A Spectral-Spatial Change Detection Method Based on Simplified 3-D Convolutional Autoencoder for Multitemporal Hyperspectral Images

Change detection for multitemporal hyperspectral images (HSIs) has always been a research hotspot of remote sensing. However, most current detection methods only use spectral information or spatial information separately, and there are many false detection areas in the detection results. Besides, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters Jg. 19; S. 1 - 5
Hauptverfasser: Zhao, Chunhui, Cheng, Hao, Feng, Shou
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1545-598X, 1558-0571
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Change detection for multitemporal hyperspectral images (HSIs) has always been a research hotspot of remote sensing. However, most current detection methods only use spectral information or spatial information separately, and there are many false detection areas in the detection results. Besides, the feature extraction method based on neural networks needs a huge amount of training samples, but collecting labeled training samples for change detection tasks is difficult. Therefore, this letter proposes a hyperspectral change detection method based on a simplified 3-D convolutional autoencoder (S3DCAECD). First, the framework is based on deep unsupervised autoencoder (AE), which can extract deep spectral-spatial features from bitemporal images without the need for prior information. Second, by adding a 3-D convolution kernel and eliminating the pooling layer, the structure of 3-D convolutional AE is simplified, which can reduce spectral redundancy and improve data processing speed. Finally, a softmax classifier with a 2-D convolutional layer added is used to obtain the detection result, and only a few label samples are needed to train the classifier. Three HSIs' experimental results indicate that the accuracy of the S3DCAECD is more than 95% on three experimental datasets and it has better detection results than several commonly used methods.
AbstractList Change detection for multitemporal hyperspectral images (HSIs) has always been a research hotspot of remote sensing. However, most current detection methods only use spectral information or spatial information separately, and there are many false detection areas in the detection results. Besides, the feature extraction method based on neural networks needs a huge amount of training samples, but collecting labeled training samples for change detection tasks is difficult. Therefore, this letter proposes a hyperspectral change detection method based on a simplified 3-D convolutional autoencoder (S3DCAECD). First, the framework is based on deep unsupervised autoencoder (AE), which can extract deep spectral–spatial features from bitemporal images without the need for prior information. Second, by adding a 3-D convolution kernel and eliminating the pooling layer, the structure of 3-D convolutional AE is simplified, which can reduce spectral redundancy and improve data processing speed. Finally, a softmax classifier with a 2-D convolutional layer added is used to obtain the detection result, and only a few label samples are needed to train the classifier. Three HSIs’ experimental results indicate that the accuracy of the S3DCAECD is more than 95% on three experimental datasets and it has better detection results than several commonly used methods.
Author Feng, Shou
Cheng, Hao
Zhao, Chunhui
Author_xml – sequence: 1
  givenname: Chunhui
  surname: Zhao
  fullname: Zhao, Chunhui
  email: zhaochunhui1965@163.com
  organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China
– sequence: 2
  givenname: Hao
  surname: Cheng
  fullname: Cheng, Hao
  email: chenghaowise@qq.com
  organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China
– sequence: 3
  givenname: Shou
  orcidid: 0000-0002-7308-9590
  surname: Feng
  fullname: Feng, Shou
  email: fengshou@hrbeu.edu.cn
  organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China
BookMark eNp9kE1PxCAQhonRxM8fYLyQeO4KFFo4rutnssbE1cRbw9KpYrqlAjXZs39cmt148OAJJvM-zPAcot3OdYDQKSUTSom6mN8-LSaMMDrJiSoEK3bQARVCZkSUdHe8c5EJJV_30WEIH4QwLmV5gL6neNGDiV632aLX0eoWz9519wb4CmJqWNfhB4jvrsaXOkCNU72wq761jU1Vnl3hmeu-XDuM0URPh-igM64Gjxvn8cPQRhth1bs0A9-te_BhOxHfr_QbhGO01-g2wMn2PEIvN9fPs7ts_nh7P5vOM8NUHrNlXbNGiJIbImtlOANJlwWRgnChS2JqWYOhSpfNkgsFQmtpNFeqUEW-JJTlR-h8827v3ecAIVYfbvBp51CxIsmijJY8pcpNyngXgoemMjbq8XNpZdtWlFSj8Wo0Xo3Gq63xRNI_ZO_tSvv1v8zZhrEA8JtXXBVEyPwHo9CPxw
CODEN IGRSBY
CitedBy_id crossref_primary_10_1109_TGRS_2024_3374600
crossref_primary_10_1109_LGRS_2023_3266091
crossref_primary_10_1109_TGRS_2024_3425491
crossref_primary_10_1109_LGRS_2023_3281335
crossref_primary_10_1109_TGRS_2024_3498034
crossref_primary_10_1080_01431161_2022_2162352
crossref_primary_10_1109_MGRS_2024_3412770
crossref_primary_10_1109_TGRS_2023_3304681
crossref_primary_10_1109_TGRS_2023_3344784
crossref_primary_10_1109_JSTARS_2024_3370151
crossref_primary_10_1109_TGRS_2024_3465537
crossref_primary_10_1109_TII_2024_3353921
crossref_primary_10_1109_LGRS_2024_3435429
crossref_primary_10_1109_LGRS_2022_3179134
crossref_primary_10_1109_TGRS_2022_3176642
crossref_primary_10_1109_LGRS_2025_3528020
crossref_primary_10_1109_TGRS_2024_3363886
crossref_primary_10_1109_TGRS_2024_3419111
crossref_primary_10_1109_TGRS_2023_3260969
crossref_primary_10_1109_LGRS_2022_3216878
crossref_primary_10_1109_TGRS_2023_3263563
crossref_primary_10_1109_TGRS_2025_3602498
Cites_doi 10.1109/TGRS.2020.3026099
10.1109/TGRS.2018.2863224
10.1109/LGRS.2019.2953754
10.1109/TGRS.2006.885408
10.1109/ICIP.1999.821583
10.1080/01431161.2018.1466079
10.3390/rs10111827
10.1109/MGRS.2019.2898520
10.1109/TPAMI.2012.59
10.1109/LGRS.2009.2025059
10.1109/LGRS.2017.2762694
10.3390/rs12101688
10.1109/TGRS.2019.2930682
10.1109/JSTARS.2020.2983224
10.1126/science.1127647
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2021.3096526
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 5
ExternalDocumentID 10_1109_LGRS_2021_3096526
9496058
Genre orig-research
GrantInformation_xml – fundername: Heilongjiang Postdoctoral Foundation
  grantid: LBH-Z20051
– fundername: Heilongjiang Postdoctoral Funds for Scientific Research Initiation
  grantid: LBH-Q20085
– fundername: National Natural Science Foundation of China
  grantid: 62002083; 61971153; 62071136; 61801142
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 3072021CFT0801; 3072021CF0814; 3072021CF0807; 3072021CF0808
  funderid: 10.13039/501100012226
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-bdd2f5574c08d9c42e81b6085045a70cd8dec19a7fb459e5aa8ca4996963b0123
IEDL.DBID RIE
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732082700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-598X
IngestDate Mon Jun 30 08:40:38 EDT 2025
Tue Nov 18 21:18:44 EST 2025
Sat Nov 29 05:54:07 EST 2025
Wed Aug 27 05:00:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-bdd2f5574c08d9c42e81b6085045a70cd8dec19a7fb459e5aa8ca4996963b0123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7308-9590
PQID 2615512174
PQPubID 75725
PageCount 5
ParticipantIDs crossref_primary_10_1109_LGRS_2021_3096526
proquest_journals_2615512174
crossref_citationtrail_10_1109_LGRS_2021_3096526
ieee_primary_9496058
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref11
  doi: 10.1109/TGRS.2020.3026099
– ident: ref15
  doi: 10.1109/TGRS.2018.2863224
– ident: ref8
  doi: 10.1109/LGRS.2019.2953754
– ident: ref5
  doi: 10.1109/TGRS.2006.885408
– ident: ref4
  doi: 10.1109/ICIP.1999.821583
– ident: ref7
  doi: 10.1080/01431161.2018.1466079
– ident: ref12
  doi: 10.3390/rs10111827
– ident: ref3
  doi: 10.1109/MGRS.2019.2898520
– ident: ref14
  doi: 10.1109/TPAMI.2012.59
– ident: ref6
  doi: 10.1109/LGRS.2009.2025059
– ident: ref1
  doi: 10.1109/LGRS.2017.2762694
– ident: ref2
  doi: 10.3390/rs12101688
– ident: ref9
  doi: 10.1109/TGRS.2019.2930682
– ident: ref10
  doi: 10.1109/JSTARS.2020.2983224
– ident: ref13
  doi: 10.1126/science.1127647
SSID ssj0024887
Score 2.4642015
Snippet Change detection for multitemporal hyperspectral images (HSIs) has always been a research hotspot of remote sensing. However, most current detection methods...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 3-D convolutional autoencoder (3DCAE)
Change detection
Classifiers
Convolution
Data analysis
Data mining
Data processing
Decoding
Detection
Feature extraction
hyperspectral images (HSIs)
Hyperspectral imaging
Kernel
Methods
Neural networks
Redundancy
Remote sensing
Spatial data
spatial–spectral information
Spectra
Training
Title A Spectral-Spatial Change Detection Method Based on Simplified 3-D Convolutional Autoencoder for Multitemporal Hyperspectral Images
URI https://ieeexplore.ieee.org/document/9496058
https://www.proquest.com/docview/2615512174
Volume 19
WOSCitedRecordID wos000732082700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_cUPTFb3E6JQ8-id3arl2Sx_kxFVTED9hb6ZIUB9rJ1gl79h_3Lo1TUATfmpLQwi_J3eVyvx_AgVYC7TRGqnEWYICS9XHNhTrycClZepSY-6XYBL-5Eb2evJ2Do1ktjDHGXj4zDXq0uXw9VBM6KmvKSFIWrwIVzttlrdYXr56wYnjkEXixFD2XwQx82bw6v7vHSDAMGi3iOiEehW82yIqq_NiJrXnprvzvx1Zh2bmRrFPivgZzJl-HRado_jRdh4VzK9k73YD3DiOReTrR8EiAGCccK2sK2Kkp7E2snF1bIWl2jDZNM2zfD-imeYb-KWt5p-xkmL-5OUpfnRRD4r_UZsTQ52VlEW_JcfXMLjCyLQs4qXX5ghvWeBMeu2cPJxeek17wFNr_wutrHWZxzCPlCy1VFBp0b9tEbxfFKfeVFtqoQKY860exNHGaCpVi8NTG9dwnN20LqvkwN9vA0rCVGd5Cvyb0o0hLiS-U4iIT5DoqXgP_E4xEOV5yksd4Tmx84suE8EsIv8ThV4PD2ZDXkpTjr84bBNiso8OqBvVPxBO3bMdJSFnagKK0nd9H7cJSSPUP9gymDtViNDF7MK_eisF4tG9n5AeuAd2u
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4xxsRexm-tWwE_8IQWSFyb2I8dP9qKUiFgUt-i1HYEEkunNkXief_47hxTkEBIe4sjW4l0Pvs7n-_7APasUbhPY6QqiwQDlGKEPsetiNCVPD2KTONabCIdDNRwqC8X4Me8FsY55y-fuQN69Ll8OzYzOio71EJTFu8DfJRC8Liu1npm1lNeDo8wQSS1GoYcZhLrw37n6hpjQZ4ctIjthJgUXuxCXlbl1VrsN5izlf_7tVX4EoAka9eWX4MFV67DctA0v31ch08dL9r7uAF_24xk5ulMIyIJYpxyrK4qYCeu8nexSnbhpaTZT9zVLMP29R3dNS8QobJWdMKOx-VDmKX01Vk1JgZM6yYMUS-ry3hrlqt71sXYti7hpFbvNy5Z0034dXZ6c9yNgvhCZBABVNHIWl5ImQoTK6uN4A4B7hER3AmZp7GxyjqT6DwtRkJqJ_NcmRzDpyP06BEBtS1YLMel-wos563CpS1ENjwWwmqNL4xJVaEIPJq0AfGTMTITmMlJIOM-8xFKrDOyX0b2y4L9GrA_H_KnpuV4r_MGGWzeMdiqAc0ni2fBcacZpzxtQnHat7dH7cJy9-ain_V7g_Pv8JlTNYQ_kWnCYjWZuW1YMg_V3XSy42fnP1sn4PU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Spectral%E2%80%93Spatial+Change+Detection+Method+Based+on+Simplified+3-D+Convolutional+Autoencoder+for+Multitemporal+Hyperspectral+Images&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Zhao%2C+Chunhui&rft.au=Cheng%2C+Hao&rft.au=Feng%2C+Shou&rft.date=2022&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=19&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2021.3096526&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2021_3096526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon