhejiang University of Finance and Economics, Hangzhou, China |
| BookMark | eNp9kN9LwzAQx4NMcE7_APGl4HNncklr-6jDXzBRtvlc0vS2ZbTNlqSC_vWmbvjgg-Tg7sj3c3d8T8mgNS0ScsHomDGaXy_mL5MxUIAxB0iE4EdkCCzNYgAOg9-apSfk3LkNpZRBlnKaDslurrCVVpv4TjqsopkpO-ejGTay7ZZS-c7qdhXN1Rqrru7LN2vKGpvo3fXdc7O15iOAd9qs0Kys3K4_D7Net143-kt6bdrotl4Zq_26OSPHS1k7PD_kEXl_uF9MnuLp6-Pz5HYaK8i5j5VIbhIKZSkFy5nKqkSKtFQJcrFMwqekAoVC5FIpXiZVSJBxyFlFpYAK-Ihc7eeGA3cdOl9sTGfbsLKAjIlE8BBBdbNXKWucs7gslPY_F3srdV0wWvQWF73FRW9xcbA4kOwPubW6kfbzX-Zyz2hE_NXneZ6Gx78B0ZGLJA |
| CODEN | ITSMFE |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_129590 crossref_primary_10_1109_TSMC_2024_3510384 crossref_primary_10_1016_j_aei_2025_103195 crossref_primary_10_1007_s40747_025_01907_8 crossref_primary_10_1109_TSMC_2024_3357872 crossref_primary_10_3390_math12152387 crossref_primary_10_1016_j_cie_2023_109817 crossref_primary_10_1016_j_compeleceng_2024_109813 crossref_primary_10_1002_mde_4420 crossref_primary_10_3390_machines13090762 |
| Cites_doi | 10.1016/j.buildenv.2021.107855 10.1109/TSMC.2017.2788879 10.1007/s10951-021-00683-w 10.1007/s00170-010-2642-2 10.1155/2015/184643 10.1109/TEVC.2008.919004 10.1016/j.omega.2005.01.007 10.1016/j.compind.2014.02.002 10.1016/S0925-5273(97)00097-2 10.1016/j.omega.2017.09.003 10.1007/s00500-018-3177-y 10.1016/j.eswa.2021.115693 10.1016/j.enbuild.2016.03.035 10.1016/j.cie.2020.106491 10.1007/s11831-021-09580-z 10.1016/j.ins.2016.01.046 10.1007/s10845-015-1082-0 10.1016/j.jclepro.2020.123364 10.1080/0305215X.2019.1607848 10.1109/TSMC.2018.2881686 10.1016/j.aei.2019.03.006 10.1016/j.cie.2021.107219 10.1016/j.ijpe.2004.11.017 10.1080/00207543.2013.793425 10.1016/j.ijpe.2019.107557 10.1007/s11465-019-0560-z 10.3934/mbe.2019101 10.1007/s00170-007-1354-8 10.1016/j.cie.2018.04.048 10.1080/0951192X.2016.1187293 10.1016/j.rcim.2019.03.004 10.1109/ACCESS.2021.3114712 10.1007/s10951-006-0326-4 10.1016/j.ins.2010.05.035 10.1016/S0166-3615(01)00100-2 10.1109/TSMC.2021.3131849 10.1155/2013/986218 10.1016/S0272-6963(00)00034-6 10.1109/TSMC.2019.2937648 10.1016/j.jclepro.2019.05.204 10.1016/j.cie.2016.05.005 10.1016/j.jmsy.2020.08.006 10.1016/j.chaos.2017.10.012 10.1007/s10845-021-01837-5 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
| DOI | 10.1109/TSMC.2022.3225443 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2168-2232 |
| EndPage | 14 |
| ExternalDocumentID | 10_1109_TSMC_2022_3225443 9996969 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51875503; 51975512 funderid: 10.13039/501100001809 – fundername: Zhejiang Natural Science Foundation of China grantid: LZ20E050001 – fundername: Zhejiang Key Research and Development Project of China grantid: 2022C03166; 2021C03153 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABQJQ ABVLG ACGFS ACIWK AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX AGSQL CITATION EJD 7SC 7SP 7TB 8FD ABAZT FR3 H8D JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-c457502bba4191c8d5a46bc5e34f5c45a04e4cee3acc3b5dacc283291d0a42d23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000992404400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2216 |
| IngestDate | Sun Nov 09 07:34:11 EST 2025 Sat Nov 29 03:45:47 EST 2025 Tue Nov 18 21:24:09 EST 2025 Tue Nov 25 14:44:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-c457502bba4191c8d5a46bc5e34f5c45a04e4cee3acc3b5dacc283291d0a42d23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8906-5411 0000-0002-6405-584X 0000-0001-8251-5689 |
| PQID | 2814543543 |
| PQPubID | 75739 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_9996969 crossref_citationtrail_10_1109_TSMC_2022_3225443 crossref_primary_10_1109_TSMC_2022_3225443 proquest_journals_2814543543 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on systems, man, and cybernetics. Systems |
| PublicationTitleAbbrev | TSMC |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 Markowitz (ref34) 1991 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 Deb (ref39) 1995; 9 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 Tsutsui (ref40) ref18 ref24 ref46 ref23 ref45 ref26 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref46 doi: 10.1016/j.buildenv.2021.107855 – ident: ref28 doi: 10.1109/TSMC.2017.2788879 – ident: ref31 doi: 10.1007/s10951-021-00683-w – ident: ref38 doi: 10.1007/s00170-010-2642-2 – ident: ref17 doi: 10.1155/2015/184643 – ident: ref16 doi: 10.1109/TEVC.2008.919004 – ident: ref19 doi: 10.1016/j.omega.2005.01.007 – ident: ref3 doi: 10.1016/j.compind.2014.02.002 – ident: ref5 doi: 10.1016/S0925-5273(97)00097-2 – ident: ref13 doi: 10.1016/j.omega.2017.09.003 – ident: ref43 doi: 10.1007/s00500-018-3177-y – ident: ref32 doi: 10.1016/j.eswa.2021.115693 – ident: ref47 doi: 10.1016/j.enbuild.2016.03.035 – ident: ref15 doi: 10.1016/j.cie.2020.106491 – ident: ref26 doi: 10.1007/s11831-021-09580-z – ident: ref41 doi: 10.1016/j.ins.2016.01.046 – ident: ref42 doi: 10.1007/s10845-015-1082-0 – ident: ref1 doi: 10.1016/j.jclepro.2020.123364 – ident: ref12 doi: 10.1080/0305215X.2019.1607848 – ident: ref29 doi: 10.1109/TSMC.2018.2881686 – start-page: 657 volume-title: Proc. 1st Annu. Conf. Genet. Evol. Comput. ident: ref40 article-title: Multi-parent recombination with simplex crossover in real-coded genetic algorithms – ident: ref45 doi: 10.1016/j.aei.2019.03.006 – ident: ref22 doi: 10.1016/j.cie.2021.107219 – ident: ref20 doi: 10.1016/j.ijpe.2004.11.017 – ident: ref23 doi: 10.1080/00207543.2013.793425 – ident: ref14 doi: 10.1016/j.ijpe.2019.107557 – volume-title: Portfolio Selection: Efficient Diversification of Investments year: 1991 ident: ref34 – ident: ref10 doi: 10.1007/s11465-019-0560-z – ident: ref25 doi: 10.3934/mbe.2019101 – ident: ref37 doi: 10.1007/s00170-007-1354-8 – ident: ref6 doi: 10.1016/j.cie.2018.04.048 – ident: ref11 doi: 10.1080/0951192X.2016.1187293 – ident: ref9 doi: 10.1016/j.rcim.2019.03.004 – ident: ref30 doi: 10.1109/ACCESS.2021.3114712 – ident: ref35 doi: 10.1007/s10951-006-0326-4 – ident: ref36 doi: 10.1016/j.ins.2010.05.035 – ident: ref4 doi: 10.1016/S0166-3615(01)00100-2 – ident: ref27 doi: 10.1109/TSMC.2021.3131849 – ident: ref44 doi: 10.1155/2013/986218 – ident: ref2 doi: 10.1016/S0272-6963(00)00034-6 – ident: ref24 doi: 10.1109/TSMC.2019.2937648 – ident: ref33 doi: 10.1016/j.jclepro.2019.05.204 – ident: ref18 doi: 10.1016/j.cie.2016.05.005 – volume: 9 start-page: 115 issue: 2 year: 1995 ident: ref39 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst. – ident: ref7 doi: 10.1016/j.jmsy.2020.08.006 – ident: ref8 doi: 10.1016/j.chaos.2017.10.012 – ident: ref21 doi: 10.1007/s10845-021-01837-5 |
| SSID | ssj0001286306 |
| Score | 2.3037715 |
| Snippet | As a promising method for organizing remanufacturing production activities, remanufacturing scheduling has attracted increasing attention in recent years.... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Biogeography Biogeography-based optimization (BBO) algorithm Biological system modeling discrete scenario set End of life Heuristic algorithms Job shop scheduling Optimal scheduling Optimization algorithms Optimization methods Optimization models Production scheduling Remanufacturing remanufacturing scheduling robust scheduling Robustness Scheduling Stochastic processes Uncertainty variable start-up batch size |
| Title | Scenario-Based Robust Remanufacturing Scheduling Problem Using Improved Biogeography-Based Optimization Algorithm |
| URI | https://ieeexplore.ieee.org/document/9996969 https://www.proquest.com/docview/2814543543 |
| Volume | 53 |
| WOSCitedRecordID | wos000992404400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2232 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286306 issn: 2168-2216 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90-KAPfovzizz4JHZL2_TrcROHL36wKeytJGk6B1urW-ff7yWNY6IIUmgLzYXSX5q7S-7uB3CpS6DlaFk4aLuig5Iz5iQyp04u4jyRCc_DUBiyiejhIR4Ok6c1uF7mwiilTPCZaulbs5eflXKhl8ra2jjHYx3Woyiqc7VW1lPi0DdUmp4bIvh4tpuYLk3az4P7G3QGPa-lBzBj_jc1ZHhVfkzGRsP0dv73bruwbS1J0qmh34M1VezD1kp9wQN4H0hVoDNcOl1UVhnpl2Ixr0hfTXmx0CkNJkeRDBC4TEekj8hTzS9DTCQBqVccULA7LkfKFre2fT3iXDO1SZykMxmVs3H1Oj2El97t882dYzkWHImKvnIkQ3uNekJwhp6bjLOAs1DIQPksD_Ahp0wxVKQ-l9IXQYYXTW6UuBnlzMs8_wgaRVmoYyDUFUyFkSdjFHY11BF3JU94JFikfNoE-vXJU2kLkGsejElqHBGapBqlVKOUWpSacLUUeaurb_zV-EDDsmxoEWnC2Reuqf0_56kXuyxAS5H5J79LncKmJpavg8LOoFHNFuocNuRHNZ7PLszQ-wTPDNgo |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8BmwR72Acw0a1jftgTIuA4l69HioaYgA7RTuItsh2nq0QTaNP9_Ts7pmJimjRFSiLFZ0X5Ob47--5-AF9sCbSKLIuAbFdyUCrEINcVDyqVVbnOZZUkypFNpMNhdnubX6_B4SoXxhjjgs_Mkb11e_llo5d2qezYGud0rMOLGFGEXbbWkxWVLIkcmaYIE4Kfzn4bM-T58Xh0dUruoBBHdggjRn8oIses8mw6djrm7M3_vd1beO1tSXbSgf8O1ky9Da-eVBjcgYeRNjW5w00wIHVVsptGLRctuzEzWS9tUoPLUmQjgq60MekTdt0xzDAXS8C6NQcSHEybifHlrX1f32m2mfk0TnZyN2nm0_bnbBd-nH0dn54HnmUh0KTq20AjWWxcKCWRfDedlbHEROnYRFjF9FByNEiqNJJaRyou6WLpjfKw5BJFKaL3sFE3tdkDxkOFJkmFzkg4tGCnMtQyl6nC1ES8B_zxkxfalyC3TBh3hXNFeF5YlAqLUuFR6sHBSuS-q7_xr8Y7FpZVQ49ID_qPuBb-D10UIgsxJlsRow9_l_oMm-fjq8vi8tvw4iNsWZr5LkSsDxvtfGk-wUv9q50u5vtuGP4GMnfbbw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scenario-Based+Robust+Remanufacturing+Scheduling+Problem+Using+Improved+Biogeography-Based+Optimization+Algorithm&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Zhang%2C+Wenyu&rft.au=Shi%2C+Jiaxuan&rft.au=Zhang%2C+Shuai&rft.au=Chen%2C+Mengjiao&rft.date=2023-06-01&rft.pub=IEEE&rft.issn=2168-2216&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTSMC.2022.3225443&rft.externalDocID=9996969 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon |