Second-Order Continuous-Time Algorithms for Economic Power Dispatch in Smart Grids

This paper proposes two second-order continuous-time algorithms to solve the economic power dispatch problem in smart grids. The collective aim is to minimize a sum of generation cost function subject to the power demand and individual generator constraints. First, in the framework of nonsmooth anal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems Jg. 48; H. 9; S. 1482 - 1492
Hauptverfasser: Xing He, Ho, Daniel W. C., Tingwen Huang, Junzhi Yu, Abu-Rub, Haitham, Chaojie Li
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2216, 2168-2232
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes two second-order continuous-time algorithms to solve the economic power dispatch problem in smart grids. The collective aim is to minimize a sum of generation cost function subject to the power demand and individual generator constraints. First, in the framework of nonsmooth analysis and algebraic graph theory, one distributed second-order algorithm is developed and guaranteed to find an optimal solution. As a result, the power demand constraints can be kept all the time under appropriate initial condition. The second algorithm is under a centralized framework, and the optimal solution is robust in the sense that different initial power conditions do not change the convergence of the optimal solution. Finally, simulation results based on five-unit system, IEEE 30-bus system, and IEEE 300-bus system show the effectiveness and performance of the proposed continuous-time algorithms. The examples also show that the convergence rate of second-order algorithm is faster than that of first-order distributed algorithm.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2168-2216
2168-2232
DOI:10.1109/TSMC.2017.2672205