A Spectral-Spatial Change Detection Method Based on Simplified 3-D Convolutional Autoencoder for Multitemporal Hyperspectral Images
Change detection for multitemporal hyperspectral images (HSIs) has always been a research hotspot of remote sensing. However, most current detection methods only use spectral information or spatial information separately, and there are many false detection areas in the detection results. Besides, th...
Gespeichert in:
| Veröffentlicht in: | IEEE geoscience and remote sensing letters Jg. 19; S. 1 - 5 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1545-598X, 1558-0571 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Change detection for multitemporal hyperspectral images (HSIs) has always been a research hotspot of remote sensing. However, most current detection methods only use spectral information or spatial information separately, and there are many false detection areas in the detection results. Besides, the feature extraction method based on neural networks needs a huge amount of training samples, but collecting labeled training samples for change detection tasks is difficult. Therefore, this letter proposes a hyperspectral change detection method based on a simplified 3-D convolutional autoencoder (S3DCAECD). First, the framework is based on deep unsupervised autoencoder (AE), which can extract deep spectral-spatial features from bitemporal images without the need for prior information. Second, by adding a 3-D convolution kernel and eliminating the pooling layer, the structure of 3-D convolutional AE is simplified, which can reduce spectral redundancy and improve data processing speed. Finally, a softmax classifier with a 2-D convolutional layer added is used to obtain the detection result, and only a few label samples are needed to train the classifier. Three HSIs' experimental results indicate that the accuracy of the S3DCAECD is more than 95% on three experimental datasets and it has better detection results than several commonly used methods. |
|---|---|
| AbstractList | Change detection for multitemporal hyperspectral images (HSIs) has always been a research hotspot of remote sensing. However, most current detection methods only use spectral information or spatial information separately, and there are many false detection areas in the detection results. Besides, the feature extraction method based on neural networks needs a huge amount of training samples, but collecting labeled training samples for change detection tasks is difficult. Therefore, this letter proposes a hyperspectral change detection method based on a simplified 3-D convolutional autoencoder (S3DCAECD). First, the framework is based on deep unsupervised autoencoder (AE), which can extract deep spectral–spatial features from bitemporal images without the need for prior information. Second, by adding a 3-D convolution kernel and eliminating the pooling layer, the structure of 3-D convolutional AE is simplified, which can reduce spectral redundancy and improve data processing speed. Finally, a softmax classifier with a 2-D convolutional layer added is used to obtain the detection result, and only a few label samples are needed to train the classifier. Three HSIs’ experimental results indicate that the accuracy of the S3DCAECD is more than 95% on three experimental datasets and it has better detection results than several commonly used methods. |
| Author | Feng, Shou Cheng, Hao Zhao, Chunhui |
| Author_xml | – sequence: 1 givenname: Chunhui surname: Zhao fullname: Zhao, Chunhui email: zhaochunhui1965@163.com organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China – sequence: 2 givenname: Hao surname: Cheng fullname: Cheng, Hao email: chenghaowise@qq.com organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China – sequence: 3 givenname: Shou orcidid: 0000-0002-7308-9590 surname: Feng fullname: Feng, Shou email: fengshou@hrbeu.edu.cn organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China |
| BookMark | eNp9kE1PxCAQhonRxM8fYLyQeO4KFFo4rutnssbE1cRbw9KpYrqlAjXZs39cmt148OAJJvM-zPAcot3OdYDQKSUTSom6mN8-LSaMMDrJiSoEK3bQARVCZkSUdHe8c5EJJV_30WEIH4QwLmV5gL6neNGDiV632aLX0eoWz9519wb4CmJqWNfhB4jvrsaXOkCNU72wq761jU1Vnl3hmeu-XDuM0URPh-igM64Gjxvn8cPQRhth1bs0A9-te_BhOxHfr_QbhGO01-g2wMn2PEIvN9fPs7ts_nh7P5vOM8NUHrNlXbNGiJIbImtlOANJlwWRgnChS2JqWYOhSpfNkgsFQmtpNFeqUEW-JJTlR-h8827v3ecAIVYfbvBp51CxIsmijJY8pcpNyngXgoemMjbq8XNpZdtWlFSj8Wo0Xo3Gq63xRNI_ZO_tSvv1v8zZhrEA8JtXXBVEyPwHo9CPxw |
| CODEN | IGRSBY |
| CitedBy_id | crossref_primary_10_1109_TGRS_2024_3374600 crossref_primary_10_1109_LGRS_2023_3266091 crossref_primary_10_1109_TGRS_2024_3425491 crossref_primary_10_1109_LGRS_2023_3281335 crossref_primary_10_1109_TGRS_2024_3498034 crossref_primary_10_1080_01431161_2022_2162352 crossref_primary_10_1109_MGRS_2024_3412770 crossref_primary_10_1109_TGRS_2023_3304681 crossref_primary_10_1109_TGRS_2023_3344784 crossref_primary_10_1109_JSTARS_2024_3370151 crossref_primary_10_1109_TGRS_2024_3465537 crossref_primary_10_1109_TII_2024_3353921 crossref_primary_10_1109_LGRS_2024_3435429 crossref_primary_10_1109_LGRS_2022_3179134 crossref_primary_10_1109_TGRS_2022_3176642 crossref_primary_10_1109_LGRS_2025_3528020 crossref_primary_10_1109_TGRS_2024_3363886 crossref_primary_10_1109_TGRS_2024_3419111 crossref_primary_10_1109_TGRS_2023_3260969 crossref_primary_10_1109_LGRS_2022_3216878 crossref_primary_10_1109_TGRS_2023_3263563 crossref_primary_10_1109_TGRS_2025_3602498 |
| Cites_doi | 10.1109/TGRS.2020.3026099 10.1109/TGRS.2018.2863224 10.1109/LGRS.2019.2953754 10.1109/TGRS.2006.885408 10.1109/ICIP.1999.821583 10.1080/01431161.2018.1466079 10.3390/rs10111827 10.1109/MGRS.2019.2898520 10.1109/TPAMI.2012.59 10.1109/LGRS.2009.2025059 10.1109/LGRS.2017.2762694 10.3390/rs12101688 10.1109/TGRS.2019.2930682 10.1109/JSTARS.2020.2983224 10.1126/science.1127647 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| DOI | 10.1109/LGRS.2021.3096526 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology |
| EISSN | 1558-0571 |
| EndPage | 5 |
| ExternalDocumentID | 10_1109_LGRS_2021_3096526 9496058 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Heilongjiang Postdoctoral Foundation grantid: LBH-Z20051 – fundername: Heilongjiang Postdoctoral Funds for Scientific Research Initiation grantid: LBH-Q20085 – fundername: National Natural Science Foundation of China grantid: 62002083; 61971153; 62071136; 61801142 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 3072021CFT0801; 3072021CF0814; 3072021CF0807; 3072021CF0808 funderid: 10.13039/501100012226 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| ID | FETCH-LOGICAL-c293t-bdd2f5574c08d9c42e81b6085045a70cd8dec19a7fb459e5aa8ca4996963b0123 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732082700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-598X |
| IngestDate | Mon Jun 30 08:40:38 EDT 2025 Tue Nov 18 21:18:44 EST 2025 Sat Nov 29 05:54:07 EST 2025 Wed Aug 27 05:00:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c293t-bdd2f5574c08d9c42e81b6085045a70cd8dec19a7fb459e5aa8ca4996963b0123 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7308-9590 |
| PQID | 2615512174 |
| PQPubID | 75725 |
| PageCount | 5 |
| ParticipantIDs | crossref_primary_10_1109_LGRS_2021_3096526 proquest_journals_2615512174 crossref_citationtrail_10_1109_LGRS_2021_3096526 ieee_primary_9496058 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE geoscience and remote sensing letters |
| PublicationTitleAbbrev | LGRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref11 doi: 10.1109/TGRS.2020.3026099 – ident: ref15 doi: 10.1109/TGRS.2018.2863224 – ident: ref8 doi: 10.1109/LGRS.2019.2953754 – ident: ref5 doi: 10.1109/TGRS.2006.885408 – ident: ref4 doi: 10.1109/ICIP.1999.821583 – ident: ref7 doi: 10.1080/01431161.2018.1466079 – ident: ref12 doi: 10.3390/rs10111827 – ident: ref3 doi: 10.1109/MGRS.2019.2898520 – ident: ref14 doi: 10.1109/TPAMI.2012.59 – ident: ref6 doi: 10.1109/LGRS.2009.2025059 – ident: ref1 doi: 10.1109/LGRS.2017.2762694 – ident: ref2 doi: 10.3390/rs12101688 – ident: ref9 doi: 10.1109/TGRS.2019.2930682 – ident: ref10 doi: 10.1109/JSTARS.2020.2983224 – ident: ref13 doi: 10.1126/science.1127647 |
| SSID | ssj0024887 |
| Score | 2.4642015 |
| Snippet | Change detection for multitemporal hyperspectral images (HSIs) has always been a research hotspot of remote sensing. However, most current detection methods... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | 3-D convolutional autoencoder (3DCAE) Change detection Classifiers Convolution Data analysis Data mining Data processing Decoding Detection Feature extraction hyperspectral images (HSIs) Hyperspectral imaging Kernel Methods Neural networks Redundancy Remote sensing Spatial data spatial–spectral information Spectra Training |
| Title | A Spectral-Spatial Change Detection Method Based on Simplified 3-D Convolutional Autoencoder for Multitemporal Hyperspectral Images |
| URI | https://ieeexplore.ieee.org/document/9496058 https://www.proquest.com/docview/2615512174 |
| Volume | 19 |
| WOSCitedRecordID | wos000732082700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_cUPTFb3E6JQ8-id3arl2Sx_kxFVTED9hb6ZIUB9rJ1gl79h_3Lo1TUATfmpLQwi_J3eVyvx_AgVYC7TRGqnEWYICS9XHNhTrycClZepSY-6XYBL-5Eb2evJ2Do1ktjDHGXj4zDXq0uXw9VBM6KmvKSFIWrwIVzttlrdYXr56wYnjkEXixFD2XwQx82bw6v7vHSDAMGi3iOiEehW82yIqq_NiJrXnprvzvx1Zh2bmRrFPivgZzJl-HRado_jRdh4VzK9k73YD3DiOReTrR8EiAGCccK2sK2Kkp7E2snF1bIWl2jDZNM2zfD-imeYb-KWt5p-xkmL-5OUpfnRRD4r_UZsTQ52VlEW_JcfXMLjCyLQs4qXX5ghvWeBMeu2cPJxeek17wFNr_wutrHWZxzCPlCy1VFBp0b9tEbxfFKfeVFtqoQKY860exNHGaCpVi8NTG9dwnN20LqvkwN9vA0rCVGd5Cvyb0o0hLiS-U4iIT5DoqXgP_E4xEOV5yksd4Tmx84suE8EsIv8ThV4PD2ZDXkpTjr84bBNiso8OqBvVPxBO3bMdJSFnagKK0nd9H7cJSSPUP9gymDtViNDF7MK_eisF4tG9n5AeuAd2u |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4xxsRexm-tWwE_8IQWSFyb2I8dP9qKUiFgUt-i1HYEEkunNkXief_47hxTkEBIe4sjW4l0Pvs7n-_7APasUbhPY6QqiwQDlGKEPsetiNCVPD2KTONabCIdDNRwqC8X4Me8FsY55y-fuQN69Ll8OzYzOio71EJTFu8DfJRC8Liu1npm1lNeDo8wQSS1GoYcZhLrw37n6hpjQZ4ctIjthJgUXuxCXlbl1VrsN5izlf_7tVX4EoAka9eWX4MFV67DctA0v31ch08dL9r7uAF_24xk5ulMIyIJYpxyrK4qYCeu8nexSnbhpaTZT9zVLMP29R3dNS8QobJWdMKOx-VDmKX01Vk1JgZM6yYMUS-ry3hrlqt71sXYti7hpFbvNy5Z0034dXZ6c9yNgvhCZBABVNHIWl5ImQoTK6uN4A4B7hER3AmZp7GxyjqT6DwtRkJqJ_NcmRzDpyP06BEBtS1YLMel-wos563CpS1ENjwWwmqNL4xJVaEIPJq0AfGTMTITmMlJIOM-8xFKrDOyX0b2y4L9GrA_H_KnpuV4r_MGGWzeMdiqAc0ni2fBcacZpzxtQnHat7dH7cJy9-ain_V7g_Pv8JlTNYQ_kWnCYjWZuW1YMg_V3XSy42fnP1sn4PU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Spectral%E2%80%93Spatial+Change+Detection+Method+Based+on+Simplified+3-D+Convolutional+Autoencoder+for+Multitemporal+Hyperspectral+Images&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Zhao%2C+Chunhui&rft.au=Cheng%2C+Hao&rft.au=Feng%2C+Shou&rft.date=2022&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=19&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2021.3096526&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2021_3096526 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |