Large-scale Multiobjective Optimization via Reformulated Decision Variable Analysis
With the rising number of large-scale multiobjective optimization problems (LSMOPs) from academia and industries, some multiobjective evolutionary algorithms (MOEAs) with different decision variable handling strategies have been proposed. Decision variable analysis (DVA) is widely used in large-scal...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on evolutionary computation Jg. 28; H. 1; S. 1 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | With the rising number of large-scale multiobjective optimization problems (LSMOPs) from academia and industries, some multiobjective evolutionary algorithms (MOEAs) with different decision variable handling strategies have been proposed. Decision variable analysis (DVA) is widely used in large-scale optimization, aiming at identifying the connection between each decision variable and the objectives, and grouping those interacting decision variables to reduce the complexity of LSMOPs. Despite their effectiveness, existing DVA techniques require the unbearable cost of function evaluations for solving LSMOPs. We propose a reformulation based approach for efficient DVA to address this deficiency. Then a large-scale MOEA is proposed based on reformulated DVA, namely LERD. Specifically, the DVA process is reformulated into an optimization problem with binary decision variables, aiming to approximate different grouping results. Afterwards, each group of decision variables is used for convergence-related or diversity-related optimization. The effectiveness and efficiency of the reformulation based DVA are validated by replacing the corresponding DVA techniques in two large-scale MOEAs. Experiments in comparison with six state-of-the-art large-scale MOEAs on LSMOPs with up to 2000 decision variables have shown the promising performance of LERD. |
|---|---|
| AbstractList | With the rising number of large-scale multiobjective optimization problems (LSMOPs) from academia and industries, some multiobjective evolutionary algorithms (MOEAs) with different decision variable handling strategies have been proposed. Decision variable analysis (DVA) is widely used in large-scale optimization, aiming at identifying the connection between each decision variable and the objectives, and grouping those interacting decision variables to reduce the complexity of LSMOPs. Despite their effectiveness, existing DVA techniques require the unbearable cost of function evaluations for solving LSMOPs. We propose a reformulation-based approach for efficient DVA to address this deficiency. Then a large-scale MOEA is proposed based on reformulated DVA, namely, LERD. Specifically, the DVA process is reformulated into an optimization problem with binary decision variables, aiming to approximate different grouping results. Afterwards, each group of decision variables is used for convergence-related or diversity-related optimization. The effectiveness and efficiency of the reformulation-based DVA are validated by replacing the corresponding DVA techniques in two large-scale MOEAs. Experiments in comparison with six state-of-the-art large-scale MOEAs on LSMOPs with up to 2000 decision variables have shown the promising performance of LERD. |
| Author | Tan, Kay Chen Li, Lianghao Cheng, Ran Jin, Yaochu He, Cheng |
| Author_xml | – sequence: 1 givenname: Cheng orcidid: 0000-0003-4218-8454 surname: He fullname: He, Cheng organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China – sequence: 2 givenname: Ran orcidid: 0000-0001-9410-8263 surname: Cheng fullname: Cheng, Ran organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China – sequence: 3 givenname: Lianghao orcidid: 0000-0002-5810-8749 surname: Li fullname: Li, Lianghao organization: School of Artificial Intelligence and Automation, Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, Huazhong University of Science and Technology, Wuhan, China – sequence: 4 givenname: Kay Chen orcidid: 0000-0002-6802-2463 surname: Tan fullname: Tan, Kay Chen organization: Department of Computing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR – sequence: 5 givenname: Yaochu orcidid: 0000-0003-1100-0631 surname: Jin fullname: Jin, Yaochu organization: Chair of Nature Inspired Computing and Engineering, Faculty of Technology, Bielefeld University, Bielefeld, Germany |
| BookMark | eNp9kMtKAzEUhoNUsK0-gLgZcD01l7llWWq9QEXQWtyFJD2RlGmnJplCfXoztrhw4er8nPxfEr4B6m2aDSB0SfCIEMxv5tPFZEQxpSNGCcO4OEF9wjOSYkyLXsy44mlZVu9naOD9CmOS5YT30etMug9IvZY1JE9tHWyjVqCD3UHyvA12bb9k3G2SnZXJC5jGrdtaBlgmt6Ct704W0lmpIj7eyHrvrT9Hp0bWHi6Oc4je7qbzyUM6e75_nIxnqaachVQZDqZSRAPPMSswk5jr0sAyY5oroyjJC640K0tquK5wQdXSKK5jyLoqG6Lrw71b13y24INYNa2Ln_CCcoqjhbzksUUOLe0a7x0YsXV2Ld1eECw6d6JzJzp34uguMuUfRtvw4yE4aet_yasDaQHg9yXOSVZkhH0DWpF_JQ |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1109_TEVC_2025_3529938 crossref_primary_10_1007_s11227_023_05516_5 crossref_primary_10_1007_s40747_024_01616_8 crossref_primary_10_1016_j_asoc_2025_113791 crossref_primary_10_1016_j_engappai_2025_112368 crossref_primary_10_1016_j_jii_2025_100939 crossref_primary_10_1016_j_asoc_2025_112874 crossref_primary_10_1007_s40747_025_01835_7 crossref_primary_10_1016_j_ins_2024_121077 crossref_primary_10_1016_j_asoc_2025_113921 crossref_primary_10_1016_j_swevo_2023_101377 crossref_primary_10_1016_j_eswa_2025_127374 crossref_primary_10_1016_j_swevo_2023_101453 crossref_primary_10_1016_j_swevo_2023_101397 crossref_primary_10_1016_j_swevo_2025_101931 crossref_primary_10_1007_s12065_025_01070_6 crossref_primary_10_1007_s44196_025_00884_7 crossref_primary_10_1016_j_swevo_2025_102149 crossref_primary_10_1155_int_6462697 crossref_primary_10_1109_TETCI_2024_3404020 crossref_primary_10_1016_j_swevo_2025_102089 crossref_primary_10_1109_TSMC_2024_3446624 crossref_primary_10_32604_cmes_2024_049044 crossref_primary_10_1007_s00500_023_09468_z crossref_primary_10_1016_j_swevo_2025_102000 crossref_primary_10_1016_j_swevo_2025_102061 crossref_primary_10_1016_j_rico_2025_100606 crossref_primary_10_1007_s40747_024_01489_x crossref_primary_10_1109_TEVC_2024_3383095 crossref_primary_10_1038_s41598_024_64570_y crossref_primary_10_1016_j_eswa_2025_129460 crossref_primary_10_1016_j_eswa_2025_129142 crossref_primary_10_1109_TSMC_2024_3454051 crossref_primary_10_1016_j_swevo_2024_101622 crossref_primary_10_1016_j_ins_2024_120950 crossref_primary_10_1016_j_swevo_2025_101940 |
| Cites_doi | 10.1109/TFUZZ.2019.2945241 10.1145/2739480.2754666 10.1007/978-3-540-30217-9_84 10.1109/CEC.2005.1554717 10.1109/TEVC.2017.2704782 10.1007/978-3-642-15871-1_10 10.1109/TEVC.2021.3063606 10.1007/978-3-030-12598-1_27 10.1109/TEVC.2014.2308305 10.1109/TEVC.2021.3119933 10.1109/CEC.2008.4631121 10.1109/TEVC.2019.2896002 10.1016/j.swevo.2020.100684 10.1016/j.swevo.2011.03.001 10.1007/978-3-319-42978-6_4 10.1109/TCYB.2019.2906383 10.1145/2792984 10.1109/TEVC.2018.2881153 10.1109/TEVC.2013.2281535 10.1109/TEVC.2014.2350987 10.1109/CEC.2013.6557903 10.1109/TEVC.2015.2455812 10.1109/TEVC.2017.2694221 10.1109/cec.2001.934296 10.1109/4235.996017 10.1109/TEVC.2007.894202 10.1109/tevc.2021.3099487 10.1109/TSMC.2020.3003926 10.1137/s1052623496307510 10.1016/j.ins.2018.10.007 10.1007/3-540-27659-9 10.3233/ICA-170542 10.1109/TEVC.2008.925798 10.1109/TEVC.2005.851275 10.1162/evco.1994.2.3.221 10.1109/TEVC.2020.2967501 10.1007/s11390-012-1274-4 10.1007/978-3-540-30217-9_80 10.1109/TEVC.2012.2227145 10.1007/978-1-4419-9863-7_1185 10.1162/EVCO_a_00009 10.1109/TEVC.2016.2519378 10.1016/j.ejor.2006.08.008 10.1145/3470971 10.1109/TEVC.2019.2918140 10.1109/TEVC.2016.2600642 10.1109/4235.797969 10.1080/23311916.2018.1502242 10.1109/TEVC.2014.2378512 10.1109/MCI.2017.2742868 10.1145/3205651.3208250 10.1109/TCYB.2016.2600577 10.1016/j.asoc.2020.106120 10.1109/MCI.2006.1597059 10.1109/TEVC.2018.2868770 10.1016/j.ins.2020.05.103 10.1109/TEVC.2021.3130838 10.1145/2791291 10.1002/9780470479216.corpsy0491 10.1109/FSKD.2016.7603157 10.1007/s10710-005-6164-x 10.1016/j.future.2017.10.015 10.1109/TEVC.2015.2395073 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TEVC.2022.3213006 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Computer Science |
| EISSN | 1941-0026 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TEVC_2022_3213006 9914641 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61906081; 61903178; U20A20306 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-bf9ef8b1ce9503603a09c7fed43c9bfb21569bc3772f9c8062bdfb9c0624a09c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 56 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001166987200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sun Jun 29 15:23:11 EDT 2025 Tue Nov 18 22:32:49 EST 2025 Sat Nov 29 03:13:49 EST 2025 Wed Aug 27 02:10:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-bf9ef8b1ce9503603a09c7fed43c9bfb21569bc3772f9c8062bdfb9c0624a09c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9410-8263 0000-0003-1100-0631 0000-0003-4218-8454 0000-0002-5810-8749 0000-0002-6802-2463 |
| PQID | 2920300579 |
| PQPubID | 85418 |
| PageCount | 1 |
| ParticipantIDs | proquest_journals_2920300579 ieee_primary_9914641 crossref_primary_10_1109_TEVC_2022_3213006 crossref_citationtrail_10_1109_TEVC_2022_3213006 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 Cheng (ref25) 2016 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 Zille (ref44) 2019 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref43 Fonseca (ref8); 93 ref49 ref7 ref9 ref4 ref3 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref67 ref26 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 Schaffer (ref6) ref60 ref62 ref61 |
| References_xml | – ident: ref2 doi: 10.1109/TFUZZ.2019.2945241 – ident: ref55 doi: 10.1145/2739480.2754666 – volume: 93 start-page: 416 volume-title: Proc. ICGA ident: ref8 article-title: Genetic algorithms for multiobjective optimization: Formulation discussion and generalization – ident: ref12 doi: 10.1007/978-3-540-30217-9_84 – ident: ref40 doi: 10.1109/CEC.2005.1554717 – ident: ref37 doi: 10.1109/TEVC.2017.2704782 – ident: ref17 doi: 10.1007/978-3-642-15871-1_10 – ident: ref43 doi: 10.1109/TEVC.2021.3063606 – ident: ref65 doi: 10.1007/978-3-030-12598-1_27 – ident: ref45 doi: 10.1109/TEVC.2014.2308305 – ident: ref36 doi: 10.1109/TEVC.2021.3119933 – ident: ref16 doi: 10.1109/CEC.2008.4631121 – ident: ref38 doi: 10.1109/TEVC.2019.2896002 – ident: ref51 doi: 10.1016/j.swevo.2020.100684 – ident: ref14 doi: 10.1016/j.swevo.2011.03.001 – ident: ref24 doi: 10.1007/978-3-319-42978-6_4 – ident: ref41 doi: 10.1109/TCYB.2019.2906383 – ident: ref15 doi: 10.1145/2792984 – ident: ref39 doi: 10.1109/TEVC.2018.2881153 – ident: ref19 doi: 10.1109/TEVC.2013.2281535 – start-page: 93 volume-title: Proc. 1st Int. Conf. Genetic Algorithms ident: ref6 article-title: Multiple objective optimization with vector evaluated genetic algorithms – ident: ref20 doi: 10.1109/TEVC.2014.2350987 – ident: ref31 doi: 10.1109/CEC.2013.6557903 – ident: ref33 doi: 10.1109/TEVC.2015.2455812 – ident: ref53 doi: 10.1109/TEVC.2017.2694221 – ident: ref56 doi: 10.1109/cec.2001.934296 – ident: ref10 doi: 10.1109/4235.996017 – ident: ref57 doi: 10.1109/TEVC.2007.894202 – ident: ref32 doi: 10.1109/tevc.2021.3099487 – ident: ref42 doi: 10.1109/TSMC.2020.3003926 – ident: ref58 doi: 10.1137/s1052623496307510 – ident: ref35 doi: 10.1016/j.ins.2018.10.007 – volume-title: Nature inspired optimization of large problems year: 2016 ident: ref25 – ident: ref3 doi: 10.1007/3-540-27659-9 – ident: ref59 doi: 10.3233/ICA-170542 – ident: ref11 doi: 10.1109/TEVC.2008.925798 – ident: ref64 doi: 10.1109/TEVC.2005.851275 – ident: ref7 doi: 10.1162/evco.1994.2.3.221 – ident: ref28 doi: 10.1109/TEVC.2020.2967501 – ident: ref47 doi: 10.1007/s11390-012-1274-4 – ident: ref48 doi: 10.1007/978-3-540-30217-9_80 – ident: ref18 doi: 10.1109/TEVC.2012.2227145 – ident: ref60 doi: 10.1007/978-1-4419-9863-7_1185 – ident: ref23 doi: 10.1162/EVCO_a_00009 – ident: ref22 doi: 10.1109/TEVC.2016.2519378 – ident: ref13 doi: 10.1016/j.ejor.2006.08.008 – ident: ref30 doi: 10.1145/3470971 – ident: ref26 doi: 10.1109/TEVC.2019.2918140 – ident: ref34 doi: 10.1109/TEVC.2016.2600642 – ident: ref9 doi: 10.1109/4235.797969 – ident: ref1 doi: 10.1080/23311916.2018.1502242 – ident: ref21 doi: 10.1109/TEVC.2014.2378512 – ident: ref62 doi: 10.1109/MCI.2017.2742868 – ident: ref52 doi: 10.1145/3205651.3208250 – ident: ref66 doi: 10.1109/TCYB.2016.2600577 – ident: ref29 doi: 10.1016/j.asoc.2020.106120 – volume-title: Large-scale multi-objective optimisation: New approaches and a classification of the state-of-the-art year: 2019 ident: ref44 – ident: ref5 doi: 10.1109/MCI.2006.1597059 – ident: ref50 doi: 10.1109/TEVC.2018.2868770 – ident: ref4 doi: 10.1016/j.ins.2020.05.103 – ident: ref49 doi: 10.1109/TEVC.2021.3130838 – ident: ref54 doi: 10.1145/2791291 – ident: ref61 doi: 10.1002/9780470479216.corpsy0491 – ident: ref46 doi: 10.1109/FSKD.2016.7603157 – ident: ref63 doi: 10.1007/s10710-005-6164-x – ident: ref27 doi: 10.1016/j.future.2017.10.015 – ident: ref67 doi: 10.1109/TEVC.2015.2395073 |
| SSID | ssj0014519 |
| Score | 2.6090775 |
| Snippet | With the rising number of large-scale multiobjective optimization problems (LSMOPs) from academia and industries, some multiobjective evolutionary algorithms... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Convergence Decision analysis decision variable analysis Effectiveness evolutionary algorithm Evolutionary algorithms Iron Large-scale optimization Maintenance engineering Multiple objective analysis Optimization problem reformulation Sociology Statistics Variables Visualization |
| Title | Large-scale Multiobjective Optimization via Reformulated Decision Variable Analysis |
| URI | https://ieeexplore.ieee.org/document/9914641 https://www.proquest.com/docview/2920300579 |
| Volume | 28 |
| WOSCitedRecordID | wos001166987200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVg4jAOfGwgxpdy4ITo6JquaY5ogDggQDCm3aomdSUQbGiM_X7sNJtAICRuOSRV1ZfEdu3nB3BktcEkMjIwZLuCuLQ6MIYC17gry1DlZJFt7sQm1M1NOhzquyU4WXBhENEVn2Gbhy6XX4ztB_8qOyVfJk6Ypb6slKq4WouMAbdJqYrpNXmM6dBnMDuhPu1fDHoUCUZRW0acvUm-2SAnqvLjJnbm5XL9fy-2AWvejRRnFe6bsISjBqzPJRqEP7ENWP3Sb7ABdXYtq87MTXi45iLw4J1AQuF4uGPzXF1_4pYuklfP0BSzp1zcIzu3LPWFhTj3ujxiQIE2U6_EvLXJFjxeXvR7V4GXWAgs2flpYEqNZWo6FnWXbFko81BbVWIRS0KxNOQQJNpYST54qW0aEqxFabSlQcxT5TbURuMR7oCQHSbdIsaFCmm1yguMle10MSks2jRqQTj_6Jn1_cdZBuMlc3FIqDPGKWOcMo9TC44XS96q5ht_TW4yMIuJHpMW7M-RzfzxfM9Yoks6Hu7u76v2oE7Pjqvy7H2oTScfeAArdkYgTQ7dzvsEUhzW8w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5EBfXgY1Vcnzl4Eqttk22bo_hAcV1FV9lbadIpKLorvn6_M2l2URTBWw4JLf2SzExnvvkAtq02mMRGBoZsV6AqqwNjKHBVLVmFaUEW2RZObCLtdLJeT1-Nwe6IC4OIrvgM93jocvnlwL7zr7J98mVUwiz1iZZScVSztUY5A26UUpfTa_IZs57PYUah3u8e3x1SLBjHezLm_E3yzQo5WZUfd7EzMCdz_3u1eZj1jqQ4qJFfgDHsN2BuKNIg_JltwMyXjoMNmGbnsu7NvAg3bS4DD14JJhSOiTswD_UFKC7pKnnyHE3xcV-Ia2T3lsW-sBRHXplH3FGozeQrMWxusgS3J8fdw9PAiywEliz9W2AqjVVmIou6RdYslEWobVphqSThWBlyCRJtrCQvvNI2CwnYsjLa0kDxVLkM4_1BH1dAyIhpt4iqTENanRYlqtRGLUxKizaLmxAOP3pufQdyFsJ4zF0kEuqcccoZp9zj1ISd0ZLnuv3GX5MXGZjRRI9JE9aHyOb-gL7mLNIlHRN39fdVWzB12r1o5-2zzvkaTNNzVF2svQ7jby_vuAGT9oMAe9l0u_ATpyfaOg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Multiobjective+Optimization+via+Reformulated+Decision+Variable+Analysis&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=He%2C+Cheng&rft.au=Cheng%2C+Ran&rft.au=Li%2C+Lianghao&rft.au=Tan%2C+Kay+Chen&rft.date=2024-02-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=28&rft.issue=1&rft.spage=47&rft.epage=61&rft_id=info:doi/10.1109%2FTEVC.2022.3213006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2022_3213006 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |