3-D Multistatic Ground Penetrating Radar Imaging for Augmented Reality Visualization
Ground penetrating radar (GPR) is a useful instrument for smarter infrastructure applications, in particular, for the localization and mapping of underground infrastructure and other subsurface assets, due to its ability to sense metallic and nonmetallic buried objects. For instance, air-coupled, mu...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on geoscience and remote sensing Jg. 58; H. 8; S. 5666 - 5675 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0196-2892, 1558-0644 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Ground penetrating radar (GPR) is a useful instrument for smarter infrastructure applications, in particular, for the localization and mapping of underground infrastructure and other subsurface assets, due to its ability to sense metallic and nonmetallic buried objects. For instance, air-coupled, multistatic GPR could potentially be employed to quickly produce subsurface maps for public and private stakeholders, enabling rational and more efficient planning of underground infrastructure inspection, maintenance, and construction. An application of interest in such context is a faster identification of underground utilities location and depth by innovative data visualization methods, such as augmented reality. A 3-D model of the subsurface asset is desirable for such applications. However, raw GPR data is often hard to interpret. Imaging algorithms are applied to improve GPR data readability and signal-to-noise ratio by focusing the spread energy. Here, a processing pipeline that takes raw 3-D multistatic GPR data as input and yields a 3-D model as output is proposed. Initially, a 3-D back-projection algorithm is applied to air-coupled, multistatic GPR data to recover buried target localization. An enhancement filter, tailored for tubular structures, is applied to reduce background noise and highlight structures of interest in the 3-D image. This process is successfully applied to three laboratory scenarios of plastic buried targets with different sizes and shapes. |
|---|---|
| AbstractList | Ground penetrating radar (GPR) is a useful instrument for smarter infrastructure applications, in particular, for the localization and mapping of underground infrastructure and other subsurface assets, due to its ability to sense metallic and nonmetallic buried objects. For instance, air-coupled, multistatic GPR could potentially be employed to quickly produce subsurface maps for public and private stakeholders, enabling rational and more efficient planning of underground infrastructure inspection, maintenance, and construction. An application of interest in such context is a faster identification of underground utilities location and depth by innovative data visualization methods, such as augmented reality. A 3-D model of the subsurface asset is desirable for such applications. However, raw GPR data is often hard to interpret. Imaging algorithms are applied to improve GPR data readability and signal-to-noise ratio by focusing the spread energy. Here, a processing pipeline that takes raw 3-D multistatic GPR data as input and yields a 3-D model as output is proposed. Initially, a 3-D back-projection algorithm is applied to air-coupled, multistatic GPR data to recover buried target localization. An enhancement filter, tailored for tubular structures, is applied to reduce background noise and highlight structures of interest in the 3-D image. This process is successfully applied to three laboratory scenarios of plastic buried targets with different sizes and shapes. |
| Author | Burns, Dylan Zhang, Yu Jiao, Liangbao Xia, Tian Huston, Dryver Pereira, Mauricio Orfeo, Daniel |
| Author_xml | – sequence: 1 givenname: Mauricio surname: Pereira fullname: Pereira, Mauricio organization: Department of Mechanical Engineering, The University of Vermont, Burlington, VT, USA – sequence: 2 givenname: Dylan surname: Burns fullname: Burns, Dylan organization: Department of Mechanical Engineering, The University of Vermont, Burlington, VT, USA – sequence: 3 givenname: Daniel surname: Orfeo fullname: Orfeo, Daniel organization: Department of Mechanical Engineering, The University of Vermont, Burlington, VT, USA – sequence: 4 givenname: Yu orcidid: 0000-0001-7440-3011 surname: Zhang fullname: Zhang, Yu organization: Department of Electronics and Safety, Delphi Automotive, Agoura Hills, CA, USA – sequence: 5 givenname: Liangbao surname: Jiao fullname: Jiao, Liangbao organization: Department of Telecommunications and Engineering, Nanjing Institute of Technology, Nanjing, China – sequence: 6 givenname: Dryver surname: Huston fullname: Huston, Dryver organization: Department of Mechanical Engineering, The University of Vermont, Burlington, VT, USA – sequence: 7 givenname: Tian orcidid: 0000-0002-4395-7350 surname: Xia fullname: Xia, Tian email: txia@uvm.edu organization: Department of Electrical and Biomedical Engineering, The University of Vermont, Burlington, VT, USA |
| BookMark | eNp9kMtOAjEUhhuDiYA-gHHTxPXgaefSdklQkQSjQXQ7KZ1TUgIz2Oks8OmdEeLChatzyf-dyz8gvbIqkZBrBiPGQN0tp4u3EQcOI64yyUGekT5LUxlBliQ90gemsohLxS_IoK43ACxJmeiTZRzd0-dmG1wddHCGTn3VlAV9xRKDbzvlmi50oT2d7fS6q2zl6bhZ77AMWNAF6q0LB_rh6qbNvlqiKi_JudXbGq9OcUjeHx-Wk6do_jKdTcbzyHAVh8gwoSyKgiMYbbmBlVmhRrbiOuaQaIkKFLeapwBCqYILZFDEwmZWGBsn8ZDcHufuffXZYB3yTdX4sl2Z84RnWSaApa1KHFXGV3Xt0ebGhZ872wfdNmeQdxbmnYV5Z2F-srAl2R9y791O-8O_zM2RcYj4q5dKprFU8TcWJn8X |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1061_JPCFEV_CFENG_3783 crossref_primary_10_1109_JSTARS_2025_3548410 crossref_primary_10_1109_TGRS_2023_3275306 crossref_primary_10_1109_TGRS_2023_3326743 crossref_primary_10_1061__ASCE_CP_1943_5487_0001062 crossref_primary_10_3390_rs14235972 crossref_primary_10_3390_buildings12112031 crossref_primary_10_1016_j_tust_2022_104861 crossref_primary_10_1016_j_autcon_2025_106299 crossref_primary_10_1061_JCCEE5_CPENG_5359 crossref_primary_10_1109_JSEN_2023_3244334 crossref_primary_10_1109_TGRS_2024_3382545 crossref_primary_10_1109_TGRS_2024_3439731 crossref_primary_10_3390_rs16213931 crossref_primary_10_3390_rs16213995 crossref_primary_10_1117_1_JRS_19_014519 crossref_primary_10_1007_s41062_022_00840_w crossref_primary_10_1109_TGRS_2022_3191654 crossref_primary_10_1016_j_aei_2021_101498 crossref_primary_10_3390_app122211310 crossref_primary_10_3390_s25010162 crossref_primary_10_1061_JPSEA2_PSENG_1652 crossref_primary_10_1109_JSEN_2022_3164707 crossref_primary_10_1109_TGRS_2024_3360101 crossref_primary_10_3390_app15126552 crossref_primary_10_1016_j_measurement_2025_116760 crossref_primary_10_1080_14680629_2024_2302811 crossref_primary_10_3390_ijgi9110668 crossref_primary_10_3390_buildings12111915 crossref_primary_10_1109_TGRS_2021_3095349 crossref_primary_10_1016_j_measurement_2020_107839 |
| Cites_doi | 10.1155/2014/280738 10.1109/TMI.2016.2550102 10.1007/978-3-540-79982-5_44 10.1109/TGRS.2006.870402 10.1109/2945.856997 10.1007/s00779-008-0204-5 10.1190/1.1440828 10.1061/(ASCE)EM.1943-7889.0000458 10.1016/j.media.2009.07.011 10.1190/1.1444188 10.1109/LGRS.2015.2498404 10.1118/1.1581411 10.1190/1.1440826 10.1109/LGRS.2011.2165523 10.1016/j.jappgeo.2013.04.009 10.1118/1.2804558 10.1049/PBRA015E 10.1002/rob.21605 10.1109/RADAR.2019.8835519 10.1016/j.autcon.2012.12.017 10.1109/TASE.2010.2092428 10.1007/BFb0056195 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2020.2968208 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 5675 |
| ExternalDocumentID | 10_1109_TGRS_2020_2968208 8985389 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF grantid: 1647095; 1640687 funderid: 10.13039/501100008982 – fundername: University of Vermont (UVM) SparkVT Fund and Vermont Established Program to Stimulate Competitive Research (EPSCoR) program funderid: 10.13039/100010941 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c293t-c179fe7d2e0caf2c0bcbeae1b2a3204a8e9092fa2500799d27e10d37f6f7cf343 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552371900035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 08:38:34 EDT 2025 Sat Nov 29 02:50:04 EST 2025 Tue Nov 18 22:32:50 EST 2025 Wed Aug 27 02:29:54 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-c179fe7d2e0caf2c0bcbeae1b2a3204a8e9092fa2500799d27e10d37f6f7cf343 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4395-7350 0000-0001-7440-3011 |
| PQID | 2426667015 |
| PQPubID | 85465 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2426667015 ieee_primary_8985389 crossref_primary_10_1109_TGRS_2020_2968208 crossref_citationtrail_10_1109_TGRS_2020_2968208 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-01 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref17 ref19 ref18 huston (ref9) 2017 ref24 jol (ref1) 2009 ref23 ref26 soumekh (ref16) 1999 ref25 ref20 ref22 ref21 ref27 ref8 ref4 ref6 ref5 zhang (ref7) 2014; 9063 zhang (ref3) 2015; 9437 |
| References_xml | – ident: ref13 doi: 10.1155/2014/280738 – ident: ref20 doi: 10.1109/TMI.2016.2550102 – ident: ref26 doi: 10.1007/978-3-540-79982-5_44 – ident: ref17 doi: 10.1109/TGRS.2006.870402 – year: 2017 ident: ref9 article-title: Urban underground infrastructure mapping and assessment publication-title: Sens Smart Struct Technol Civil Mech Aerosp Syst – ident: ref24 doi: 10.1109/2945.856997 – ident: ref11 doi: 10.1007/s00779-008-0204-5 – ident: ref15 doi: 10.1190/1.1440828 – ident: ref10 doi: 10.1061/(ASCE)EM.1943-7889.0000458 – volume: 9063 year: 2014 ident: ref7 article-title: Advanced signal processing method for ground penetrating radar feature detection and enhancement publication-title: Proc SPIE Nondestruct Characterizat Compos Mater Aerosp Eng Civil Infrastruct Homeland Secur – ident: ref21 doi: 10.1016/j.media.2009.07.011 – ident: ref4 doi: 10.1190/1.1444188 – ident: ref27 doi: 10.1109/LGRS.2015.2498404 – volume: 9437 year: 2015 ident: ref3 article-title: Sand moisture assessment using instantaneous phase information in ground penetrating radar data publication-title: Proc Struct Health Monitor Inspection Adv Mater Aerosp Civil Infrastruct – ident: ref25 doi: 10.1118/1.1581411 – ident: ref14 doi: 10.1190/1.1440826 – ident: ref23 doi: 10.1109/LGRS.2011.2165523 – ident: ref5 doi: 10.1016/j.jappgeo.2013.04.009 – ident: ref18 doi: 10.1118/1.2804558 – ident: ref2 doi: 10.1049/PBRA015E – year: 2009 ident: ref1 publication-title: Ground Penetrating Radar Theory and Applications – year: 1999 ident: ref16 publication-title: Synthetic Aperture Radar Signal Processing with Matlab Algorithms – ident: ref8 doi: 10.1002/rob.21605 – ident: ref22 doi: 10.1109/RADAR.2019.8835519 – ident: ref12 doi: 10.1016/j.autcon.2012.12.017 – ident: ref6 doi: 10.1109/TASE.2010.2092428 – ident: ref19 doi: 10.1007/BFb0056195 |
| SSID | ssj0014517 |
| Score | 2.5008354 |
| Snippet | Ground penetrating radar (GPR) is a useful instrument for smarter infrastructure applications, in particular, for the localization and mapping of underground... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5666 |
| SubjectTerms | 3-D feature extraction Algorithms Ambient noise Augmented reality augmented reality (AR) back-projection algorithm (BPA) Background noise Buried structures Data Data visualization enhancement filter Ground penetrating radar ground penetrating radar (GPR) imaging Imaging techniques Infrastructure Inspection Localization Mapping multistatic radar Noise reduction Object recognition Radar Radar imaging Receivers Scattering Scientific visualization Shape Signal processing Signal to noise ratio smart infrastructure Solid modeling Submarine pipelines Subsurface mapping synthetic aperture radar Three dimensional models Underground construction Underground utilities Visualization |
| Title | 3-D Multistatic Ground Penetrating Radar Imaging for Augmented Reality Visualization |
| URI | https://ieeexplore.ieee.org/document/8985389 https://www.proquest.com/docview/2426667015 |
| Volume | 58 |
| WOSCitedRecordID | wos000552371900035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UFPTgaxXXFzl4ErOmyW7SHMU3iMi6ireSptNF0Cq7rr_fJI1FUQRvPSSl5GtmvknmmwHYE6g16sRSaaSg3ZT1qJFMUOOohDSmSJOQ5Xt_pa6v04cHfTMFB40WBhFD8hl2_GO4yy9e7MQflR2m2jmXVE_DtFKy1mo1NwbdXhKl0ZK6IILHG8yE6cPBef_WRYKcdbiWzuOl33xQaKrywxIH93K29L8PW4bFSCPJUY37CkxhtQoLX4oLrsJcSO604xYMBD0hQWnr5UOPlvgDp6ogN87Ohaq51ZD0TWFG5PI5NC0ijsmSo8kwFOwsSB8DWSf3j2MvwayFm2twd3Y6OL6gsZsCtc6lv1Hrtl6JquDIrCm5ZbnN0WCScyM465oUNdO8NI4TMaV1wRUmrBCqlKWypeiKdZipXircACIM5rlA2xOYOwPAjcnR0Shp0tw5PMnbwD7XN7Ox1LjvePGUhZCD6cxDknlIsghJG_abKa91nY2_Brc8Bs3AuPxt2P4EMYs7cZwFCiKVYz2bv8_agnn_7jqpbxtm3kYT3IFZ--5AGe2Gn-wDpuzO0Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2VTcCBpQVRVh84IQyOnTrxEbGLUqFSELfIcSYVEgTUUr4f2wkVCITELQdbifzimTf2vBmAXYFKoQoMlVoKGsasRbVkgmpLJaTWWRz4LN_7dtTpxA8P6qYG-2MtDCL65DM8cI_-Lj97MSN3VHYYK-tcYjUBU60w5KxUa43vDMJWUImjJbVhBK_uMAOmDnvn3VsbC3J2wJW0Pi_-5oV8W5Ufttg7mLPF_33aEixURJIclcgvQw2LOsx_KS9Yhxmf3mmGDegJekK81tYJiB4NcUdORUZurKXzdXOLPunqTA_I5bNvW0QslyVHo74v2ZmRLnq6Tu4fh06EWUo3V-Du7LR3fEGrfgrUWKf-Ro3dfDlGGUdmdM4NS02KGoOUa8FZqGNUTPFcW1bEIqUyHmHAMhHlMo9MLkKxCpPFS4FrQITGNBVoWgJTawK41ilaIiV1nFqXJ3kT2Of6JqYqNu56XjwlPuhgKnGQJA6SpIKkCXvjKa9lpY2_BjccBuOB1fI3YfMTxKTai8PEkxAZWd6z_vusHZi96F23k_Zl52oD5tx7yhS_TZh8G4xwC6bNuwVosO1_uA-RPNIY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3-D+Multistatic+Ground+Penetrating+Radar+Imaging+for+Augmented+Reality+Visualization&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Pereira%2C+Mauricio&rft.au=Burns%2C+Dylan&rft.au=Orfeo%2C+Daniel&rft.au=Zhang%2C+Yu&rft.date=2020-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=58&rft.issue=8&rft.spage=5666&rft_id=info:doi/10.1109%2FTGRS.2020.2968208&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |