Large-scale Multiobjective Optimization via Reformulated Decision Variable Analysis

With the rising number of large-scale multiobjective optimization problems (LSMOPs) from academia and industries, some multiobjective evolutionary algorithms (MOEAs) with different decision variable handling strategies have been proposed. Decision variable analysis (DVA) is widely used in large-scal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 28; H. 1; S. 1
Hauptverfasser: He, Cheng, Cheng, Ran, Li, Lianghao, Tan, Kay Chen, Jin, Yaochu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With the rising number of large-scale multiobjective optimization problems (LSMOPs) from academia and industries, some multiobjective evolutionary algorithms (MOEAs) with different decision variable handling strategies have been proposed. Decision variable analysis (DVA) is widely used in large-scale optimization, aiming at identifying the connection between each decision variable and the objectives, and grouping those interacting decision variables to reduce the complexity of LSMOPs. Despite their effectiveness, existing DVA techniques require the unbearable cost of function evaluations for solving LSMOPs. We propose a reformulation based approach for efficient DVA to address this deficiency. Then a large-scale MOEA is proposed based on reformulated DVA, namely LERD. Specifically, the DVA process is reformulated into an optimization problem with binary decision variables, aiming to approximate different grouping results. Afterwards, each group of decision variables is used for convergence-related or diversity-related optimization. The effectiveness and efficiency of the reformulation based DVA are validated by replacing the corresponding DVA techniques in two large-scale MOEAs. Experiments in comparison with six state-of-the-art large-scale MOEAs on LSMOPs with up to 2000 decision variables have shown the promising performance of LERD.
AbstractList With the rising number of large-scale multiobjective optimization problems (LSMOPs) from academia and industries, some multiobjective evolutionary algorithms (MOEAs) with different decision variable handling strategies have been proposed. Decision variable analysis (DVA) is widely used in large-scale optimization, aiming at identifying the connection between each decision variable and the objectives, and grouping those interacting decision variables to reduce the complexity of LSMOPs. Despite their effectiveness, existing DVA techniques require the unbearable cost of function evaluations for solving LSMOPs. We propose a reformulation-based approach for efficient DVA to address this deficiency. Then a large-scale MOEA is proposed based on reformulated DVA, namely, LERD. Specifically, the DVA process is reformulated into an optimization problem with binary decision variables, aiming to approximate different grouping results. Afterwards, each group of decision variables is used for convergence-related or diversity-related optimization. The effectiveness and efficiency of the reformulation-based DVA are validated by replacing the corresponding DVA techniques in two large-scale MOEAs. Experiments in comparison with six state-of-the-art large-scale MOEAs on LSMOPs with up to 2000 decision variables have shown the promising performance of LERD.
Author Tan, Kay Chen
Li, Lianghao
Cheng, Ran
Jin, Yaochu
He, Cheng
Author_xml – sequence: 1
  givenname: Cheng
  orcidid: 0000-0003-4218-8454
  surname: He
  fullname: He, Cheng
  organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
– sequence: 2
  givenname: Ran
  orcidid: 0000-0001-9410-8263
  surname: Cheng
  fullname: Cheng, Ran
  organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
– sequence: 3
  givenname: Lianghao
  orcidid: 0000-0002-5810-8749
  surname: Li
  fullname: Li, Lianghao
  organization: School of Artificial Intelligence and Automation, Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, Huazhong University of Science and Technology, Wuhan, China
– sequence: 4
  givenname: Kay Chen
  orcidid: 0000-0002-6802-2463
  surname: Tan
  fullname: Tan, Kay Chen
  organization: Department of Computing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
– sequence: 5
  givenname: Yaochu
  orcidid: 0000-0003-1100-0631
  surname: Jin
  fullname: Jin, Yaochu
  organization: Chair of Nature Inspired Computing and Engineering, Faculty of Technology, Bielefeld University, Bielefeld, Germany
BookMark eNp9kMtKAzEUhoNUsK0-gLgZcD01l7llWWq9QEXQWtyFJD2RlGmnJplCfXoztrhw4er8nPxfEr4B6m2aDSB0SfCIEMxv5tPFZEQxpSNGCcO4OEF9wjOSYkyLXsy44mlZVu9naOD9CmOS5YT30etMug9IvZY1JE9tHWyjVqCD3UHyvA12bb9k3G2SnZXJC5jGrdtaBlgmt6Ct704W0lmpIj7eyHrvrT9Hp0bWHi6Oc4je7qbzyUM6e75_nIxnqaachVQZDqZSRAPPMSswk5jr0sAyY5oroyjJC640K0tquK5wQdXSKK5jyLoqG6Lrw71b13y24INYNa2Ln_CCcoqjhbzksUUOLe0a7x0YsXV2Ld1eECw6d6JzJzp34uguMuUfRtvw4yE4aet_yasDaQHg9yXOSVZkhH0DWpF_JQ
CODEN ITEVF5
CitedBy_id crossref_primary_10_1109_TEVC_2025_3529938
crossref_primary_10_1007_s11227_023_05516_5
crossref_primary_10_1007_s40747_024_01616_8
crossref_primary_10_1016_j_asoc_2025_113791
crossref_primary_10_1016_j_engappai_2025_112368
crossref_primary_10_1016_j_jii_2025_100939
crossref_primary_10_1016_j_asoc_2025_112874
crossref_primary_10_1007_s40747_025_01835_7
crossref_primary_10_1016_j_ins_2024_121077
crossref_primary_10_1016_j_asoc_2025_113921
crossref_primary_10_1016_j_swevo_2023_101377
crossref_primary_10_1016_j_eswa_2025_127374
crossref_primary_10_1016_j_swevo_2023_101453
crossref_primary_10_1016_j_swevo_2023_101397
crossref_primary_10_1016_j_swevo_2025_101931
crossref_primary_10_1007_s12065_025_01070_6
crossref_primary_10_1007_s44196_025_00884_7
crossref_primary_10_1016_j_swevo_2025_102149
crossref_primary_10_1155_int_6462697
crossref_primary_10_1109_TETCI_2024_3404020
crossref_primary_10_1016_j_swevo_2025_102089
crossref_primary_10_1109_TSMC_2024_3446624
crossref_primary_10_32604_cmes_2024_049044
crossref_primary_10_1007_s00500_023_09468_z
crossref_primary_10_1016_j_swevo_2025_102000
crossref_primary_10_1016_j_swevo_2025_102061
crossref_primary_10_1016_j_rico_2025_100606
crossref_primary_10_1007_s40747_024_01489_x
crossref_primary_10_1109_TEVC_2024_3383095
crossref_primary_10_1038_s41598_024_64570_y
crossref_primary_10_1016_j_eswa_2025_129460
crossref_primary_10_1016_j_eswa_2025_129142
crossref_primary_10_1109_TSMC_2024_3454051
crossref_primary_10_1016_j_swevo_2024_101622
crossref_primary_10_1016_j_ins_2024_120950
crossref_primary_10_1016_j_swevo_2025_101940
Cites_doi 10.1109/TFUZZ.2019.2945241
10.1145/2739480.2754666
10.1007/978-3-540-30217-9_84
10.1109/CEC.2005.1554717
10.1109/TEVC.2017.2704782
10.1007/978-3-642-15871-1_10
10.1109/TEVC.2021.3063606
10.1007/978-3-030-12598-1_27
10.1109/TEVC.2014.2308305
10.1109/TEVC.2021.3119933
10.1109/CEC.2008.4631121
10.1109/TEVC.2019.2896002
10.1016/j.swevo.2020.100684
10.1016/j.swevo.2011.03.001
10.1007/978-3-319-42978-6_4
10.1109/TCYB.2019.2906383
10.1145/2792984
10.1109/TEVC.2018.2881153
10.1109/TEVC.2013.2281535
10.1109/TEVC.2014.2350987
10.1109/CEC.2013.6557903
10.1109/TEVC.2015.2455812
10.1109/TEVC.2017.2694221
10.1109/cec.2001.934296
10.1109/4235.996017
10.1109/TEVC.2007.894202
10.1109/tevc.2021.3099487
10.1109/TSMC.2020.3003926
10.1137/s1052623496307510
10.1016/j.ins.2018.10.007
10.1007/3-540-27659-9
10.3233/ICA-170542
10.1109/TEVC.2008.925798
10.1109/TEVC.2005.851275
10.1162/evco.1994.2.3.221
10.1109/TEVC.2020.2967501
10.1007/s11390-012-1274-4
10.1007/978-3-540-30217-9_80
10.1109/TEVC.2012.2227145
10.1007/978-1-4419-9863-7_1185
10.1162/EVCO_a_00009
10.1109/TEVC.2016.2519378
10.1016/j.ejor.2006.08.008
10.1145/3470971
10.1109/TEVC.2019.2918140
10.1109/TEVC.2016.2600642
10.1109/4235.797969
10.1080/23311916.2018.1502242
10.1109/TEVC.2014.2378512
10.1109/MCI.2017.2742868
10.1145/3205651.3208250
10.1109/TCYB.2016.2600577
10.1016/j.asoc.2020.106120
10.1109/MCI.2006.1597059
10.1109/TEVC.2018.2868770
10.1016/j.ins.2020.05.103
10.1109/TEVC.2021.3130838
10.1145/2791291
10.1002/9780470479216.corpsy0491
10.1109/FSKD.2016.7603157
10.1007/s10710-005-6164-x
10.1016/j.future.2017.10.015
10.1109/TEVC.2015.2395073
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TEVC.2022.3213006
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 1
ExternalDocumentID 10_1109_TEVC_2022_3213006
9914641
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61906081; 61903178; U20A20306
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-bf9ef8b1ce9503603a09c7fed43c9bfb21569bc3772f9c8062bdfb9c0624a09c3
IEDL.DBID RIE
ISICitedReferencesCount 56
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001166987200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sun Jun 29 15:23:11 EDT 2025
Tue Nov 18 22:32:49 EST 2025
Sat Nov 29 03:13:49 EST 2025
Wed Aug 27 02:10:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-bf9ef8b1ce9503603a09c7fed43c9bfb21569bc3772f9c8062bdfb9c0624a09c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9410-8263
0000-0003-1100-0631
0000-0003-4218-8454
0000-0002-5810-8749
0000-0002-6802-2463
PQID 2920300579
PQPubID 85418
PageCount 1
ParticipantIDs proquest_journals_2920300579
ieee_primary_9914641
crossref_primary_10_1109_TEVC_2022_3213006
crossref_citationtrail_10_1109_TEVC_2022_3213006
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
Cheng (ref25) 2016
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
Zille (ref44) 2019
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref43
Fonseca (ref8); 93
ref49
ref7
ref9
ref4
ref3
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref67
ref26
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
Schaffer (ref6)
ref60
ref62
ref61
References_xml – ident: ref2
  doi: 10.1109/TFUZZ.2019.2945241
– ident: ref55
  doi: 10.1145/2739480.2754666
– volume: 93
  start-page: 416
  volume-title: Proc. ICGA
  ident: ref8
  article-title: Genetic algorithms for multiobjective optimization: Formulation discussion and generalization
– ident: ref12
  doi: 10.1007/978-3-540-30217-9_84
– ident: ref40
  doi: 10.1109/CEC.2005.1554717
– ident: ref37
  doi: 10.1109/TEVC.2017.2704782
– ident: ref17
  doi: 10.1007/978-3-642-15871-1_10
– ident: ref43
  doi: 10.1109/TEVC.2021.3063606
– ident: ref65
  doi: 10.1007/978-3-030-12598-1_27
– ident: ref45
  doi: 10.1109/TEVC.2014.2308305
– ident: ref36
  doi: 10.1109/TEVC.2021.3119933
– ident: ref16
  doi: 10.1109/CEC.2008.4631121
– ident: ref38
  doi: 10.1109/TEVC.2019.2896002
– ident: ref51
  doi: 10.1016/j.swevo.2020.100684
– ident: ref14
  doi: 10.1016/j.swevo.2011.03.001
– ident: ref24
  doi: 10.1007/978-3-319-42978-6_4
– ident: ref41
  doi: 10.1109/TCYB.2019.2906383
– ident: ref15
  doi: 10.1145/2792984
– ident: ref39
  doi: 10.1109/TEVC.2018.2881153
– ident: ref19
  doi: 10.1109/TEVC.2013.2281535
– start-page: 93
  volume-title: Proc. 1st Int. Conf. Genetic Algorithms
  ident: ref6
  article-title: Multiple objective optimization with vector evaluated genetic algorithms
– ident: ref20
  doi: 10.1109/TEVC.2014.2350987
– ident: ref31
  doi: 10.1109/CEC.2013.6557903
– ident: ref33
  doi: 10.1109/TEVC.2015.2455812
– ident: ref53
  doi: 10.1109/TEVC.2017.2694221
– ident: ref56
  doi: 10.1109/cec.2001.934296
– ident: ref10
  doi: 10.1109/4235.996017
– ident: ref57
  doi: 10.1109/TEVC.2007.894202
– ident: ref32
  doi: 10.1109/tevc.2021.3099487
– ident: ref42
  doi: 10.1109/TSMC.2020.3003926
– ident: ref58
  doi: 10.1137/s1052623496307510
– ident: ref35
  doi: 10.1016/j.ins.2018.10.007
– volume-title: Nature inspired optimization of large problems
  year: 2016
  ident: ref25
– ident: ref3
  doi: 10.1007/3-540-27659-9
– ident: ref59
  doi: 10.3233/ICA-170542
– ident: ref11
  doi: 10.1109/TEVC.2008.925798
– ident: ref64
  doi: 10.1109/TEVC.2005.851275
– ident: ref7
  doi: 10.1162/evco.1994.2.3.221
– ident: ref28
  doi: 10.1109/TEVC.2020.2967501
– ident: ref47
  doi: 10.1007/s11390-012-1274-4
– ident: ref48
  doi: 10.1007/978-3-540-30217-9_80
– ident: ref18
  doi: 10.1109/TEVC.2012.2227145
– ident: ref60
  doi: 10.1007/978-1-4419-9863-7_1185
– ident: ref23
  doi: 10.1162/EVCO_a_00009
– ident: ref22
  doi: 10.1109/TEVC.2016.2519378
– ident: ref13
  doi: 10.1016/j.ejor.2006.08.008
– ident: ref30
  doi: 10.1145/3470971
– ident: ref26
  doi: 10.1109/TEVC.2019.2918140
– ident: ref34
  doi: 10.1109/TEVC.2016.2600642
– ident: ref9
  doi: 10.1109/4235.797969
– ident: ref1
  doi: 10.1080/23311916.2018.1502242
– ident: ref21
  doi: 10.1109/TEVC.2014.2378512
– ident: ref62
  doi: 10.1109/MCI.2017.2742868
– ident: ref52
  doi: 10.1145/3205651.3208250
– ident: ref66
  doi: 10.1109/TCYB.2016.2600577
– ident: ref29
  doi: 10.1016/j.asoc.2020.106120
– volume-title: Large-scale multi-objective optimisation: New approaches and a classification of the state-of-the-art
  year: 2019
  ident: ref44
– ident: ref5
  doi: 10.1109/MCI.2006.1597059
– ident: ref50
  doi: 10.1109/TEVC.2018.2868770
– ident: ref4
  doi: 10.1016/j.ins.2020.05.103
– ident: ref49
  doi: 10.1109/TEVC.2021.3130838
– ident: ref54
  doi: 10.1145/2791291
– ident: ref61
  doi: 10.1002/9780470479216.corpsy0491
– ident: ref46
  doi: 10.1109/FSKD.2016.7603157
– ident: ref63
  doi: 10.1007/s10710-005-6164-x
– ident: ref27
  doi: 10.1016/j.future.2017.10.015
– ident: ref67
  doi: 10.1109/TEVC.2015.2395073
SSID ssj0014519
Score 2.6090775
Snippet With the rising number of large-scale multiobjective optimization problems (LSMOPs) from academia and industries, some multiobjective evolutionary algorithms...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Convergence
Decision analysis
decision variable analysis
Effectiveness
evolutionary algorithm
Evolutionary algorithms
Iron
Large-scale optimization
Maintenance engineering
Multiple objective analysis
Optimization
problem reformulation
Sociology
Statistics
Variables
Visualization
Title Large-scale Multiobjective Optimization via Reformulated Decision Variable Analysis
URI https://ieeexplore.ieee.org/document/9914641
https://www.proquest.com/docview/2920300579
Volume 28
WOSCitedRecordID wos001166987200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLVg4jAOfGwgxpdy4ITo6JquaY5ogDggQDCm3aomdSUQbGiM_X7sNJtAICRuOSRV1ZfEdu3nB3BktcEkMjIwZLuCuLQ6MIYC17gry1DlZJFt7sQm1M1NOhzquyU4WXBhENEVn2Gbhy6XX4ztB_8qOyVfJk6Ypb6slKq4WouMAbdJqYrpNXmM6dBnMDuhPu1fDHoUCUZRW0acvUm-2SAnqvLjJnbm5XL9fy-2AWvejRRnFe6bsISjBqzPJRqEP7ENWP3Sb7ABdXYtq87MTXi45iLw4J1AQuF4uGPzXF1_4pYuklfP0BSzp1zcIzu3LPWFhTj3ujxiQIE2U6_EvLXJFjxeXvR7V4GXWAgs2flpYEqNZWo6FnWXbFko81BbVWIRS0KxNOQQJNpYST54qW0aEqxFabSlQcxT5TbURuMR7oCQHSbdIsaFCmm1yguMle10MSks2jRqQTj_6Jn1_cdZBuMlc3FIqDPGKWOcMo9TC44XS96q5ht_TW4yMIuJHpMW7M-RzfzxfM9Yoks6Hu7u76v2oE7Pjqvy7H2oTScfeAArdkYgTQ7dzvsEUhzW8w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5EBfXgY1Vcnzl4Eqttk22bo_hAcV1FV9lbadIpKLorvn6_M2l2URTBWw4JLf2SzExnvvkAtq02mMRGBoZsV6AqqwNjKHBVLVmFaUEW2RZObCLtdLJeT1-Nwe6IC4OIrvgM93jocvnlwL7zr7J98mVUwiz1iZZScVSztUY5A26UUpfTa_IZs57PYUah3u8e3x1SLBjHezLm_E3yzQo5WZUfd7EzMCdz_3u1eZj1jqQ4qJFfgDHsN2BuKNIg_JltwMyXjoMNmGbnsu7NvAg3bS4DD14JJhSOiTswD_UFKC7pKnnyHE3xcV-Ia2T3lsW-sBRHXplH3FGozeQrMWxusgS3J8fdw9PAiywEliz9W2AqjVVmIou6RdYslEWobVphqSThWBlyCRJtrCQvvNI2CwnYsjLa0kDxVLkM4_1BH1dAyIhpt4iqTENanRYlqtRGLUxKizaLmxAOP3pufQdyFsJ4zF0kEuqcccoZp9zj1ISd0ZLnuv3GX5MXGZjRRI9JE9aHyOb-gL7mLNIlHRN39fdVWzB12r1o5-2zzvkaTNNzVF2svQ7jby_vuAGT9oMAe9l0u_ATpyfaOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Multiobjective+Optimization+via+Reformulated+Decision+Variable+Analysis&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=He%2C+Cheng&rft.au=Cheng%2C+Ran&rft.au=Li%2C+Lianghao&rft.au=Tan%2C+Kay+Chen&rft.date=2024-02-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=28&rft.issue=1&rft.spage=47&rft.epage=61&rft_id=info:doi/10.1109%2FTEVC.2022.3213006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2022_3213006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon