Centrality Measures in Linear Consensus Networks With Structured Network Uncertainties

We propose new insights into the network centrality based not only on the network graph, but also on a more structured model of network uncertainties. The focus of this paper is on the class of uncertain linear consensus networks in continuous time, where the network uncertainty is modeled by struct...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on control of network systems Vol. 5; no. 3; pp. 924 - 934
Main Authors: Siami, Milad, Bolouki, Sadegh, Bamieh, Bassam, Motee, Nader
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2325-5870, 2372-2533
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose new insights into the network centrality based not only on the network graph, but also on a more structured model of network uncertainties. The focus of this paper is on the class of uncertain linear consensus networks in continuous time, where the network uncertainty is modeled by structured additive Gaussian white noise input on the update dynamics of each agent. The performance of the network is measured by the expected dispersion of its states in steady state. This measure is equal to the square of the <inline-formula><tex-math notation="LaTeX"> \mathcal {H}_2</tex-math></inline-formula>-norm of the network, and it quantifies the extent by which its state deviates away from the consensus state in steady state. We show that this performance measure can be explicitly expressed as a function of the Laplacian matrix of the network and the covariance matrix of the noise input. We investigate several structures for noise input and provide engineering insights on how each uncertainty structure can be relevant in real-world settings. Then, a new centrality index is defined in order to assess the influence of each agent or link on the network performance. For each noise structure, the value of the centrality index is calculated explicitly, and it is shown how it depends on the network topology as well as the noise structure. Our results assert that agents or links can be ranked according to this centrality index, and their rank can drastically change from the lowest to the highest, or vice versa, depending on the noise structure. This fact hints at emergence of fundamental tradeoffs on network centrality in the presence of multiple concurrent network uncertainties with different structures.
AbstractList We propose new insights into the network centrality based not only on the network graph, but also on a more structured model of network uncertainties. The focus of this paper is on the class of uncertain linear consensus networks in continuous time, where the network uncertainty is modeled by structured additive Gaussian white noise input on the update dynamics of each agent. The performance of the network is measured by the expected dispersion of its states in steady state. This measure is equal to the square of the [Formula Omitted]-norm of the network, and it quantifies the extent by which its state deviates away from the consensus state in steady state. We show that this performance measure can be explicitly expressed as a function of the Laplacian matrix of the network and the covariance matrix of the noise input. We investigate several structures for noise input and provide engineering insights on how each uncertainty structure can be relevant in real-world settings. Then, a new centrality index is defined in order to assess the influence of each agent or link on the network performance. For each noise structure, the value of the centrality index is calculated explicitly, and it is shown how it depends on the network topology as well as the noise structure. Our results assert that agents or links can be ranked according to this centrality index, and their rank can drastically change from the lowest to the highest, or vice versa, depending on the noise structure. This fact hints at emergence of fundamental tradeoffs on network centrality in the presence of multiple concurrent network uncertainties with different structures.
We propose new insights into the network centrality based not only on the network graph, but also on a more structured model of network uncertainties. The focus of this paper is on the class of uncertain linear consensus networks in continuous time, where the network uncertainty is modeled by structured additive Gaussian white noise input on the update dynamics of each agent. The performance of the network is measured by the expected dispersion of its states in steady state. This measure is equal to the square of the <inline-formula><tex-math notation="LaTeX"> \mathcal {H}_2</tex-math></inline-formula>-norm of the network, and it quantifies the extent by which its state deviates away from the consensus state in steady state. We show that this performance measure can be explicitly expressed as a function of the Laplacian matrix of the network and the covariance matrix of the noise input. We investigate several structures for noise input and provide engineering insights on how each uncertainty structure can be relevant in real-world settings. Then, a new centrality index is defined in order to assess the influence of each agent or link on the network performance. For each noise structure, the value of the centrality index is calculated explicitly, and it is shown how it depends on the network topology as well as the noise structure. Our results assert that agents or links can be ranked according to this centrality index, and their rank can drastically change from the lowest to the highest, or vice versa, depending on the noise structure. This fact hints at emergence of fundamental tradeoffs on network centrality in the presence of multiple concurrent network uncertainties with different structures.
Author Bolouki, Sadegh
Motee, Nader
Siami, Milad
Bamieh, Bassam
Author_xml – sequence: 1
  givenname: Milad
  orcidid: 0000-0001-7253-4464
  surname: Siami
  fullname: Siami, Milad
  email: siami@lehigh.edu
  organization: Department of Mechanics and Mechanical Engineering, Lehigh University, Bethlehem, PA, USA
– sequence: 2
  givenname: Sadegh
  surname: Bolouki
  fullname: Bolouki, Sadegh
  email: bolouki@uiuc.edu
  organization: Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Champaign, IL, USA
– sequence: 3
  givenname: Bassam
  surname: Bamieh
  fullname: Bamieh, Bassam
  email: bamieh@engineering.ucsb.edu
  organization: Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
– sequence: 4
  givenname: Nader
  orcidid: 0000-0002-0597-3659
  surname: Motee
  fullname: Motee, Nader
  email: motee@lehigh.edu
  organization: Department of Mechanics and Mechanical Engineering, Lehigh University, Bethlehem, PA, USA
BookMark eNp9kE1PwzAMhiM0JMbYD0BcInHuSJxmaY-o4ksacNgGxypLXZEx0pGkQvv3tNrgwIGTbfl9bOk5JQPXOCTknLMJ5yy_WhRP8wkwriYwlVIJfkSGIBQkIIUY9D3IRGaKnZBxCGvGGAfZzWJIXgp00euNjTv6iDq0HgO1js6sQ-1p0biALrSBPmH8avx7oK82vtF59K2JXbj6WdClM-ijti5aDGfkuNabgONDHZHl7c2iuE9mz3cPxfUsMZCLmKwqzKQWqTJ5CoxVUmiZClRciMooDSCnGWoDad1lNKwgrQRb1SnPZK2VqMWIXO7vbn3z2WKI5bppvetelsC54mqaQdql-D5lfBOCx7rcevuh_a7krOwNlr3BsjdYHgx2jPrDGBt1tE2vy27-JS_2pEXE308qA8VyKb4BpXuAag
CODEN ITCNAY
CitedBy_id crossref_primary_10_1109_TNSE_2024_3418992
crossref_primary_10_1109_TAC_2023_3307530
crossref_primary_10_1109_ACCESS_2021_3078173
crossref_primary_10_1109_LCSYS_2021_3083962
crossref_primary_10_1109_TCSII_2018_2868422
crossref_primary_10_1109_TSTE_2021_3119657
crossref_primary_10_1109_TAC_2024_3362861
crossref_primary_10_1016_j_automatica_2020_109378
crossref_primary_10_1016_j_physa_2024_129527
crossref_primary_10_1007_s11277_024_11093_4
crossref_primary_10_1109_TCNS_2022_3181484
crossref_primary_10_1016_j_tcs_2023_114220
crossref_primary_10_1109_TAC_2018_2863203
crossref_primary_10_1109_TCSII_2021_3051662
crossref_primary_10_1016_j_tcs_2025_115102
crossref_primary_10_1109_TNSE_2020_3037139
crossref_primary_10_1109_TCYB_2019_2936347
crossref_primary_10_1109_TAC_2017_2728002
crossref_primary_10_1109_TIT_2021_3127272
crossref_primary_10_1002_rnc_7205
crossref_primary_10_1007_s10898_025_01470_z
crossref_primary_10_1007_s12652_021_03036_9
crossref_primary_10_1109_TKDE_2025_3552644
crossref_primary_10_1109_TAC_2018_2874675
Cites_doi 10.1137/130950550
10.1109/TAC.2014.2314223
10.1137/06067359X
10.1007/BF02289026
10.1038/30918
10.1109/TIFS.2013.2280884
10.1016/j.sysconle.2012.10.014
10.1371/journal.pone.0053095
10.1086/228631
10.1016/j.comnet.2012.10.007
10.1007/978-3-319-01159-2_19
10.1093/acprof:oso/9780199206650.001.0001
10.1109/TAC.2016.2547982
10.1007/978-3-540-31595-7_10
10.1109/TAC.2012.2202052
10.1137/060676866
10.1137/140976649
10.1109/9.29425
10.1109/TAC.2004.841121
10.1016/0378-8733(78)90021-7
10.1109/CDC.2013.6761082
10.1109/TIT.2006.878169
10.1080/0022250X.1972.9989806
10.1109/TAC.2010.2056730
10.1016/j.physa.2013.04.013
10.1016/j.laa.2011.01.030
10.2307/3033543
10.2298/BMAT0429015G
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCNS.2017.2655731
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2372-2533
EndPage 934
ExternalDocumentID 10_1109_TCNS_2017_2655731
7827095
Genre orig-research
GrantInformation_xml – fundername: NSF CAREER
  grantid: ECCS-1454022
– fundername: NSF
  grantid: ECCS-1408442; CMMI-1363386
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-bde85a347c94200d53a543e7133dc7a22568eac24f347a2b24d30bf4185fa73f3
IEDL.DBID RIE
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000445357100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2325-5870
IngestDate Sun Nov 09 06:10:21 EST 2025
Sat Nov 29 06:13:46 EST 2025
Tue Nov 18 22:23:58 EST 2025
Wed Aug 27 02:54:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-bde85a347c94200d53a543e7133dc7a22568eac24f347a2b24d30bf4185fa73f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7253-4464
0000-0002-0597-3659
PQID 2117176824
PQPubID 2040410
PageCount 11
ParticipantIDs proquest_journals_2117176824
ieee_primary_7827095
crossref_primary_10_1109_TCNS_2017_2655731
crossref_citationtrail_10_1109_TCNS_2017_2655731
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on control of network systems
PublicationTitleAbbrev TCNS
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref16
ref19
ref18
siami (ref27) 0
jadbabaie (ref26) 0
siami (ref38) 0
ref24
ref23
everett (ref14) 1998; 21
ref25
ref22
ref21
tanner (ref9) 0; 3
siami (ref28) 0
anthonisse (ref7) 1971
young (ref17) 0
ref29
ref8
ref4
ref3
ref6
ref5
bertuccelli (ref31) 0
carli (ref20) 0
References_xml – ident: ref2
  doi: 10.1137/130950550
– ident: ref30
  doi: 10.1109/TAC.2014.2314223
– ident: ref23
  doi: 10.1137/06067359X
– ident: ref4
  doi: 10.1007/BF02289026
– ident: ref5
  doi: 10.1038/30918
– ident: ref10
  doi: 10.1109/TIFS.2013.2280884
– ident: ref24
  doi: 10.1016/j.sysconle.2012.10.014
– start-page: 4080
  year: 0
  ident: ref38
  article-title: Performance analysis of linear consensus networks with structured stochastic disturbance inputs
  publication-title: Proc Amer Control Conf
– ident: ref13
  doi: 10.1371/journal.pone.0053095
– ident: ref3
  doi: 10.1086/228631
– volume: 21
  start-page: 49
  year: 1998
  ident: ref14
  article-title: Analyzing clique overlap
  publication-title: Connections
– ident: ref6
  doi: 10.1016/j.comnet.2012.10.007
– start-page: 6312
  year: 0
  ident: ref17
  publication-title: Proc Amer Control Conf
– ident: ref16
  doi: 10.1007/978-3-319-01159-2_19
– ident: ref1
  doi: 10.1093/acprof:oso/9780199206650.001.0001
– ident: ref19
  doi: 10.1109/TAC.2016.2547982
– ident: ref33
  doi: 10.1007/978-3-540-31595-7_10
– ident: ref18
  doi: 10.1109/TAC.2012.2202052
– start-page: 67
  year: 0
  ident: ref28
  article-title: Fundamental limits on robustness measures in networks of interconnected systems
  publication-title: Proc 52nd IEEE Conf Decision Control
– ident: ref22
  doi: 10.1137/060676866
– ident: ref37
  doi: 10.1137/140976649
– start-page: 5776
  year: 0
  ident: ref31
  article-title: Real-time multi-UAV task assignment in dynamic and uncertain environments
  publication-title: Proc AIAA Guid Navigat Control Conf
– start-page: 1
  year: 1971
  ident: ref7
  article-title: The rush in a directed graph
– ident: ref35
  doi: 10.1109/9.29425
– ident: ref34
  doi: 10.1109/TAC.2004.841121
– volume: 3
  start-page: 2467
  year: 0
  ident: ref9
  article-title: On the controllability of nearest neighbor interconnections
  publication-title: Proc 43rd IEEE Conf Decision Control
– ident: ref11
  doi: 10.1016/0378-8733(78)90021-7
– ident: ref29
  doi: 10.1109/CDC.2013.6761082
– ident: ref21
  doi: 10.1109/TIT.2006.878169
– ident: ref12
  doi: 10.1080/0022250X.1972.9989806
– ident: ref25
  doi: 10.1109/TAC.2010.2056730
– start-page: 1852
  year: 0
  ident: ref20
  article-title: Average consensus on networks with transmission noise or quantization
  publication-title: Proc Eur Control Conf
– ident: ref15
  doi: 10.1016/j.physa.2013.04.013
– ident: ref36
  doi: 10.1016/j.laa.2011.01.030
– ident: ref8
  doi: 10.2307/3033543
– start-page: 596
  year: 0
  ident: ref26
  publication-title: Proc Eur Control Conf
– start-page: 137
  year: 0
  ident: ref27
  article-title: Robustness and performance analysis of cyclic interconnected dynamical networks
  publication-title: Proc SIAM Conf Control Appl
– ident: ref32
  doi: 10.2298/BMAT0429015G
SSID ssj0001255873
Score 2.3207767
Snippet We propose new insights into the network centrality based not only on the network graph, but also on a more structured model of network uncertainties. The...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 924
SubjectTerms Centrality measures
Control systems
Couplings
Covariance matrix
distributed algorithms/control
Indexes
Laplace equations
linear consensus networks
network analysis and control
networks of autonomous agents
Noise
Noise measurement
social networks
Steady state
stochastic/uncertain systems
Symmetric matrices
Uncertainty
White noise
Title Centrality Measures in Linear Consensus Networks With Structured Network Uncertainties
URI https://ieeexplore.ieee.org/document/7827095
https://www.proquest.com/docview/2117176824
Volume 5
WOSCitedRecordID wos000445357100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2372-2533
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001255873
  issn: 2325-5870
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-24YM--DXF6ZQ8-CR265qkaR5FHL44hG26t5I0KQ6kEzv9-72k3Zgogm-F3pVyv7tc7nK5A7gMc2nRDajASIUBSs5poJWKAm2tFglHJh36YRNiNEpmM_nYgOv1XRhrrS8-sz336M_yzSL7cKmyPnozgVuCJjSFiKu7Whv5FM4TQeuDy0Eo-5Pb0djVboleFHMu6OCb6_GzVH4swN6rDPf-9z_7sFvvHslNBfcBNGxxCDsbPQXb8FTna3F3TR6qBGBJ5gXBoBOVmrgBnW66RUlGVQF4SZ7nyxcy9n1kkdisXpAp6oOvF3A9V49gOryb3N4H9fCEIEMPvgy0sQgBZSKTDC3BcKo4o9bFpCYTCs04TnDRjViONCrSETM01LnrZZMrQXN6DK1iUdgTIDJDMi5yY2LNYpNoSUPLTaRlkjOlWAfClVzTrO4s7gZcvKY-wghl6qBIHRRpDUUHrtYsb1Vbjb-I2072a8Ja7B3orsBLa8MrU4xnMUCNk4id_s51Btv47aQqE-tCC6Vrz2Er-1zOy_cLr1Nf0nPM0w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7WB6gH3-L6zMGTWI1N0jRHEUVxLYK76q0kTYoLsopd_f1O0u6yogjeCp2hZb5J5pHJDMABLZVDM6AjqzQGKKVgkdE6joxzRqYCmQwNwyZklqVPT-quBUfjuzDOuVB85o79YzjLt6_Fh0-VnaA1k-gSTMGM4Dym9W2tiYyKEKlkzdHlKVUn3fPs3ldvyeM4EUKy02_GJ0xT-bEFB7tyufS_P1qGxcZ_JGc14CvQcoNVWJjoKrgGD03GFv1rclunACvSHxAMO1GtiR_R6edbVCSrS8Ar8tgfPpP70EkWie3oBemhRoSKAd91dR16lxfd86uoGZ8QFWjDh5GxDkFgXBYKhUWtYFpw5nxUagupcSEnKW67MS-RRscm5pZRU_puNqWWrGQbMD14HbhNIKpAMiFLaxPDE5saxagTNjYqLbnWvA10JNe8aHqL-xEXL3mIMajKPRS5hyJvoGjD4ZjlrW6s8Rfxmpf9mLARext2RuDlzdKrcoxoMURN0phv_c61D3NX3dtO3rnObrZhHr-T1kVjOzCNkna7MFt8DvvV-17Qry-hPNAa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Centrality+Measures+in+Linear+Consensus+Networks+With+Structured+Network+Uncertainties&rft.jtitle=IEEE+transactions+on+control+of+network+systems&rft.au=Siami%2C+Milad&rft.au=Bolouki%2C+Sadegh&rft.au=Bamieh%2C+Bassam&rft.au=Motee%2C+Nader&rft.date=2018-09-01&rft.pub=IEEE&rft.eissn=2372-2533&rft.volume=5&rft.issue=3&rft.spage=924&rft.epage=934&rft_id=info:doi/10.1109%2FTCNS.2017.2655731&rft.externalDocID=7827095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2325-5870&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2325-5870&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2325-5870&client=summon