R2-Based Hypervolume Contribution Approximation

In this letter, a new hypervolume contribution approximation method is proposed which is formulated as an R2 indicator. The basic idea of the proposed method is to use different line segments only in the hypervolume contribution region for the hypervolume contribution approximation. Comparing with a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation Vol. 24; no. 1; pp. 185 - 192
Main Authors: Shang, Ke, Ishibuchi, Hisao, Ni, Xizi
Format: Journal Article
Language:English
Published: New York IEEE 01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1089-778X, 1941-0026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this letter, a new hypervolume contribution approximation method is proposed which is formulated as an R2 indicator. The basic idea of the proposed method is to use different line segments only in the hypervolume contribution region for the hypervolume contribution approximation. Comparing with a traditional method which is based on the R2 indicator to approximate the hypervolume, the new method can directly approximate the hypervolume contribution and will utilize all the direction vectors only in the hypervolume contribution region. The new method, the traditional method, and the Monte Carlo sampling method together with two exact methods are compared through comprehensive experiments. Our results show the advantages of the new method over the other methods. Comparing with the other two approximation methods, the new method achieves the best performance for comparing hypervolume contributions of different solutions and identifying the solution with the smallest hypervolume contribution. Comparing with the exact methods, the new method is computationally efficient in high-dimensional spaces where the exact methods are impractical to use.
AbstractList In this letter, a new hypervolume contribution approximation method is proposed which is formulated as an R2 indicator. The basic idea of the proposed method is to use different line segments only in the hypervolume contribution region for the hypervolume contribution approximation. Comparing with a traditional method which is based on the R2 indicator to approximate the hypervolume, the new method can directly approximate the hypervolume contribution and will utilize all the direction vectors only in the hypervolume contribution region. The new method, the traditional method, and the Monte Carlo sampling method together with two exact methods are compared through comprehensive experiments. Our results show the advantages of the new method over the other methods. Comparing with the other two approximation methods, the new method achieves the best performance for comparing hypervolume contributions of different solutions and identifying the solution with the smallest hypervolume contribution. Comparing with the exact methods, the new method is computationally efficient in high-dimensional spaces where the exact methods are impractical to use.
Author Ni, Xizi
Shang, Ke
Ishibuchi, Hisao
Author_xml – sequence: 1
  givenname: Ke
  orcidid: 0000-0003-2363-9504
  surname: Shang
  fullname: Shang, Ke
  email: kshang@foxmail.com
  organization: Department of Computer Science and Engineering, Shenzhen Key Laboratory of Computational Intelligence, University Key Laboratory of Evolving Intelligent Systems of Guangdong Province, Southern University of Science and Technology, Shenzhen, China
– sequence: 2
  givenname: Hisao
  orcidid: 0000-0001-9186-6472
  surname: Ishibuchi
  fullname: Ishibuchi, Hisao
  email: hisao@sustc.edu.cn
  organization: Department of Computer Science and Engineering, Shenzhen Key Laboratory of Computational Intelligence, University Key Laboratory of Evolving Intelligent Systems of Guangdong Province, Southern University of Science and Technology, Shenzhen, China
– sequence: 3
  givenname: Xizi
  orcidid: 0000-0002-6257-200X
  surname: Ni
  fullname: Ni, Xizi
  organization: Department of Computer Science and Engineering, Shenzhen Key Laboratory of Computational Intelligence, University Key Laboratory of Evolving Intelligent Systems of Guangdong Province, Southern University of Science and Technology, Shenzhen, China
BookMark eNp9kEFLAzEQhYMo2FZ_gHgpeN42k2w2ybEu1QoFQap4C9lsFra0mzXZFfvvzdriwYOnmYH55r15Y3TeuMYidAN4BoDlfLN8y2cEg5wRiSXhcIZGIFNIMCbZeeyxkAnn4v0SjUPYYgwpAzlC8xeS3Otgy-nq0Fr_6Xb93k5z13S-Lvquds100bbefdV7PUxX6KLSu2CvT3WCXh-Wm3yVrJ8fn_LFOjFE0i4x1DBdaIASWCkIj5YwtcQUWVXqQrKMlKzS1lheMJxRXmkhacWM0ZIbrQ2doLvj3aj90dvQqa3rfRMlFaGpBBA8pXELjlvGuxC8rVTro1F_UIDVkIsaclFDLuqUS2T4H8bU3c9vndf17l_y9kjW1tpfJZEJyBin30oTcmE
CODEN ITEVF5
CitedBy_id crossref_primary_10_1109_TEC_2020_3003050
crossref_primary_10_1109_TEVC_2020_3013290
crossref_primary_10_1109_TEVC_2022_3144880
crossref_primary_10_1109_TEVC_2020_3007272
crossref_primary_10_1016_j_ins_2021_04_003
crossref_primary_10_1016_j_ins_2022_07_180
crossref_primary_10_1016_j_neucom_2021_12_069
crossref_primary_10_3389_fnhum_2024_1400077
crossref_primary_10_1109_TEVC_2021_3076514
crossref_primary_10_3390_math11204247
crossref_primary_10_1016_j_swevo_2023_101434
crossref_primary_10_1016_j_eswa_2022_119080
crossref_primary_10_1109_TEVC_2022_3219081
crossref_primary_10_1016_j_ins_2023_119559
crossref_primary_10_1007_s10586_024_04675_1
crossref_primary_10_1016_j_ins_2021_07_051
crossref_primary_10_1109_TEVC_2024_3391857
crossref_primary_10_1016_j_ins_2022_11_155
crossref_primary_10_1016_j_neucom_2024_127836
crossref_primary_10_1109_TEVC_2020_3027620
crossref_primary_10_1109_TEVC_2024_3440571
crossref_primary_10_1016_j_eswa_2025_128173
crossref_primary_10_1007_s00500_021_05981_1
crossref_primary_10_1109_TEVC_2023_3243632
crossref_primary_10_1109_TCYB_2019_2960302
crossref_primary_10_1109_TEVC_2023_3234269
crossref_primary_10_1109_TEVC_2024_3400801
crossref_primary_10_1109_TEVC_2022_3230828
crossref_primary_10_1016_j_asoc_2022_109103
crossref_primary_10_1109_TEVC_2020_2964705
crossref_primary_10_1109_TEVC_2025_3531950
crossref_primary_10_1109_ACCESS_2020_3013568
crossref_primary_10_3390_math10010019
Cites_doi 10.1109/CEC.2010.5586344
10.1109/TEVC.2017.2729550
10.1162/EVCO_a_00009
10.1109/CEC.2009.4982991
10.1145/3205455.3205543
10.1016/j.ejor.2006.08.008
10.1016/j.tcs.2010.09.026
10.1109/TEVC.2013.2281525
10.1109/TEVC.2008.919001
10.1109/TEVC.2010.2077298
10.1007/BFb0056872
10.1162/EVCO_a_00135
10.1145/1830483.1830578
10.1007/978-3-540-31880-4_5
10.1016/j.comgeo.2010.03.004
10.1162/evco_a_00226
10.1007/s10732-016-9309-6
10.1109/TEVC.2017.2704118
10.1109/CEC.2013.6557783
10.1007/978-3-642-04045-0_27
10.1145/2739480.2754776
10.1109/TCYB.2014.2367526
10.1109/CEC.2012.6256171
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2019.2909271
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 192
ExternalDocumentID 10_1109_TEVC_2019_2909271
8681657
Genre orig-research
GrantInformation_xml – fundername: Science and Technology Innovation Committee Foundation of Shenzhen
  grantid: ZDSYS201703031748284
– fundername: Program for Guangdong Introducing Innovative and Enterpreneurial Teams
  grantid: 2017ZT07X386
– fundername: Program for University Key Laboratory of Guangdong Province
  grantid: 2017KSYS008
– fundername: National Natural Science Foundation of China
  grantid: 61876075
  funderid: 10.13039/501100001809
– fundername: Shenzhen Peacock Plan
  grantid: KQTD2016112514355531
  funderid: 10.13039/501100012234
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-c3c5aba11d15d82709203e2cb6fdab9562d5faece7b50637fa893f5cca97caac3
IEDL.DBID RIE
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510708100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Nov 30 05:37:06 EST 2025
Tue Nov 18 21:46:38 EST 2025
Sat Nov 29 03:13:48 EST 2025
Wed Aug 27 02:30:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-c3c5aba11d15d82709203e2cb6fdab9562d5faece7b50637fa893f5cca97caac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6257-200X
0000-0003-2363-9504
0000-0001-9186-6472
PQID 2349118743
PQPubID 85418
PageCount 8
ParticipantIDs crossref_primary_10_1109_TEVC_2019_2909271
proquest_journals_2349118743
ieee_primary_8681657
crossref_citationtrail_10_1109_TEVC_2019_2909271
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref23
ref15
ref14
ref20
ref11
ref10
gómez (ref22) 2015
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref2
  doi: 10.1109/CEC.2010.5586344
– ident: ref5
  doi: 10.1109/TEVC.2017.2729550
– ident: ref8
  doi: 10.1162/EVCO_a_00009
– ident: ref10
  doi: 10.1109/CEC.2009.4982991
– ident: ref13
  doi: 10.1145/3205455.3205543
– ident: ref15
  doi: 10.1016/j.ejor.2006.08.008
– ident: ref9
  doi: 10.1016/j.tcs.2010.09.026
– ident: ref4
  doi: 10.1109/TEVC.2013.2281525
– ident: ref17
  doi: 10.1109/TEVC.2008.919001
– ident: ref3
  doi: 10.1109/TEVC.2010.2077298
– ident: ref1
  doi: 10.1007/BFb0056872
– ident: ref23
  doi: 10.1162/EVCO_a_00135
– ident: ref11
  doi: 10.1145/1830483.1830578
– ident: ref14
  doi: 10.1007/978-3-540-31880-4_5
– ident: ref6
  doi: 10.1016/j.comgeo.2010.03.004
– ident: ref20
  doi: 10.1162/evco_a_00226
– ident: ref19
  doi: 10.1007/s10732-016-9309-6
– ident: ref12
  doi: 10.1109/TEVC.2017.2704118
– ident: ref21
  doi: 10.1109/CEC.2013.6557783
– ident: ref7
  doi: 10.1007/978-3-642-04045-0_27
– start-page: 679
  year: 2015
  ident: ref22
  article-title: Improved metaheuristic based on the R2 indicator for many-objective optimization
  publication-title: Proc ACM Conf Genetic Evol Comput
  doi: 10.1145/2739480.2754776
– ident: ref16
  doi: 10.1109/TCYB.2014.2367526
– ident: ref18
  doi: 10.1109/CEC.2012.6256171
SSID ssj0014519
Score 2.5153897
Snippet In this letter, a new hypervolume contribution approximation method is proposed which is formulated as an R2 indicator. The basic idea of the proposed method...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 185
SubjectTerms Approximation
Approximation methods
Evolutionary multiobjective optimization (EMO)
hypervolume contribution
Indexes
Methods
Monte Carlo methods
Monte Carlo simulation
Nickel
Optimization
R2 indicator
Sociology
Title R2-Based Hypervolume Contribution Approximation
URI https://ieeexplore.ieee.org/document/8681657
https://www.proquest.com/docview/2349118743
Volume 24
WOSCitedRecordID wos000510708100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB3a4kEPVlvFapUcPIlpN7tJNnuspaWnIlKlt7DZ3UBBWumH-PPdSTZFUQRvOexC8vZjZjIz7wHchkKFTErjEyJDDFCQA5IZP-AoeEQVS4guxCb4dJrM5-KxBvf7XhhjTFF8Znr4WOTy9Urt8FdZP4mTII54Heqcx2Wv1j5jgDQpZTG9sB5jMncZzICI_mz0MsQiLtGjggjKg282qBBV-XETF-Zl3Pzfi53AsXMjvUG57qdQM8sWNCuJBs-d2BYcfeEbbEP_ifoP1mxpb2LDz3V5M3lIUFXJXnkD5Bj_WJQNjWfwPB7NhhPfKSb4yprtra-YimQmg0AHkU4ot19LmKEqi3MtMxsKUR3l0ijDs8j6JjyX1l3JI7uKgispFTuHxnK1NBfgxTRnSC4WcZ2E2nDr10qB_Ot5lidGkg6QCsNUOTpxVLV4TYuwgogUYU8R9tTB3oG7_ZS3kkvjr8FtxHk_0EHcgW61UKk7bZuUslCgbHrILn-fdQWHFOPkotq6C43temeu4UC9bxeb9U2xkT4Bp9PEng
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1qFdSD1apYrZqDJzHtZjfpZo-1tFSsRaRKb2Gzu4GCtNIP8ee7k6RBUQRvOexC8vZjZjIz7wFc-UL5TErjEiJ9DFCQA5IZ1-MoeEQVC4lOxSb4cBiOx-KxBDdFL4wxJi0-Mw18THP5eqZW-KusGbZCrxXwDdgMfJ-SrFuryBkgUUpWTi-szxiO8xymR0Rz1H3pYBmXaFBBBOXeNyuUyqr8uItTA9Or_O_V9mEvdySddrbyB1Ay0ypU1iINTn5mq7D7hXHwEJpP1L21hks7fRuAzrO7yUGKqrXwldNGlvGPSdbSeATPve6o03dzzQRXWcO9dBVTgYyl52kv0CHl9msJM1TFrUTL2AZDVAeJNMrwOLDeCU-kdViSwK6j4EpKxY6hPJ1NzQk4LZowpBcLuA59bbj1bKVABvYkTkIjSQ3IGsNI5YTiqGvxGqWBBRERwh4h7FEOew2uiylvGZvGX4MPEediYA5xDerrhYry87aIKPMFCqf77PT3WZew3R89DKLB3fD-DHYoRs1p7XUdysv5ypzDlnpfThbzi3RTfQINZ8fl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=R2-Based+Hypervolume+Contribution+Approximation&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Shang%2C+Ke&rft.au=Ishibuchi%2C+Hisao&rft.au=Ni%2C+Xizi&rft.date=2020-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=24&rft.issue=1&rft.spage=185&rft_id=info:doi/10.1109%2FTEVC.2019.2909271&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon