Streaming Algorithms for Estimating High Set Similarities in LogLog Space
Estimating set similarity and detecting highly similar sets are fundamental problems in areas such as databases and machine learning. MinHash is a well-known technique for approximating Jaccard similarity of sets and has been successfully used for many applications. Its two compressed versions, <...
Uložené v:
| Vydané v: | IEEE transactions on knowledge and data engineering Ročník 33; číslo 10; s. 3438 - 3452 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1041-4347, 1558-2191 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Estimating set similarity and detecting highly similar sets are fundamental problems in areas such as databases and machine learning. MinHash is a well-known technique for approximating Jaccard similarity of sets and has been successfully used for many applications. Its two compressed versions, <inline-formula><tex-math notation="LaTeX">b</tex-math> <mml:math><mml:mi>b</mml:mi></mml:math><inline-graphic xlink:href="qi-ieq1-2969423.gif"/> </inline-formula>-bit MinHash and Odd Sketch, can significantly reduce the memory usage of the MinHash, especially for estimating high similarities (i.e., similarities around 1). Although MinHash can be applied to static sets as well as streaming sets, of which elements are given in a streaming fashion, unfortunately, <inline-formula><tex-math notation="LaTeX">b</tex-math> <mml:math><mml:mi>b</mml:mi></mml:math><inline-graphic xlink:href="qi-ieq2-2969423.gif"/> </inline-formula>-bit MinHash and Odd Sketch fail to deal with streaming data. To solve this problem, we previously designed a memory-efficient sketch method, MaxLogHash , to accurately estimate Jaccard similarities in streaming sets. Compared with MinHash, our method uses smaller sized registers (each register consists of less than 7 bits) to build a compact sketch for each set. In this paper, we further develop a faster method, MaxLogOPH++ . Compared with MaxLogHash, MaxLogOPH++ reduces the time complexity for updating each coming element from <inline-formula><tex-math notation="LaTeX">O(k)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mi>k</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qi-ieq3-2969423.gif"/> </inline-formula> to <inline-formula><tex-math notation="LaTeX">O(1)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qi-ieq4-2969423.gif"/> </inline-formula> with a small additional memory. We conduct experiments on a variety of datasets, and experimental results demonstrate the efficiency and effectiveness of our methods. |
|---|---|
| AbstractList | Estimating set similarity and detecting highly similar sets are fundamental problems in areas such as databases and machine learning. MinHash is a well-known technique for approximating Jaccard similarity of sets and has been successfully used for many applications. Its two compressed versions, [Formula Omitted]-bit MinHash and Odd Sketch, can significantly reduce the memory usage of the MinHash, especially for estimating high similarities (i.e., similarities around 1). Although MinHash can be applied to static sets as well as streaming sets, of which elements are given in a streaming fashion, unfortunately, [Formula Omitted]-bit MinHash and Odd Sketch fail to deal with streaming data. To solve this problem, we previously designed a memory-efficient sketch method, MaxLogHash , to accurately estimate Jaccard similarities in streaming sets. Compared with MinHash, our method uses smaller sized registers (each register consists of less than 7 bits) to build a compact sketch for each set. In this paper, we further develop a faster method, MaxLogOPH++ . Compared with MaxLogHash, MaxLogOPH++ reduces the time complexity for updating each coming element from [Formula Omitted] to [Formula Omitted] with a small additional memory. We conduct experiments on a variety of datasets, and experimental results demonstrate the efficiency and effectiveness of our methods. Estimating set similarity and detecting highly similar sets are fundamental problems in areas such as databases and machine learning. MinHash is a well-known technique for approximating Jaccard similarity of sets and has been successfully used for many applications. Its two compressed versions, <inline-formula><tex-math notation="LaTeX">b</tex-math> <mml:math><mml:mi>b</mml:mi></mml:math><inline-graphic xlink:href="qi-ieq1-2969423.gif"/> </inline-formula>-bit MinHash and Odd Sketch, can significantly reduce the memory usage of the MinHash, especially for estimating high similarities (i.e., similarities around 1). Although MinHash can be applied to static sets as well as streaming sets, of which elements are given in a streaming fashion, unfortunately, <inline-formula><tex-math notation="LaTeX">b</tex-math> <mml:math><mml:mi>b</mml:mi></mml:math><inline-graphic xlink:href="qi-ieq2-2969423.gif"/> </inline-formula>-bit MinHash and Odd Sketch fail to deal with streaming data. To solve this problem, we previously designed a memory-efficient sketch method, MaxLogHash , to accurately estimate Jaccard similarities in streaming sets. Compared with MinHash, our method uses smaller sized registers (each register consists of less than 7 bits) to build a compact sketch for each set. In this paper, we further develop a faster method, MaxLogOPH++ . Compared with MaxLogHash, MaxLogOPH++ reduces the time complexity for updating each coming element from <inline-formula><tex-math notation="LaTeX">O(k)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mi>k</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qi-ieq3-2969423.gif"/> </inline-formula> to <inline-formula><tex-math notation="LaTeX">O(1)</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="qi-ieq4-2969423.gif"/> </inline-formula> with a small additional memory. We conduct experiments on a variety of datasets, and experimental results demonstrate the efficiency and effectiveness of our methods. |
| Author | Guan, Xiaohong Tian, Guangjian Wang, Chenxu Lui, John C.S. Zhai, Qiaozhu Zhang, Yuanming Qi, Yiyan Wang, Pinghui |
| Author_xml | – sequence: 1 givenname: Yiyan orcidid: 0000-0002-8078-5834 surname: Qi fullname: Qi, Yiyan email: qiyiyan@stu.xjtu.edu.cn organization: MOE Key Laboratory for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, Shaanxi, China – sequence: 2 givenname: Pinghui orcidid: 0000-0001-5779-6108 surname: Wang fullname: Wang, Pinghui email: phwang@mail.xjtu.edu.cn organization: MOE Key Laboratory for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, Shaanxi, China – sequence: 3 givenname: Yuanming surname: Zhang fullname: Zhang, Yuanming email: zhangyuanming@stu.xjtu.edu.cn organization: MOE Key Laboratory for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, Shaanxi, China – sequence: 4 givenname: Qiaozhu orcidid: 0000-0002-7312-4923 surname: Zhai fullname: Zhai, Qiaozhu email: qzzhai@mail.xjtu.edu.cn organization: MOE Key Laboratory for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, Shaanxi, China – sequence: 5 givenname: Chenxu orcidid: 0000-0002-9539-5046 surname: Wang fullname: Wang, Chenxu email: cxwang@mail.xjtu.edu.cn organization: MOE Key Laboratory for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, Shaanxi, China – sequence: 6 givenname: Guangjian surname: Tian fullname: Tian, Guangjian email: Tian.Guangjian@huawei.com organization: Shenzhen Research Institute, Xi'an Jiaotong University, Shenzhen, China – sequence: 7 givenname: John C.S. orcidid: 0000-0001-7466-0384 surname: Lui fullname: Lui, John C.S. email: cslui@cse.cuhk.edu.hk organization: Tsinghua National Lab for Information Science and Technology, Center for Intelligent and Networked Systems, Tsinghua University, Beijing, China – sequence: 8 givenname: Xiaohong surname: Guan fullname: Guan, Xiaohong email: xhguan@mail.xjtu.edu.cn organization: Shenzhen Research Institute, Xi'an Jiaotong University, Shenzhen, China |
| BookMark | eNp9kMFOwzAMhiMEEtvgARCXSJw7kjRNmuM0BpuYxKHjXGWp22Xq2pFkB96eVJs4cECybEv-f1v-xui66ztA6IGSKaVEPW_eXxZTRhiZMiUUZ-kVGtEsyxNGFb2OPeE04SmXt2js_Z4QksucjtCqCA70wXYNnrVN72zYHTyue4cXPtiDDsNkaZsdLiDgwh5sq6PIgse2w-u-iYGLozZwh25q3Xq4v9QJ-nxdbObLZP3xtprP1olhKg0xVxIYVFoYoTUYLmWVigxUzWHLSZYJMIRUUnFlQAhT6zojteScQbbNoUon6Om89-j6rxP4UO77k-viyZJlkjLGiCRRRc8q43rvHdTl0cV33HdJSTkQKwdi5UCsvBCLHvnHY2yIBPouOG3bf52PZ6cFgN9LuRJ5KkT6A6i9evg |
| CODEN | ITKEEH |
| CitedBy_id | crossref_primary_10_1007_s12065_025_01079_x crossref_primary_10_1109_TETC_2022_3221872 crossref_primary_10_1145_3639281 crossref_primary_10_1109_TKDE_2024_3523034 crossref_primary_10_1109_TNSE_2023_3275809 crossref_primary_10_1109_TKDE_2023_3342747 |
| Cites_doi | 10.1145/543614.543615 10.1007/s10115-011-0428-y 10.1007/s41019-019-0095-7 10.1145/2566486.2568017 10.1007/978-3-030-18576-3_20 10.1145/78922.78925 10.1145/509961.509965 10.1016/0022-0000(85)90041-8 10.1145/1326561.1326564 10.1109/TKDE.2018.2886189 10.1145/276698.276876 10.1145/362686.362692 10.1109/ICDM.2010.80 10.1145/237814.237823 10.1006/jcss.1999.1690 10.1145/2806416.2806515 10.1109/69.908981 10.1145/3219819.3220089 10.1145/3097983.3097999 10.1145/2588555.2588565 10.14778/2140436.2140440 10.1016/j.dam.2008.06.020 10.1145/997817.997857 10.1017/CBO9780511813603 10.2307/3619617 10.1145/1989323.1989428 10.1145/3038912.3052598 10.1145/1526709.1526761 10.1145/1557019.1557049 10.1017/CBO9780511572050 10.1515/9783110226744 10.1109/ICDM.2016.0174 10.1109/ICDM.2017.64 10.1145/1772690.1772759 10.1109/INFOCOM.2017.8057088 10.1109/ICDE.2019.00172 10.1145/3292500.3330825 10.1145/2783258.2783406 10.1016/S0304-3975(97)00167-9 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TKDE.2020.2969423 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 3452 |
| ExternalDocumentID | 10_1109_TKDE_2020_2969423 8968366 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: GRF R4032-18 – fundername: MoE-CMCC grantid: MCM20190701 – fundername: National Natural Science Foundation of China grantid: 61922067; U1736205; 61902305 funderid: 10.13039/501100001809 – fundername: Natural Science Basic Research Plan in ZheJiang Province of China grantid: LGG18F020016 – fundername: National Key Research and Development Program of China grantid: 2018YFC0830500 funderid: 10.13039/501100012166 – fundername: Shenzhen Basic Research grantid: JCYJ20170816100819428 – fundername: Natural Science Basic Research Plan in Shaanxi Province of China grantid: 2019JM-159 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-c2d7e2eda6c6aaec477d365e9f4eb40556ec00d7949ce66cfaf50f7442e5b8ed3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000694697300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1041-4347 |
| IngestDate | Sun Nov 30 05:35:52 EST 2025 Tue Nov 18 22:35:39 EST 2025 Sat Nov 29 02:36:02 EST 2025 Wed Aug 27 02:27:34 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-c2d7e2eda6c6aaec477d365e9f4eb40556ec00d7949ce66cfaf50f7442e5b8ed3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8078-5834 0000-0001-7466-0384 0000-0002-9539-5046 0000-0002-7312-4923 0000-0001-5779-6108 |
| PQID | 2571222070 |
| PQPubID | 85438 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2571222070 crossref_primary_10_1109_TKDE_2020_2969423 crossref_citationtrail_10_1109_TKDE_2020_2969423 ieee_primary_8968366 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-01 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref15 ref14 li (ref18) 2012 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 shrivastava (ref24) 2014 ref50 ref46 ref48 ref47 gionis (ref51) 1999; 99 ref42 (ref28) 2010 ref41 ref44 ref43 manasse (ref31) 2010 ref49 ref8 ref7 ref9 ref3 ref6 haeupler (ref32) 2014 ref40 shrivastava (ref25) 2017 ref35 ref34 ref37 ref30 ref33 shrivastava (ref36) 2016 ref2 ref1 ref39 ref38 shrivastava (ref23) 2014 durand (ref45) 2003 broder (ref5) 1997 mai (ref26) 2019 flajolet (ref19) 2007 ref20 ref22 ref21 yu (ref12) 2017 ref27 li (ref4) 2011 massa (ref29) 2005 |
| References_xml | – ident: ref1 doi: 10.1145/543614.543615 – ident: ref40 doi: 10.1007/s10115-011-0428-y – start-page: 732 year: 2014 ident: ref23 article-title: Improved densification of one permutation hashing publication-title: Proc Conf Uncertainty of Artificial Intelligence – ident: ref3 doi: 10.1007/s41019-019-0095-7 – ident: ref11 doi: 10.1145/2566486.2568017 – ident: ref6 doi: 10.1007/978-3-030-18576-3_20 – ident: ref44 doi: 10.1145/78922.78925 – start-page: 2672 year: 2011 ident: ref4 article-title: Hashing algorithms for large-scale learning publication-title: Proc 24th Int Conf Neural Inf Process Syst – ident: ref30 doi: 10.1145/509961.509965 – year: 2014 ident: ref32 article-title: Consistent weighted sampling made fast, small, and easy publication-title: arXiv 1410 4266 – ident: ref13 doi: 10.1016/0022-0000(85)90041-8 – ident: ref9 doi: 10.1145/1326561.1326564 – volume: 99 start-page: 518 year: 1999 ident: ref51 article-title: Similarity search in high dimensions via hashing publication-title: Proc 5th Int Conf Very Large Data Bases – ident: ref55 doi: 10.1109/TKDE.2018.2886189 – ident: ref50 doi: 10.1145/276698.276876 – ident: ref17 doi: 10.1145/362686.362692 – ident: ref33 doi: 10.1109/ICDM.2010.80 – start-page: 121 year: 2005 ident: ref29 article-title: Controversial users demand local trust metrics: An experimental study on epinions.com community publication-title: Proc 20th Nat Conf Artif Intell – start-page: 605 year: 2003 ident: ref45 publication-title: Loglog Counting of Large Cardinalities – ident: ref42 doi: 10.1145/237814.237823 – year: 2010 ident: ref28 article-title: Text REtrieval Conference (TREC) English documents – ident: ref7 doi: 10.1006/jcss.1999.1690 – ident: ref41 doi: 10.1145/2806416.2806515 – ident: ref27 doi: 10.1109/69.908981 – ident: ref38 doi: 10.1145/3219819.3220089 – start-page: 557 year: 2014 ident: ref24 article-title: Densifying one permutation hashing via rotation for fast near neighbor search publication-title: Proc 31st Int Conf Mach Learn – ident: ref48 doi: 10.1145/3097983.3097999 – ident: ref54 doi: 10.1145/2588555.2588565 – ident: ref52 doi: 10.14778/2140436.2140440 – ident: ref47 doi: 10.1016/j.dam.2008.06.020 – ident: ref39 doi: 10.1145/997817.997857 – ident: ref22 doi: 10.1017/CBO9780511813603 – ident: ref16 doi: 10.2307/3619617 – ident: ref53 doi: 10.1145/1989323.1989428 – ident: ref37 doi: 10.1145/3038912.3052598 – year: 2017 ident: ref12 article-title: HyperMinHash: Jaccard index sketching in LogLog space publication-title: arXiv 1710 08436 – start-page: 21 year: 1997 ident: ref5 article-title: On the resemblance and containment of documents publication-title: Proc Compression Complexity Sequences – ident: ref8 doi: 10.1145/1526709.1526761 – start-page: 3122 year: 2012 ident: ref18 article-title: One permutation hashing publication-title: Proc 25th Int Conf Neural Inf Process Syst – ident: ref2 doi: 10.1145/1557019.1557049 – ident: ref15 doi: 10.1017/CBO9780511572050 – ident: ref20 doi: 10.1515/9783110226744 – ident: ref35 doi: 10.1109/ICDM.2016.0174 – ident: ref43 doi: 10.1109/ICDM.2017.64 – ident: ref10 doi: 10.1145/1772690.1772759 – ident: ref46 doi: 10.1109/INFOCOM.2017.8057088 – year: 2010 ident: ref31 article-title: Consistent weighted sampling – start-page: 3154 year: 2017 ident: ref25 article-title: Optimal densification for fast and accurate minwise hashing publication-title: Proc 34th Int Conf Mach Learn – year: 2019 ident: ref26 article-title: On densification for minwise hashing publication-title: Proc Conf Uncertainty Artif Intell – ident: ref49 doi: 10.1109/ICDE.2019.00172 – start-page: 1498 year: 2016 ident: ref36 article-title: Simple and efficient weighted minwise hashing publication-title: Proc 30th Int Conf Neural Inf Process Syst – start-page: 127 year: 2007 ident: ref19 article-title: HyperLogLog: The analysis of a near-optimal cardinality estimation algorithm publication-title: Proc Int Conf Anal Algorithms – ident: ref14 doi: 10.1145/3292500.3330825 – ident: ref34 doi: 10.1145/2783258.2783406 – ident: ref21 doi: 10.1016/S0304-3975(97)00167-9 |
| SSID | ssj0008781 |
| Score | 2.3877304 |
| Snippet | Estimating set similarity and detecting highly similar sets are fundamental problems in areas such as databases and machine learning. MinHash is a well-known... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3438 |
| SubjectTerms | Algorithms Estimation Estimation error jaccard similarity Machine learning Registers Similarity sketch Streaming algorithms Time complexity Trajectory |
| Title | Streaming Algorithms for Estimating High Set Similarities in LogLog Space |
| URI | https://ieeexplore.ieee.org/document/8968366 https://www.proquest.com/docview/2571222070 |
| Volume | 33 |
| WOSCitedRecordID | wos000694697300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-yMGTWO22adIcRVcURYRV8FbayVQL-5Dd6u93ku0uiiIIpQw0gZKv8-q8AI60TMkWsQmMbkeBVEUS5K4zIlNSRqhYWvpC4Tt9f58-P5uHOTiZ1cIQkU8-o1NH-li-HeK7-1V2lhqVxkrNw7zWalKrNZO6qfYDSdm7YJ8olrqJYLZDc_Z4e9lhTzAKTyOjjIzibzrID1X5IYm9erla_d-LrcFKY0aK8wnu6zBHgw1YnY5oEA3HbsDyl36Dm3DjYtB5n2lx3nsZjqr6tT8WbLaKDnO6s135icv8EF2qRbfqV-z3-parohqIu-ELX6LLXjZtwdNV5_HiOmhmKQTICr3mu9UUkc0VqjwnlFrbWCVkSkmFdB11CMPQMncaJKWwzMskLDXjRUnBcMbbsDAYDmgHBJW5SQxiirZgOKOcCowtYZxa1KrAFoTT082waTTu5l30Mu9whCZzgGQOkKwBpAXHsy1vky4bfy3edAjMFjaH34L9KYRZw4fjjAVSmy0glmu7v-_ag6XIZan49Lx9WKhH73QAi_hRV-PRof_EPgFgTc76 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-NAEB-8nnDnw9XzA3vn3e2DT2I0TTa72UfxKoq1CK3gW0hmJxqw7dFG_35nt2m5QxEOQljIbgjzy8zO7HwBHGiZki1iExjdjQKpiiTIXWVEHkkZoWJp6ROF-3owSO_uzM0aHK1yYYjIB5_RsRt6X76d4pM7KjtJjUpjpT7Ax4RfFC6ytVZyN9W-JSnbF2wVxVI3PsxuaE5GV797bAtG4XFklJFR_M8u5NuqvJLFfoM5b__fp23Cl0aRFKcL5L_CGk22oL1s0iAant2Cjb8qDm7DpfNC52Mei9PH--msqh_Gc8GKq-gxrzvtlZ-42A8xpFoMq3HFlq8vuiqqiehP7_kSQ7azaQduz3ujs4ug6aYQIG_pNd-tpohsrlDlOaHU2sYqIVNKKqSrqUMYhpb50yAphWVeJmGpmdCUFAxovAutyXRCeyCozE1iEFO0BQMa5VRgbAnj1KJWBXYgXFI3w6bUuOt48Zh5kyM0mQMkc4BkDSAdOFwt-bOos_He5G2HwGpiQ_wO7C8hzBpOnGcskrqsA7Fk-_b2ql_w6WJ03c_6l4Or7_A5cjErPlhvH1r17Il-wDo-19V89tP_bi9Lw9JB |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Streaming+Algorithms+for+Estimating+High+Set+Similarities+in+LogLog+Space&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Qi%2C+Yiyan&rft.au=Wang%2C+Pinghui&rft.au=Zhang%2C+Yuanming&rft.au=Zhai%2C+Qiaozhu&rft.date=2021-10-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=33&rft.issue=10&rft.spage=3438&rft.epage=3452&rft_id=info:doi/10.1109%2FTKDE.2020.2969423&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2020_2969423 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |