Centrality Measures in Linear Consensus Networks With Structured Network Uncertainties
We propose new insights into the network centrality based not only on the network graph, but also on a more structured model of network uncertainties. The focus of this paper is on the class of uncertain linear consensus networks in continuous time, where the network uncertainty is modeled by struct...
Saved in:
| Published in: | IEEE transactions on control of network systems Vol. 5; no. 3; pp. 924 - 934 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2325-5870, 2372-2533 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We propose new insights into the network centrality based not only on the network graph, but also on a more structured model of network uncertainties. The focus of this paper is on the class of uncertain linear consensus networks in continuous time, where the network uncertainty is modeled by structured additive Gaussian white noise input on the update dynamics of each agent. The performance of the network is measured by the expected dispersion of its states in steady state. This measure is equal to the square of the <inline-formula><tex-math notation="LaTeX"> \mathcal {H}_2</tex-math></inline-formula>-norm of the network, and it quantifies the extent by which its state deviates away from the consensus state in steady state. We show that this performance measure can be explicitly expressed as a function of the Laplacian matrix of the network and the covariance matrix of the noise input. We investigate several structures for noise input and provide engineering insights on how each uncertainty structure can be relevant in real-world settings. Then, a new centrality index is defined in order to assess the influence of each agent or link on the network performance. For each noise structure, the value of the centrality index is calculated explicitly, and it is shown how it depends on the network topology as well as the noise structure. Our results assert that agents or links can be ranked according to this centrality index, and their rank can drastically change from the lowest to the highest, or vice versa, depending on the noise structure. This fact hints at emergence of fundamental tradeoffs on network centrality in the presence of multiple concurrent network uncertainties with different structures. |
|---|---|
| AbstractList | We propose new insights into the network centrality based not only on the network graph, but also on a more structured model of network uncertainties. The focus of this paper is on the class of uncertain linear consensus networks in continuous time, where the network uncertainty is modeled by structured additive Gaussian white noise input on the update dynamics of each agent. The performance of the network is measured by the expected dispersion of its states in steady state. This measure is equal to the square of the [Formula Omitted]-norm of the network, and it quantifies the extent by which its state deviates away from the consensus state in steady state. We show that this performance measure can be explicitly expressed as a function of the Laplacian matrix of the network and the covariance matrix of the noise input. We investigate several structures for noise input and provide engineering insights on how each uncertainty structure can be relevant in real-world settings. Then, a new centrality index is defined in order to assess the influence of each agent or link on the network performance. For each noise structure, the value of the centrality index is calculated explicitly, and it is shown how it depends on the network topology as well as the noise structure. Our results assert that agents or links can be ranked according to this centrality index, and their rank can drastically change from the lowest to the highest, or vice versa, depending on the noise structure. This fact hints at emergence of fundamental tradeoffs on network centrality in the presence of multiple concurrent network uncertainties with different structures. We propose new insights into the network centrality based not only on the network graph, but also on a more structured model of network uncertainties. The focus of this paper is on the class of uncertain linear consensus networks in continuous time, where the network uncertainty is modeled by structured additive Gaussian white noise input on the update dynamics of each agent. The performance of the network is measured by the expected dispersion of its states in steady state. This measure is equal to the square of the <inline-formula><tex-math notation="LaTeX"> \mathcal {H}_2</tex-math></inline-formula>-norm of the network, and it quantifies the extent by which its state deviates away from the consensus state in steady state. We show that this performance measure can be explicitly expressed as a function of the Laplacian matrix of the network and the covariance matrix of the noise input. We investigate several structures for noise input and provide engineering insights on how each uncertainty structure can be relevant in real-world settings. Then, a new centrality index is defined in order to assess the influence of each agent or link on the network performance. For each noise structure, the value of the centrality index is calculated explicitly, and it is shown how it depends on the network topology as well as the noise structure. Our results assert that agents or links can be ranked according to this centrality index, and their rank can drastically change from the lowest to the highest, or vice versa, depending on the noise structure. This fact hints at emergence of fundamental tradeoffs on network centrality in the presence of multiple concurrent network uncertainties with different structures. |
| Author | Bolouki, Sadegh Motee, Nader Siami, Milad Bamieh, Bassam |
| Author_xml | – sequence: 1 givenname: Milad orcidid: 0000-0001-7253-4464 surname: Siami fullname: Siami, Milad email: siami@lehigh.edu organization: Department of Mechanics and Mechanical Engineering, Lehigh University, Bethlehem, PA, USA – sequence: 2 givenname: Sadegh surname: Bolouki fullname: Bolouki, Sadegh email: bolouki@uiuc.edu organization: Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Champaign, IL, USA – sequence: 3 givenname: Bassam surname: Bamieh fullname: Bamieh, Bassam email: bamieh@engineering.ucsb.edu organization: Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA – sequence: 4 givenname: Nader orcidid: 0000-0002-0597-3659 surname: Motee fullname: Motee, Nader email: motee@lehigh.edu organization: Department of Mechanics and Mechanical Engineering, Lehigh University, Bethlehem, PA, USA |
| BookMark | eNp9kE1PwzAMhiM0JMbYD0BcInHuSJxmaY-o4ksacNgGxypLXZEx0pGkQvv3tNrgwIGTbfl9bOk5JQPXOCTknLMJ5yy_WhRP8wkwriYwlVIJfkSGIBQkIIUY9D3IRGaKnZBxCGvGGAfZzWJIXgp00euNjTv6iDq0HgO1js6sQ-1p0biALrSBPmH8avx7oK82vtF59K2JXbj6WdClM-ijti5aDGfkuNabgONDHZHl7c2iuE9mz3cPxfUsMZCLmKwqzKQWqTJ5CoxVUmiZClRciMooDSCnGWoDad1lNKwgrQRb1SnPZK2VqMWIXO7vbn3z2WKI5bppvetelsC54mqaQdql-D5lfBOCx7rcevuh_a7krOwNlr3BsjdYHgx2jPrDGBt1tE2vy27-JS_2pEXE308qA8VyKb4BpXuAag |
| CODEN | ITCNAY |
| CitedBy_id | crossref_primary_10_1109_TNSE_2024_3418992 crossref_primary_10_1109_TAC_2023_3307530 crossref_primary_10_1109_ACCESS_2021_3078173 crossref_primary_10_1109_LCSYS_2021_3083962 crossref_primary_10_1109_TCSII_2018_2868422 crossref_primary_10_1109_TSTE_2021_3119657 crossref_primary_10_1109_TAC_2024_3362861 crossref_primary_10_1016_j_automatica_2020_109378 crossref_primary_10_1016_j_physa_2024_129527 crossref_primary_10_1007_s11277_024_11093_4 crossref_primary_10_1109_TCNS_2022_3181484 crossref_primary_10_1016_j_tcs_2023_114220 crossref_primary_10_1109_TAC_2018_2863203 crossref_primary_10_1109_TCSII_2021_3051662 crossref_primary_10_1016_j_tcs_2025_115102 crossref_primary_10_1109_TNSE_2020_3037139 crossref_primary_10_1109_TCYB_2019_2936347 crossref_primary_10_1109_TAC_2017_2728002 crossref_primary_10_1109_TIT_2021_3127272 crossref_primary_10_1002_rnc_7205 crossref_primary_10_1007_s10898_025_01470_z crossref_primary_10_1007_s12652_021_03036_9 crossref_primary_10_1109_TKDE_2025_3552644 crossref_primary_10_1109_TAC_2018_2874675 |
| Cites_doi | 10.1137/130950550 10.1109/TAC.2014.2314223 10.1137/06067359X 10.1007/BF02289026 10.1038/30918 10.1109/TIFS.2013.2280884 10.1016/j.sysconle.2012.10.014 10.1371/journal.pone.0053095 10.1086/228631 10.1016/j.comnet.2012.10.007 10.1007/978-3-319-01159-2_19 10.1093/acprof:oso/9780199206650.001.0001 10.1109/TAC.2016.2547982 10.1007/978-3-540-31595-7_10 10.1109/TAC.2012.2202052 10.1137/060676866 10.1137/140976649 10.1109/9.29425 10.1109/TAC.2004.841121 10.1016/0378-8733(78)90021-7 10.1109/CDC.2013.6761082 10.1109/TIT.2006.878169 10.1080/0022250X.1972.9989806 10.1109/TAC.2010.2056730 10.1016/j.physa.2013.04.013 10.1016/j.laa.2011.01.030 10.2307/3033543 10.2298/BMAT0429015G |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TCNS.2017.2655731 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2372-2533 |
| EndPage | 934 |
| ExternalDocumentID | 10_1109_TCNS_2017_2655731 7827095 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF CAREER grantid: ECCS-1454022 – fundername: NSF grantid: ECCS-1408442; CMMI-1363386 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-bde85a347c94200d53a543e7133dc7a22568eac24f347a2b24d30bf4185fa73f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000445357100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2325-5870 |
| IngestDate | Sun Nov 09 06:10:21 EST 2025 Sat Nov 29 06:13:46 EST 2025 Tue Nov 18 22:23:58 EST 2025 Wed Aug 27 02:54:28 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-bde85a347c94200d53a543e7133dc7a22568eac24f347a2b24d30bf4185fa73f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7253-4464 0000-0002-0597-3659 |
| PQID | 2117176824 |
| PQPubID | 2040410 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2117176824 ieee_primary_7827095 crossref_primary_10_1109_TCNS_2017_2655731 crossref_citationtrail_10_1109_TCNS_2017_2655731 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-09-01 |
| PublicationDateYYYYMMDD | 2018-09-01 |
| PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on control of network systems |
| PublicationTitleAbbrev | TCNS |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref16 ref19 ref18 siami (ref27) 0 jadbabaie (ref26) 0 siami (ref38) 0 ref24 ref23 everett (ref14) 1998; 21 ref25 ref22 ref21 tanner (ref9) 0; 3 siami (ref28) 0 anthonisse (ref7) 1971 young (ref17) 0 ref29 ref8 ref4 ref3 ref6 ref5 bertuccelli (ref31) 0 carli (ref20) 0 |
| References_xml | – ident: ref2 doi: 10.1137/130950550 – ident: ref30 doi: 10.1109/TAC.2014.2314223 – ident: ref23 doi: 10.1137/06067359X – ident: ref4 doi: 10.1007/BF02289026 – ident: ref5 doi: 10.1038/30918 – ident: ref10 doi: 10.1109/TIFS.2013.2280884 – ident: ref24 doi: 10.1016/j.sysconle.2012.10.014 – start-page: 4080 year: 0 ident: ref38 article-title: Performance analysis of linear consensus networks with structured stochastic disturbance inputs publication-title: Proc Amer Control Conf – ident: ref13 doi: 10.1371/journal.pone.0053095 – ident: ref3 doi: 10.1086/228631 – volume: 21 start-page: 49 year: 1998 ident: ref14 article-title: Analyzing clique overlap publication-title: Connections – ident: ref6 doi: 10.1016/j.comnet.2012.10.007 – start-page: 6312 year: 0 ident: ref17 publication-title: Proc Amer Control Conf – ident: ref16 doi: 10.1007/978-3-319-01159-2_19 – ident: ref1 doi: 10.1093/acprof:oso/9780199206650.001.0001 – ident: ref19 doi: 10.1109/TAC.2016.2547982 – ident: ref33 doi: 10.1007/978-3-540-31595-7_10 – ident: ref18 doi: 10.1109/TAC.2012.2202052 – start-page: 67 year: 0 ident: ref28 article-title: Fundamental limits on robustness measures in networks of interconnected systems publication-title: Proc 52nd IEEE Conf Decision Control – ident: ref22 doi: 10.1137/060676866 – ident: ref37 doi: 10.1137/140976649 – start-page: 5776 year: 0 ident: ref31 article-title: Real-time multi-UAV task assignment in dynamic and uncertain environments publication-title: Proc AIAA Guid Navigat Control Conf – start-page: 1 year: 1971 ident: ref7 article-title: The rush in a directed graph – ident: ref35 doi: 10.1109/9.29425 – ident: ref34 doi: 10.1109/TAC.2004.841121 – volume: 3 start-page: 2467 year: 0 ident: ref9 article-title: On the controllability of nearest neighbor interconnections publication-title: Proc 43rd IEEE Conf Decision Control – ident: ref11 doi: 10.1016/0378-8733(78)90021-7 – ident: ref29 doi: 10.1109/CDC.2013.6761082 – ident: ref21 doi: 10.1109/TIT.2006.878169 – ident: ref12 doi: 10.1080/0022250X.1972.9989806 – ident: ref25 doi: 10.1109/TAC.2010.2056730 – start-page: 1852 year: 0 ident: ref20 article-title: Average consensus on networks with transmission noise or quantization publication-title: Proc Eur Control Conf – ident: ref15 doi: 10.1016/j.physa.2013.04.013 – ident: ref36 doi: 10.1016/j.laa.2011.01.030 – ident: ref8 doi: 10.2307/3033543 – start-page: 596 year: 0 ident: ref26 publication-title: Proc Eur Control Conf – start-page: 137 year: 0 ident: ref27 article-title: Robustness and performance analysis of cyclic interconnected dynamical networks publication-title: Proc SIAM Conf Control Appl – ident: ref32 doi: 10.2298/BMAT0429015G |
| SSID | ssj0001255873 |
| Score | 2.3207767 |
| Snippet | We propose new insights into the network centrality based not only on the network graph, but also on a more structured model of network uncertainties. The... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 924 |
| SubjectTerms | Centrality measures Control systems Couplings Covariance matrix distributed algorithms/control Indexes Laplace equations linear consensus networks network analysis and control networks of autonomous agents Noise Noise measurement social networks Steady state stochastic/uncertain systems Symmetric matrices Uncertainty White noise |
| Title | Centrality Measures in Linear Consensus Networks With Structured Network Uncertainties |
| URI | https://ieeexplore.ieee.org/document/7827095 https://www.proquest.com/docview/2117176824 |
| Volume | 5 |
| WOSCitedRecordID | wos000445357100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2372-2533 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001255873 issn: 2325-5870 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-24YM--DXF6ZQ8-CR265qkaR5FHL44hG26t5I0KQ6kEzv9-72k3Zgogm-F3pVyv7tc7nK5A7gMc2nRDajASIUBSs5poJWKAm2tFglHJh36YRNiNEpmM_nYgOv1XRhrrS8-sz336M_yzSL7cKmyPnozgVuCJjSFiKu7Whv5FM4TQeuDy0Eo-5Pb0djVboleFHMu6OCb6_GzVH4swN6rDPf-9z_7sFvvHslNBfcBNGxxCDsbPQXb8FTna3F3TR6qBGBJ5gXBoBOVmrgBnW66RUlGVQF4SZ7nyxcy9n1kkdisXpAp6oOvF3A9V49gOryb3N4H9fCEIEMPvgy0sQgBZSKTDC3BcKo4o9bFpCYTCs04TnDRjViONCrSETM01LnrZZMrQXN6DK1iUdgTIDJDMi5yY2LNYpNoSUPLTaRlkjOlWAfClVzTrO4s7gZcvKY-wghl6qBIHRRpDUUHrtYsb1Vbjb-I2072a8Ja7B3orsBLa8MrU4xnMUCNk4id_s51Btv47aQqE-tCC6Vrz2Er-1zOy_cLr1Nf0nPM0w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7WB6gH3-L6zMGTWI1N0jRHEUVxLYK76q0kTYoLsopd_f1O0u6yogjeCp2hZb5J5pHJDMABLZVDM6AjqzQGKKVgkdE6joxzRqYCmQwNwyZklqVPT-quBUfjuzDOuVB85o79YzjLt6_Fh0-VnaA1k-gSTMGM4Dym9W2tiYyKEKlkzdHlKVUn3fPs3ldvyeM4EUKy02_GJ0xT-bEFB7tyufS_P1qGxcZ_JGc14CvQcoNVWJjoKrgGD03GFv1rclunACvSHxAMO1GtiR_R6edbVCSrS8Ar8tgfPpP70EkWie3oBemhRoSKAd91dR16lxfd86uoGZ8QFWjDh5GxDkFgXBYKhUWtYFpw5nxUagupcSEnKW67MS-RRscm5pZRU_puNqWWrGQbMD14HbhNIKpAMiFLaxPDE5saxagTNjYqLbnWvA10JNe8aHqL-xEXL3mIMajKPRS5hyJvoGjD4ZjlrW6s8Rfxmpf9mLARext2RuDlzdKrcoxoMURN0phv_c61D3NX3dtO3rnObrZhHr-T1kVjOzCNkna7MFt8DvvV-17Qry-hPNAa |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Centrality+Measures+in+Linear+Consensus+Networks+With+Structured+Network+Uncertainties&rft.jtitle=IEEE+transactions+on+control+of+network+systems&rft.au=Siami%2C+Milad&rft.au=Bolouki%2C+Sadegh&rft.au=Bamieh%2C+Bassam&rft.au=Motee%2C+Nader&rft.date=2018-09-01&rft.pub=IEEE&rft.eissn=2372-2533&rft.volume=5&rft.issue=3&rft.spage=924&rft.epage=934&rft_id=info:doi/10.1109%2FTCNS.2017.2655731&rft.externalDocID=7827095 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2325-5870&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2325-5870&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2325-5870&client=summon |